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Marangoni destabilization on a core-annular film flow
due to the presence of surfactant
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In this paper, the linear stability of a two-fluid, surfactant-laden core-annular flow is asymptotically
examined in the thin-annulus limit. The instability of the system is determined by the interplay
between interfacial tensions, Marangoni effects and viscosity stratification. A scaling analysis is
developed to identify the dominant instability mechanisms in various parameter regimes. With
proper scalings, the combined effects of Marangoni forces and viscosity stratification on the leading
order stability are examined for both cases in the absence and the presence of the core inertia. For
each case, a coupled set of linear evolution equations is derived for the interfacial deflection and the
surfactant concentration. In the absence of the core inertia, the system with a more viscous film is
always unstable due to the presence of surfactant. When the core fluid is more viscous, the
stabilizing effect of the core inertia is compromised by the Marangoni destabilization. The resulting
critical Reynolds number, beyond which the instability is completely suppressed by the core inertia,
increases with surfactant elasticity. Z005 American Institute of Physics

[DOI: 10.1063/1.1833411

I. INTRODUCTION As such, it is important to understand the instability
mechanisms of CAFF’s because it is often critical to the
A two-fluid core-annular flow(abbreviated here as applications mentioned above. In the absence of surfactant,
“CAF") consists of two immiscible fluids flowing cocur- the dominant effects on the stability of CAFF’s are capillar-
rently in a tube, where ongthe annulay fluid wets the tube ity and viscosity stratification. Capillarity destabilizestabi-
wall and surrounds the othgcore) fluid. This flow system  |izes) the system when wavelengths of disturbances are
arises in a variety of contexts for modeling processes such g§nger (shortey than the undisturbed interfacial circumfer-
lubricated P'Pe"”'nfi liquid—liquid dlsplace_merﬁ,enhanced ence. Georgioet al” developed the thin-film asymptotics to
oil recove_ry‘f' and liquid lining flows in a|rvx_/ay§'. In Most  gnalvtically examine the combined effects of capillarity and
CAF applications, the annular fluid layer is much thlnnerviscosity stratification on the linear stability of a vertical
SCAFF. With proper scalings, the effect of viscosity stratifi-
cation can be reflected by the coupling of the core dynamics
to the lubricated film flow. For a less viscous annular film
with a large interfacial tension, viscosity stratification can
linearly stabilize the capillary instability at sufficiently large
eynolds numbers. That is, there exists a window of the
stability in the Reynolds number space within which a CAFF

tants that reduce surface tensions for maintaining the intedS @Ways stable. This result is consistent with the previous
rity of the layer during a breathing cycle. When surfactantsc/AF Study obtained by numerically solving for the full Orr—
are insufficient or malfunctioning as in premature infantsSCmmerfeld equatlorfg. . .

with respiratory distress syndroni@DS), strong surface ten- In the We";‘kly nonlinear regime, Frenketlal.” and Papa-
sion forces amplify the growth of the interface and Cou|dgeorg|ou1_at.al. derlyed the.Kuramotg—Slvashlnsky equations
cause the liquid to block the pathway of air. Clearly, it is for descrlplng th-e |nter.faC|aI evolutions of CAFF’s. The lat-
necessary to discourage such surface-tension-indicasd-  t€r work in particular included the nonlocal terms that re-
lary) instability for preventing airway occlusion. Liquid- flected the coupling of the core dynamics via viscosity strati-
bolus dispersal surfactant replacement therépRT) is a fication. These analyses demonstrated that the capillary
remedy to such surfactant deficiency. In this treatment, liquidnstability can be arrested by nonlinear effects. The spatio-
is instilled into the lung as a vehicle to deliver exogenoustemporal interfacial dynamics can exhibit either chaotic or
surfactant$.Such liquid often forms a liquid plug and leaves traveling wave motions.

a trailing film behind or ahead of the liquid plug. In contrast ~ Although the above-mentioned CAFF studies have re-
to airway closure, the formation of liquid plugs, e.g., via vealed some basic features of the stability of CAFF’s, they
breathing rates, is required to be appropriately managed iare, however, subject to two important restrictio(i$:The
order to efficiently deliver surfactants through one airwayannular layer is much thinner compared to the tube radius,
generation to another. and (ii) interfacial displacements are much smaller than the

called core-annular film flowgsCAFF's). In this paper, we
shall restrict our attention to CAFF's and relevant physical
aspects.

The interfacial instability of CAFF’s plays a vital role in
affecting the efficiencies of processes. For example, in th
lung, there is a thin liquid layer coating the interior periph-
eries of airways. This liquid layer normally contains surfac-
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thickness of the thin annular layer. Some spatio-temporal dy-
namics cannot be predicted by these studies due to these
limitations. Kerchmah examined the strongly nonlinear in-
terfacial dynamics of a CAFF by allowing sizes of interfacial
disturbances to be comparable to the film thickness. His
analysis included the weakly nonlinear analysis as a special
case. He demonstrated that the features of the dynamics
strongly depended on the capillary numiggs, the ratio of
viscous to surface tension forces based on the properties of
the core fluid. The Kuramoto—Sivashinsky nonlinear satura-
tion of the capillary instabilit§/7 was indeed identified for FIG. 1. Geometry of a two-fluid core-annular flow with an insoluble
Ca<g? (Wheree is the ratio of the undisturbed film thick- surfactant.
ness to the core radiudVhens?/Cais sufficiently large, the
core-annular arrangement may collapse because the interface
could bulge into the core. Kouris and Tsamopotifdstud-
ied the complete nonlinear problems of CAF's, but without
restricting the thin annular fluid or sizes of perturbations.
They have confirmed the spatio-temporal dynamics that in
clude bamboo waves or traveling waves observed in th . . ; .
CAFF studied:** More importantly, some of their findings | oW '° merely through the film dynamics. It is not clear,
cannot be predicted by the early works based on the aforehow.e.ver’ how the mclugon of the core dynamlcs affepts the
mentioned restrictions. stablllt.y of a CAFF Wlty surfactaqt. As in the studies of
Most studies on CAF's were only considered foean- clean-interface CAFF3/ the contribution from the core

: . A flow can enter the analysis wh&a is moderately low(i.e.,
interface systems. The stability of such CAF’s is fairly un- Ca~&). In this regard, there are two issues worth being ad-

derstood. However, when'the interface is contaminated b}ﬁressed. First, it has been shown that in the absence of sur-
surfactap_ts or surfa}ce-actlve agents, how surfactants aﬁeﬁictant, a core flow with negligible inertia does not contrib-
the stability of CAF's has not been yet fully explored. The o 15 the instability. This could be changed by the addition
central issue herein particularly arises from understanding ¢, factant. Second, in the case inclusive of the core iner-
how surfactants interact with base flows to affect the stabili%a’ the stability window in the Reynolds number space could
of CAF's, in particular of CAFF's. Rumschitzki and Wei e’ modified due to the presence of surfactant. In this paper,

and Rumschitzkf have addressed this issue. They showedye shall extend these previous CAFF studies to address the

that the features of the instability with surfactant depended,pgye issues.

on regimes of the capillary numb&a. In the smallCa limit

or in the absence of base flows, surfactants partially suppress

the capillary instability as in a stationary system with
4 ..

surfactant: Iq the limit of large Ca where base flows-artla Il. BASE STATE, GOVERNING EQUATIONS,

strong or capillary forces are absent, the surfactant distribu

S o . ) AND BOUNDARY CONDITIONS
tion is rearranged by the basic interfacial velocity, and the

induced Marangoni effects could destabilize the system. For  cgnsider two immiscible, viscous, incompressible fluids
a moderately smalCa, surfactant could cause more severefiowing axisymmetrically in a core-annular arrangement in a
destabilization than the clean-interface capillary instability.straight tube of radiu®,. See Fig. 1. The interface, defined
These findings have significant implications to CAFF appli-by r*=S*(z*,t*), is covered by a monolayer of insoluble
cations. For example, for preventing airway closure in spacegyrfactant. Fluid 1 of viscosity; occupies the core region
one may require applying a sufficiently strong airflow for g<r* <sx(z,t). Fluid 2 of viscosity u, fills the annular
suppressing the capillary instabiltyHowever, an improper region S* (z*, t*)<r* <R,. Densities of both fluids are
choice of surfactant properties or dosages could exaggeratfatched and denoted by Because the flow fields are as-
the interfacial growth. In the application of SRT, the flow- sumed to be axisymmetric, we only consider velocity com-
induced Marangoni instability could trigger the formation of ponentsv* = (u*,0,w*) in terms of the cylindrical coordi-
liquid plugs. But the size of a surfactant-laden liquid plugnates(r*, 6*,z*). Let r* =R, be the undisturbed interface.
could become smaller than that of the surfactant-free tase.The base flows are driven by a constant pressure gradient
As a result, a plug may be susceptible to be ruptured by*p*=-Fe, with F>0. The characteristic length and ve-
blowing airflows. locity are chosen a®}; and the centerline velocity\

The Marangoni instabilitysolely induced by base flows :F(Ri(ﬂz‘ﬂl)*'R%Ml)MMlea respectively. Pressure is
was first demonstrated by Frenkel and Halp&ffor the  scaled withpW2 and time has a scale &,/ W,. The surface
linear stability of the two-layer Couette—Poiseuille flow in surfactant concentration is scaled wlﬂé, an unperturbed,
the presence of an insoluble surfactant. They showed that, imniform surface concentration associated with the interfacial
the Stokes-flow limit, surfactant could destabilize the systemensioncrg. Define the viscosity ration=pu,/u, and the ra-
that is otherwise stable in the absence of surfactant. dius ratioa=R,/R;, the base state is

In the study of a surfactant-laden CAFfthe low-Ca
scaling(i.e., Ca~ %) demands that the instability is dictated
by the film dynamics to which the core dynamics are just

laved. That is, the interaction between surfactant and a base
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g Mt o _SS 1 [Sw+us)
W(r)=1 @+m-1) forOsr=<1, Iy 1+§FZ+S\’I1+§( \e"1+S§ F)Z
2 2 (u—w§)<1+§_ ) ~
w(r) :—(;i mr—)l) forl<r=a, 1) * (1+$)?\ S =21 =0. (10
[—J:ﬁ' F:j_, Ill. SCALING ANALYSIS
gCa

. With the base state as above, we now begin to analyze
where[-]=(-);=(")2- R&=pWoRy/ 1y and Ca=usWo/ 0y de-  the corresponding linear stability. Our aim is to asymptoti-
note the Reynolds number and the capillary number, respegz|ly examine the stability in the thin-annulus limit. To de-
tively. The nondimensional governing equations for eachyye the leading order linear stability equations, our strategy

fluid are essentially follows the previous CAFF studfe’s**We shall
1 first perform the scaling analysis to identify the dominant
F(ru)r +w,=0, (2) instability mechanisms and to estimate the scales of pertur-

bation quantities. We then expand governing equations and
boundary conditions with these perturbation quantities to de-

Wt+uwr+wwz:—pz+iV2W, (3a  rive the leading order linear stability equations. Since the
Re early asymptotic analysis for a clean-interface CAMfas
been justified by comparison with the study obtained from
1(_, 1 directly solving for the Orr—Sommerfeld equatiolnw,e be-
Ut+uur+Wuz=‘pr+R_e(V u-24)- (8D  Jjieve that the present asymptotic analysis should capture

some essential features that are expected to be found in the
The Reynolds numbers are given Rg=Re/m; with m;  full analysis.

=1 andmy,=m for i=1,2. Thesystem is subject to the fol- Let & be the ratio of the undisturbed annular thickness to
lowing boundary conditions. The velocities vanish on thethe core radius. The thin-film limite<<1) allows one to
wall: introduce a stretched film variabje=1—(r —1)/ e to separate
the radial scales in the film and the core. ForO(1), the
w,=U,=0 atr =a. (4) _ _ —
leading order base flows ave=2ey/m andW=1-r2 for the
Velocities are continuous at the interface: film and the core, respectively. Let us introduce infinitesimal
disturbances of sizé;(<e) and 6,(<1) to the unperturbed
[w]=0,[u] =0 onr=S(z1). () interface and surface concentration, respectively:
The tangential stress and normal stress conditions at the in-  S(zt) =1 + 8§, 5(z1), (11a
terfacer=3(z,t) are given by
I'(zt) =1+6,G(zt). (11b)
1 1 2 1
1+ [R_e(wf (-8 + %(u, - WZ)SZ} B CaRq‘TZ’ Prior to proceeding any further, we have to recognize the

6 fact that the mechanisms of driving perturbed flows can be
6) derived from different routes. For a strong tension or Osy
when the annulus is thin, capillarity due to an interfacial
2 2 2 ; i
| p-Zu-|-p+=w §+ (U, +w,)S, perturbation usually furnishes a large perturbed pressure to
Re ' Re * Re ' drive the film flow. In addition, Marangoni forces generated
_ o)
" CaRg

1 by the perturbed surfactant distribution also can exert on the
[Sﬂ— -1 +§)}(1 +S)7%2, (7)  interface to induce a flow. This scenario can occur when the
S tension is weaki.e., highCa). In this case, the Marangoni-
driven mechanism dominates the instability.
To estimate the scales of perturbation quantities, let
o=1-El(I'-1), (8  (w',u",p") and(W’,U",P") denote the perturbation quanti-
o ... ties for the annulus and the core, respectively. We begin with
where EI:_(FO/U‘J)(’?U*/&?_)FB denotes the ela§t|C|ty the capillary scaling for the perturbed film flow and check
number of surfactant, an ability to lower the interfacial ten-yhe consistency posteriori The perturbed film pressure es-
sion in response to surface impurities. The kinematic condigimated from the normal stress conditiot?) is p’
tion is ~ 6,/RgCa. The equation of motion&3) and continuity(2)
u=S+wsS onr=9zt). (99  inthe film yieldw'~ 8251/_0::_1 andu’~ 8351/C§__As for the
core quantities, the continuity of axial velocities across the
Finally, for an insoluble surfactant with negligible surface interface(5) results inW’~ §;. The lack of separation be-
diffusion, the surfactant transport equation along the intertween the axial and radial length scales demastls &, and
face ig® P”"~ 6,/Reg. The key to including both the core and Ma-

The equation of state is assumed to be linear:
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rangoni effects at the leading order lies in the tangential  Further comments should be made on the scalitgs
stress conditior{6). It requiresCa~ ¢ in view of balancing Ca~ ¢ is first derived from the capillary scaling for retaining
both the film and core shear stresses at the leading brdethe core dynamics. To recruit Marangoni effects has to fur-
This leads the film quantities o’ ~ 6;/¢Re, W' ~¢ed; and  ther demandvia~ £2. SinceEI=MaCa, one requires rather
u”’~&28). Balancing the viscous shear stresses and the Matiluted surfactant contamination or small surfactant elastic-
rangoni stress yields, ~ ,Ma whereMa=El/Cais the Ma- ity In fact, as we shall show next, the analysis for including
rangoni number. To gain further information abofit 3,  both Marangoni effects and the core dynamics only requires
Ma and the time scale, we examine the kinematic conditionvia~ s2 and 8, ~ £26,. It thus can be extended to the regimes

(9) and the surfactant transport equatidd). In a traveling  peyondCa~ «. In that case, it may not requite to be very
frame with the speed of the basic interfacial velocity, &z. gmall.
—z=W(D)t, it is necessary to introduce a slow time scale For Ca> ¢, Marangoni forces can drive the film flow at
=% 10 (9) in order to obtain nontrivial dynamics of the the first place instead of capillary forces. In this case, the
perturbed interface. To show more cle_arly how t_o derlye theperturbed film flow hasv’ ~ £8,Ma and u” ~ £25,Ma. Bal-
relevant surfactant equation and scalings, we first write theneing the Marangoni-driven film stress and the core stress
I|near!;ed _form _of(lO) in Ferms of unscaled perturbation of (6) yields 8,Ma~ &,. This leads the kinematic condition
quantities in thefixed coordinate: (9) to have the same long time scates? as theCa~e
. — . — — — case. Applying this time scale to the surfactant transport
[+ wly = DI + Wil 7l +wi(y = DT equation(10) yields 28,~ &;. With §,Ma~ &,, we obtain
+ (U —V_Vné)yﬂF: 0, (12) Ma~ &? and again arri\_/e at the same scaling 2conditions as
(14) except Ca~e. With the scalingsMa~e¢“ and &;
where 7' = 8, and ' =5,G are the unscaled interfacial ~ &8, the perturbed film velocities ane” ~&5,Ma~ &8,
perturbation and surfactant disturbance, respectively. Wend u”~g28;. Inspecting the capillary scales for the film
have retained” (=1) here to expedite interpretation of the Velocities reveals that foCa>e, w'~&?8/Ca<ed; and
terms. Notice thatv=(2¢/m)y andw,=—2/m have different U’ ~&>61/Ca<&?8y, indicating that Marangoni effects domi-
orders of magnitude_ The first term (5[2) is the local time nate the |nStab|l|ty of the film and the Capillary InStablllty is
rate of change of the surfactant concentration. The othe?f & higher order effect. All of the perturbed core quantities
terms except the last term all derive from the surface cont€tain the same scales as earlier regardless of the scake of
vection. The second terf®(e 8,)] is a typical traveling term As such, as long a€a=e¢, the scalingsMa~&? and
due to the basic interfacial velocity and clearly has no impacti~ £26, of (14) are sufficient to ensure the retaining of both
on the stability. The third terfiO(8,)] reflects the effect due the core and Marangoni effects at the leading order. ifhis
to the perturbation of the basic interfacial velocity,|,-,7’, IS because the perturbed flows can be solely driven by Ma-
and the fourth termiO(e 8,)] derives from the perturbed axial rangoni stresses without necessarily having capillary forces.
velocity w”. The last tern{O(e8,)] is attributed to the sur- SinceCacould be much larger tha the required surfactant
face expansion—contraction of the interface. Hence, at thelasticityEl=MaCais not necessarily small. This scenario in
leading order(12) can be rewritten, in the moving frame of practice could occur in oil recovery processes wherein sur-

z—z—-w(1)t, as factants are used to reduce interfacial tensions to the ultra-
low level of 10°-102 dyne/cm*® For 4,=0.01 poise and
2 = the slug’s speed of 1 cm/€a=0(10)—0O(10®%) which ranges
25,G, - — 8,7, = O(e8y). 13 gs sp 9
& 02T 1T (28y) (13 from O(¢™1) to O(s73) for £=0.1. ThereforeEl can span a

_ _ wide range fromO(e) to O(g™?).
in th_e kinematic condition. Consequently, a proper scalingya~ £2. For other parameter regimes, the dominant mecha-
relation betweers, and d, should come 1;rom balancing the nisms of instability can differ from the above mentioned. If
f|r_st two terms |n(13), which yieldsd; ~ ¢ 5_2. This together  p15s 2, applying similar scaling procedures to a
with the earlier scaling; ~ 5,Ma from (6) givesMa~ &2. In Marangoni-driven flow leads to the time scatesMal/%
short, the scaling constraints for engaging both surfactant 4 the scalings, ~ sMal/25,. Now inspecting the scale of

effects and the core dynamics are W’ reveals thatw’~ed,Ma~ §;Ma*? for the Marangoni
(14) scale, andv’ ~ 28,/ Ca for the capillary scale. Accordingly,
Mal’?Ca/e? (>Cal e because oMa> ¢?) indicates the rela-

With the above scalings, the perturbed film pressure arisingve importance of Marangoni to capillary effects. As a re-
from the surface tension variation due to surfactanpis sult, for Ma> &% whenCa= &, Marangoni effects dominate
~ 5El/RgCa~ 8,/Re which is of a higher order than the the instability. On the other hand, Ga<e (e.g.,Ca~&?),
capillary pressure”~ 8,/¢Rg. Since the current study is Marangoni forces are not comparable to capillary forces until
focused on théinear stability analysis, sizes of disturbances, Ma~ &%/Ca. Since the core shear stressd6s;) and of a

in fact, must beinfinitesimalregardless of. Nevertheless, higher order than the filn®(5;Ma/?/¢), the system’s insta-
the constraints; <e <1 andé,< 1 must be at least satisfied bility is dictated by the film dynamics to which the core
here. The scaling, ~ 28, leads to 8, <e? which is also dynamics are slaved. This film-determined instability with
reasonable for the linear stability analysis. surfactant has been identified by Wei and Rumschitykhe

Ca~ &, Ma~ &% and 8, ~ £265,.
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TABLE I. Dominant mechanisms in various parameter regimes. 1
W(r=1)=21-=g, (193
Ma~ g2 Mas>> g2 m
Caze Capillary-Marangoni Film-determined instability; Flv — 4y —
instability; the core dynamics Marangoni effect dominates U'(r=1)=0. (19b)
are included

Ca<e  Film-determined instability; Film-determined instability; The leading order kinematic condition and surfactant trans-

capillarity dominates Marangoni effect is not port equation, in the traveling frame with the basic interfacial
comparable to capillarity until  velocity w(y=1), become
Ma~ g*/C&
u' =7, (20
. . . . . 2
aboye dl_scussmn for various parameter regimes is also sum- G_-=,=0. (21)
marized in Table I. m

In the following section for the detailed formulation of . . 2 .
the linear stability, we shall focus on the capillary-MarangoniHer? we have introduced a long time S.Cﬁbs t. Notice
' again that fotMa~ &2 the surface convection due to the per-

system that satisfies the scaling conditiohg). The case of bed basic i il velocity domi he leadi d
Ca>¢ can be regarded as the weak tension limit of thattur ed basic interfacial velocity omlnatest € leading order
surfactant transpox21). Further notice thaMa~ ? admits

system. the absence of the immobilizing effect on the interface due to
large surfactant elasticity.

IV. FORMULATION OF THE LEADING ORDER LINEAR Finally, the leading order governing equations for the
STABILITY core are

With the scalingg14), the leading order linear stability
problem is formulated below. LeZa=sCa, and Ma=¢2M, =(ru’), +W, =0, (223
with O(1) Cay and M. The film quantities can be expanded r
as

_ ’ _ 2 N = _ p’ YN
W= W+ e +0(e28), Re(-2rU’ + (1 -r9)W,) P, + VW, (22b)
— 250y 3 U’
u=g5u’ +0(e°s5), (159 Re(l-r)U,=-P| + (Vzu' —?). (220

=p+(8/eRg)p’ + O(5/Re).
p=p+(a/eRa)p (a/Ra) The core dynamics that satisf$9a and(19b) can be either

For the core, expressed in terms of the modified Bessel functionsRar
=0(e) (i.e., Stokes floy or represented by the Kummer
functions forRg =0(1). The detailed derivations for the core
dynamics can be found in the work of Papageormusll.7
The film flow field is first determined by using the no-slip
_ conditions,(17) and (18). We then apply this film flow to
P=P+(61/Re)P’ +O(e5,/Re). (20) and (21) for deriving the evolution equations for the

After substituting the above int¢2)<(10) and expanding interfacial disturbance and the surfactant concentration per-

them with respect to the base state, the leading order goverHerat_iO”’ respectively. As a result,'the interfacial evolution
ing equations of the film become equation for theRe =0(e) core flow is

W=W+ W +O(£8,),

U= 38U’ +0(e8y), (15b)

U, =Wy, 16 M
y z (169 -t 3mca)(7722+ Mozzd + ﬁezz
0=—p; +mw, (160) i 1\ [ "
- —(1 - —) f Ng(K) f 7(x, e dxdk=0,
0=-py. (160 mm m/J o
The no-slip conditionsv’ (y=0)=u’(y=0)=0 are applied on (23

the wall. The leading order tangential and normal stress oz here
ditions at the interface are given by

e KA1%(k)
m\/\é(y l) (Wr + Uz)r=l MOGza (17) NB(k) = k@(k) _ k|g(k; + 2|o(k)|1(k) ’

p'= éo(ﬂ"’ 722 (18)  and the function’s andK's are the modified Bessel func-
tions of various orders.
At the leading order, the continuity of velocities at the inter- For Rg=0(1), the corresponding interfacial evolution
face is equation becomes
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1 Mo
n,+ 3mca)(7722 ﬂzzzg+§nGzz
(o[ ) IK(Z) g (| =
2Wm<1 m) Lc Nk (K) LO (%, e dxdk=0,
(24)
where
1(KeMM(A,2,2))
Nk (K) = — ,
N, (K)1 (k) = Na(k)I1(k)
with

= 3(kR@)V%e ™4 A =1+k%8N -2,

1
Ny (k) = f (11(k)K1(ks)
0

—1,(k9K,(K)SLENCM(A, 2, A ds,

1
No(k) = f (lo(k)K1(ks)
0

+1,(k9Ko(K)SLEM(A, 2, A ds,

andM(A,2,x) is the confluent hypergeometric functigime
Kummer function.

Phys. Fluids 17, 027101 (2005)

Notice that our theory is based on lubrication in the film,
which requires that the radial length scale in the annulus is
much shorter than the axial scale. The analysis is only valid
for disturbance wavelengths that are much larger compared
to €. In addition,Rge3/m<1 is also required for ensuring
the validity of lubrication in the film.

V. RESULTS OF THE LEADING ORDER LINEAR
STABILITY
For the linear stability analysis, we apply normal modes:

(7,G)=(%,G)e"**™ to the derived sets of the evolution
equations wher& (<&™%) is the wave number of the distur-
bance and is the complex growth rate. The system’s stabil-
ity is determined by the real part efs;. The system is stable
(unstablgé whens, <0(>0). Both Rg=0(g) andRg=0(1)
cases are examined separately as below.

A. The Re;=0(¢e) case

For Rg =0(e) or Stokes flow, Eqg21) and(23) govern
the leading order instability. The dispersion equation gor

after taking normal modes and eliminati@ is

1 M
S+ [—(k“ K?) + (1——)1\13} —iﬁok%o
(25
The solution to(25) is given by

— 1 o I 2 = _ i3
e o 2huton [ S| B

(26)

which admits two roots 0. For a given set of parameters, cause the instability of both systems is film-determined and

we are interested in the most unstable mode wisdsas the
largest real part. In the absence of surfactdviy=0), Eq.

Marangoni effects dominate for long waves. It is also con-
sistent with them=1 result of Frenkel and Halpefhfor the

(26) agrees with the linear stability result of Papageorgibu planar system with a semi-infinite upper layer.

al.,” and the core contribution to the instability is merely
dispersive. In view of the fact thgR6) contains the term

The mechanism of the flow-induced Marangoni destabi-
lization has been elucidated by the previous stutiié&For

4ik3M o/ m? inside the square root, surfactant generally makegompleteness, below we choose the 1 casein which the
the system more unstable than the surfactant-free case. Wh@are dynam|cs are absen'[or |||ustrat|ng the |nstab|||ty

viscosities of both fluids are matchéth=1), the core dy-

mechanism. Consider the film flow region with a sinusoidal

namics are absent and the system’s instability is solely detejnterfacial disturbance. As indicated k81), the term 2,/m

mined by the film. The long wavelengtk— 0) expansion of

(26) with m=1 yields

s= + i’_ 1/2Ml/2k3/2+ O(kz)

V2 21

due to the perturbed basic interfacial velocity causes higher
(lower) surfactant concentrations for thg>0 (7,<0) por-

tions of the interface. Such a perturbed surfactant distribution

has maxima—minima at the interface nodes=0), but has
no changes at the interface crests/trougps0). That is, the

indicating that surfactant destabilizes the system for longurfactant distribution has a phase difference2 with the
waves. The leading order growth rates for long waves arélterface. The resulting Marangoni stresses in turn create

O(k¥?) due to Marangoni effects, and capillaritgiue to its

flows from the interface nodes toward the crests/troughs,

circumferential componentoes not contribute to the insta- causing the interface to grow. Such Marangoni destabiliza-

bility until O(k?). The form of (27) is also identical to the

m=1 result of Wei and RumschitzKiin spite of different

tion works for allk(<e™?), but is compromised by the short-
wave capillary stabilization.
scalings applied in their study. This is not unexpected be-

For m# 1 how surfactant interacts with viscosity strati-
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FIG. 2. The Marangoni effect on the growth rate curves for the Stokes flowFIG. 3. The Marangoni effect on the growth rate curves for the Stokes flow
casem=1.5,Cagy=1. casem=0.5,Cagy=1.

s=—ﬂ<1—l>k+{ 1 Mo ]k2+0(k3).
m m 3mCa 4(m-1)

fication via coupling to the core flow becomes complicated.
Figure 2 shows thes,—k curves withCay=1 andm=1.5 (28b)

>1 for variou_sMO. Form>1, in comparison with thé, In contrast ta27) for them=1 case whose longwave growth
=0 case, adding surfactant makes the system unstable for gll;qq aréD(k%?), the combined effects of surfactant and vis-

< -1 ilizi i il- . Y . . aye
K (,<8 )- Although the stabilizing effect of the axial c_:apll cosity stratification on the long wavelength instability occurs
larity slows down the growth rates for short waves, it doesat O(K?). This ordering is also consistent with the 1 re-

not make t.h.e g'rowth rates negative'. Incregsingmagnifies sult of Frenkel and HaIperJrfThe first modg28g involves
the dgstablllz_atlzon._NotezthMO here is restricted t(1) for e Marangoni-viscosity-stratification effect while the second
ensuringMa=¢“Mo=0(¢?) to retain the core coupling in (28b) further includes the usu&(k?) destabilization of the

view of (14). fircumferential capillarity. The first mode is destabilizing

The corresponding growth rate curves for the case Ofgiapilizing for m>1 (m<1). The second mode can desta-
m=0.5<1 are shown in Fig. 3. The system with surfactant isbiIize the system fom>1 if M

more unstable than the surfactant-free case. There is a nogfways unstable fom<1. In the limit of Cag— (i.e
smooth change in a growth rate, indicating that two eigen-CaO>8) the dominant g.rovvth rate of both modes.fn.:;
modes switch their dominance in a rangekofcreasing\ £1is s,’:Mok2/4|m— 1/+0(K?), indicating that the larg&a

promotes the longwave caplllary des_tz_abm_zatlon_ while it SuP'system is always unstable for long waves.
presses the shortwave capillary stabilization. Since the short-

wave c_gpillgry _stabilize_ltion is .mediated.l.ay the MarangoniB_ The Re,=0(1) case

destabilization, increasinlyl, shifts the critical wavelength

toward a shorter one. The leading order linear stability fdRg =0(1) is gov-
The long wavelength analysis may provide some in-erned by Eqs(21) and(24). It is determined by the follow-

sights into the above observations. Fo# 1, in the limit of ~ ing dispersion equation:

oCap<3(1-1/m), and is

k— 0, with the aid ofNg=2k+ tk®+O(Kk?), two roots 0f(26) 1 i 1 M
become ° 3 [—(k“—kz)—L<1——>NK}s—i—gk3:0,
3mCqg m m m
Mg (29
= k% +0(K), 28
S 4(m-1) (i) (283 which has two solutions of:
1 i 1 1 1 [ 1 2 4
= k2 - K* +—<1——>N i—\/{— k4—k2——<1——>N J + —ik3M. 30
S 6mCa)( ) 2m m/ <72 3mCa)( ) m m/) K| T Mo (30

It can be shown that thRe — 0 limit of (30) recovers the onstrates the effect dRe on the growth rates witim>1.
Stokes flow case as in the previous subsection. Figure 4 denror small and moderatRe, the growth rate curves have
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04 TABLE II. The critical Reynolds numbeRé, for variousM,. m=0.5, Cay
=1.
R, =32 M, R§, from (30) R€ from (32)
03F
0.0 4.00 4.00
A 0.2 4.45 4.60
S, RN
02k )/ /@.\?‘ 0.5 5.35 5.50
15 7 FEEAN 1.0 6.85 7.00
\*,
) }\\p{' 2.0 9.85 10.0
/ 0. NN
0.1 r / IR
/ X
8'.,-/ N RS2 . .. * .
=7 i also exists a critical Reynolds numiiee, beyond which the
. o . , . instability is completely suppressed by the core inertia. In
0 1 2 3 4 fact, Re can be estimated by setting tk?) part of (31b)
to be zero:
FIG. 4. The effect oRe on the growth ratean=2, My,=2, Cay=1.
« 1 4 3Mg
Re = —+ for m<1. (32
1 1 Cay 1 1
similar trends to those of Stokes flows, and increasiey m m

makes slight increases in both the maximum growth rate ] -
S max @nd the corresponding wave number,,. For a large Equation (32) suggests that surfactant destabilizes the

Re/(>8), however, the growth rate curve starts to exhibit an= 1 System in a manner th&, increases wittMo. That is,
additional hump in a certain range kf A nonsmooth tran- N€ larger surfactant elasticigi=MaCa the higherRe re-

sition between two humps indicates that two eigenmodegu"ed to s*tabilize _the system. Table Il lists the compgrison
switch their dominance of the instability. ABe increases, PetweenRe numerically evaluated by30) and those using
the first hump appearing in the smallerregime starts to (32)- The agreement is fairly good, indicating tH&®) pro-

grow, but the second one in the larderegime only slightly ~ vides & lucid way to fincRe,.
increases its maximum. The maximum of the first hump
eventually becomes larger than the second at a sufficiently" CONCLUDING REMARKS
large Re (that still satisfiesRee3/m<1 for ensuring the We have asymptotically investigated the linear stability
validity of lubrication in the film). of a surfactant-laden CAF in the thin annular filla— 0)
Form<1, it is known that the core inertia acts to stabi- imit. A scaling analysis is utilized to identify the dominant
lize the systerf.Adding surfactant could cause instability instability mechanisms in various parameter regimes. Ratio-
due to the flow-induced Marangoni effect. The stability nal scalings are established to examine the combined effects
arises from these two competing effects. Below we agairbf Marangoni forces and viscosity stratification on the lead-
utilize the long wavelength analysis to elucidate the com-ng order linear stability of the system. For both cases in the
bined effects of the core inertia and surfactant on the stabilithbsence and the presence of core inertia, the respective

in more detail. coupled sets of the linear stability evolution equations are
With the aid ofN,=-4k-ik?Re/12+0(k?), two roots of  derived for the interfacial deflection and the surfactant con-
(30) in the k— 0O limit become centration.
Mo qu a core flow with negligible inertia_, in contrast to the
s= mk +0(K3), (319 clean-interface case whose core dynamics do not contribute
to the system’s stability, the interaction between surfactant
. and the core flow can significantly affect the stability. When
4i 1 1 Mo oo X
s:——(l——) +< - the film is more viscous, surfactant makes the system un-
m\  m 3mCa 4(m-1) stable for all disturbance wavelengths that are much longer
1 1 than the annulus thickness. For the system with a more vis-
+ E’n(l ‘E) RQ) k?+0(I). (31D cous core, surfactant promotes the longwave destabilization
and the shortwave stabilization of capillarity.
In comparison with th&— 0 asymptotic§28g and(28b) of In the case in the presence of the core inertia, the fea-

theRg =0(e) case, the first modE19 is identical to(283),  tures of instability can be modified due to surfactant, espe-
and is merely attributed to the Marangoni-viscosity- cially for the system with a more viscous core. There exists a
stratification effect that depends on neitliR nor Ca. For  critical Reynolds numbeRe, beyond which the instability is

the second modg31b), it just adds the inertial correction to completely suppressed by the core inertia. Surfactant desta-
(28b). 1t is also clear from(31b) that the core inertia stabi- bilizes the system in a manner tHalt;l increases with sur-
lizes (destabilizesthe system fom<1 (m>1). Form<1, factant elasticity.

the first mode is stabilized while the second mode is desta- Extension of the current linear stability analysis to the
bilized due to Marangoni effects. Therefore, for<1 the  weakly nonlinear regime could be rather interesting. On the
instability is determined by the second mo(Rib). There one hand, surfactant could induce more severe destabiliza-
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tion than the clean-interface case; on the other hand, thesE. C. Georgiou, D. T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki,

i il ; ; ; “An asymptotic theory for the linear stability of a core-annular flow in the
instability could _be grrested_ in the wgakly nonlinear regime thin annular limit” J. Fluid Mech 243 653 (1992,
due to steepening interfacial deflections and to shortwave, | Frenkel, A. J. Babchin, B. G. Levich, T. Shlang, and G. I. Sivash-

capillary stabilization. The fate of the interface seems to insky, “Annular flows can keep unstable film from breakup: Nonlinear
hinge on the competition between these effects, dependingsaturation of capillary instability,” J. Colloid Interface Scll15 225
on the sizes of perturbations and the scales of all relevant(1987- _ _ o

. . . . . T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki, “Nonlinear
parameters. For example, if the size of an interfacial PErtur- jyeacial stability of core annular flows,” Phys. Fluids 2 340(1990).
bation hass, ~ £ as in Papageorgioet al.,” then the surfac-  ®v. kerchman, “Strongly nonlinear interfacial dynamics in core-annular
tant concentration could have a variation &~ O(1) ac- flows,” J. Fluid Mech. 290, 131(1995.
cording to our present analysis. This means that although theC. Kouris and J. Tsamopoulos, “Dynamics of axisymmetric core-annular

interfacial erturbation is confined within the small- flow in a straight tube. I. The more viscous fluid in the core, bamboo
p waves,” Phys. Fluidsl3, 841 (2009).

amplitude regime, the surfactant concentration variation i$c. Kouris and J. Tsamopoulos, “Dynamics of the axisymmetric core-
large. A similar approach to Kerchma?]’might provide annular flow. II. The less viscous fluid in the core, saw tooth waves,” Phys.
more insights into all occurrences in this scenario. ﬂgm'gs_ 1‘}‘2 1}21#((2003-(1 b, b, Josenh. “Direct simulation of interfacia

; 7 ~ . Bai, K. Kelkar, and D. D. Joseph, “Direct simulation of interfacia
. Moreover, I?apageorglpet al. ,demonStr,ated fO!’ clean waves in a high-viscosity-ratio and axisymmetric core-annular flow,” J.
interface CAFF S 'Fhat the mterfama}l dynamics der_|v_ed from Fiyid Mech. 327, 1 (1996.
Kuramoto-Sivashinsky-type equations could exhibit travel*?D. S. Rumschitzki, “The effect of insoluble surfactants on the linear sta-
ling waves or chaotic motions. If the interfacial instability bility of a core-annular flow,” 2000 AIChE Annual Meeting, Los Angeles

; ; ; .~ (2000.
with surfactant can be indeed arrested in the Weakly nonIInISH.-H. Wei and D. S. Rumschitzki asympototically examined the effect of

ear regime, one may raise another question how surfactanifactant on the linear stability of a CAF in the thin-annulus limit. The
modifies the spatio-temporal features of the nonlinear inter- leading order stability is governed by the annular film flow to which the
facial dynamics. core dynamics are slaved. The effect of surfactant on the stability lies in
the interplay between capillarity Marangoni effects, and base flows. This
work has been submitted to J. Fluid Megto be publisheg
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