
Marangoni destabilization on a core-annular film flow
due to the presence of surfactant

Hsien-Hung Wei
Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan

(Received 14 March 2004; accepted 16 September 2004; published online 20 December 2004)

In this paper, the linear stability of a two-fluid, surfactant-laden core-annular flow is asymptotically
examined in the thin-annulus limit. The instability of the system is determined by the interplay
between interfacial tensions, Marangoni effects and viscosity stratification. A scaling analysis is
developed to identify the dominant instability mechanisms in various parameter regimes. With
proper scalings, the combined effects of Marangoni forces and viscosity stratification on the leading
order stability are examined for both cases in the absence and the presence of the core inertia. For
each case, a coupled set of linear evolution equations is derived for the interfacial deflection and the
surfactant concentration. In the absence of the core inertia, the system with a more viscous film is
always unstable due to the presence of surfactant. When the core fluid is more viscous, the
stabilizing effect of the core inertia is compromised by the Marangoni destabilization. The resulting
critical Reynolds number, beyond which the instability is completely suppressed by the core inertia,
increases with surfactant elasticity. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1833411]

I. INTRODUCTION

A two-fluid core-annular flow (abbreviated here as
“CAF” ) consists of two immiscible fluids flowing cocur-
rently in a tube, where one(the annular) fluid wets the tube
wall and surrounds the other(core) fluid. This flow system
arises in a variety of contexts for modeling processes such as
lubricated pipelining,1 liquid–liquid displacement,2 enhanced
oil recovery,3 and liquid lining flows in airways.4 In most
CAF applications, the annular fluid layer is much thinner
compared to the tube radius. The CAF’s in this situation are
called core-annular film flows(CAFF’s). In this paper, we
shall restrict our attention to CAFF’s and relevant physical
aspects.

The interfacial instability of CAFF’s plays a vital role in
affecting the efficiencies of processes. For example, in the
lung, there is a thin liquid layer coating the interior periph-
eries of airways. This liquid layer normally contains surfac-
tants that reduce surface tensions for maintaining the integ-
rity of the layer during a breathing cycle. When surfactants
are insufficient or malfunctioning as in premature infants
with respiratory distress syndrome(RDS), strong surface ten-
sion forces amplify the growth of the interface and could
cause the liquid to block the pathway of air. Clearly, it is
necessary to discourage such surface-tension-induced(capil-
lary) instability for preventing airway occlusion. Liquid-
bolus dispersal surfactant replacement therapy(SRT) is a
remedy to such surfactant deficiency. In this treatment, liquid
is instilled into the lung as a vehicle to deliver exogenous
surfactants.4 Such liquid often forms a liquid plug and leaves
a trailing film behind or ahead of the liquid plug. In contrast
to airway closure, the formation of liquid plugs, e.g., via
breathing rates, is required to be appropriately managed in
order to efficiently deliver surfactants through one airway
generation to another.

As such, it is important to understand the instability
mechanisms of CAFF’s because it is often critical to the
applications mentioned above. In the absence of surfactant,
the dominant effects on the stability of CAFF’s are capillar-
ity and viscosity stratification. Capillarity destabilizes(stabi-
lizes) the system when wavelengths of disturbances are
longer (shorter) than the undisturbed interfacial circumfer-
ence. Georgiouet al.5 developed the thin-film asymptotics to
analytically examine the combined effects of capillarity and
viscosity stratification on the linear stability of a vertical
CAFF. With proper scalings, the effect of viscosity stratifi-
cation can be reflected by the coupling of the core dynamics
to the lubricated film flow. For a less viscous annular film
with a large interfacial tension, viscosity stratification can
linearly stabilize the capillary instability at sufficiently large
Reynolds numbers. That is, there exists a window of the
stability in the Reynolds number space within which a CAFF
is always stable. This result is consistent with the previous
CAF study obtained by numerically solving for the full Orr–
Sommerfeld equations.1

In the weakly nonlinear regime, Frenkelet al.6 and Papa-
georgiouet al.7 derived the Kuramoto–Sivashinsky equations
for describing the interfacial evolutions of CAFF’s. The lat-
ter work in particular included the nonlocal terms that re-
flected the coupling of the core dynamics via viscosity strati-
fication. These analyses demonstrated that the capillary
instability can be arrested by nonlinear effects. The spatio-
temporal interfacial dynamics can exhibit either chaotic or
traveling wave motions.

Although the above-mentioned CAFF studies have re-
vealed some basic features of the stability of CAFF’s, they
are, however, subject to two important restrictions:(i) The
annular layer is much thinner compared to the tube radius,
and (ii ) interfacial displacements are much smaller than the
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thickness of the thin annular layer. Some spatio-temporal dy-
namics cannot be predicted by these studies due to these
limitations. Kerchman8 examined the strongly nonlinear in-
terfacial dynamics of a CAFF by allowing sizes of interfacial
disturbances to be comparable to the film thickness. His
analysis included the weakly nonlinear analysis as a special
case. He demonstrated that the features of the dynamics
strongly depended on the capillary numberCa, the ratio of
viscous to surface tension forces based on the properties of
the core fluid. The Kuramoto–Sivashinsky nonlinear satura-
tion of the capillary instability6,7 was indeed identified for
Ca!«2 (where« is the ratio of the undisturbed film thick-
ness to the core radius). When«2/Ca is sufficiently large, the
core-annular arrangement may collapse because the interface
could bulge into the core. Kouris and Tsamopoulos9,10 stud-
ied the complete nonlinear problems of CAF’s, but without
restricting the thin annular fluid or sizes of perturbations.
They have confirmed the spatio-temporal dynamics that in-
clude bamboo waves or traveling waves observed in the
CAFF studies.7,11 More importantly, some of their findings
cannot be predicted by the early works based on the afore-
mentioned restrictions.

Most studies on CAF’s were only considered forclean-
interfacesystems. The stability of such CAF’s is fairly un-
derstood. However, when the interface is contaminated by
surfactants or surface-active agents, how surfactants affect
the stability of CAF’s has not been yet fully explored. The
central issue herein particularly arises from understanding
how surfactants interact with base flows to affect the stability
of CAF’s, in particular of CAFF’s. Rumschitzki12 and Wei
and Rumschitzki13 have addressed this issue. They showed
that the features of the instability with surfactant depended
on regimes of the capillary numberCa. In the small-Ca limit
or in the absence of base flows, surfactants partially suppress
the capillary instability as in a stationary system with
surfactant.14 In the limit of largeCa where base flows are
strong or capillary forces are absent, the surfactant distribu-
tion is rearranged by the basic interfacial velocity, and the
induced Marangoni effects could destabilize the system. For
a moderately smallCa, surfactant could cause more severe
destabilization than the clean-interface capillary instability.
These findings have significant implications to CAFF appli-
cations. For example, for preventing airway closure in space,
one may require applying a sufficiently strong airflow for
suppressing the capillary instability.15 However, an improper
choice of surfactant properties or dosages could exaggerate
the interfacial growth. In the application of SRT, the flow-
induced Marangoni instability could trigger the formation of
liquid plugs. But the size of a surfactant-laden liquid plug
could become smaller than that of the surfactant-free case.13

As a result, a plug may be susceptible to be ruptured by
blowing airflows.

The Marangoni instabilitysolely induced by base flows
was first demonstrated by Frenkel and Halpern16,17 for the
linear stability of the two-layer Couette–Poiseuille flow in
the presence of an insoluble surfactant. They showed that, in
the Stokes-flow limit, surfactant could destabilize the system
that is otherwise stable in the absence of surfactant.

In the study of a surfactant-laden CAFF,13 the low-Ca
scaling(i.e., Ca,«2) demands that the instability is dictated
by the film dynamics to which the core dynamics are just
slaved. That is, the interaction between surfactant and a base
flow is merely through the film dynamics. It is not clear,
however, how the inclusion of the core dynamics affects the
stability of a CAFF with surfactant. As in the studies of
clean-interface CAFF’s,5,7 the contribution from the core
flow can enter the analysis whenCa is moderately low(i.e.,
Ca,«). In this regard, there are two issues worth being ad-
dressed. First, it has been shown that in the absence of sur-
factant, a core flow with negligible inertia does not contrib-
ute to the instability.7 This could be changed by the addition
of surfactant. Second, in the case inclusive of the core iner-
tia, the stability window in the Reynolds number space could
be modified due to the presence of surfactant. In this paper,
we shall extend these previous CAFF studies to address the
above issues.

II. BASE STATE, GOVERNING EQUATIONS,
AND BOUNDARY CONDITIONS

Consider two immiscible, viscous, incompressible fluids
flowing axisymmetrically in a core-annular arrangement in a
straight tube of radiusR2. See Fig. 1. The interface, defined
by r * = S* sz* , t* d, is covered by a monolayer of insoluble
surfactant. Fluid 1 of viscositym1 occupies the core region
0ø r * øS* sz,td. Fluid 2 of viscositym2 fills the annular
region S* sz* , t* dø r * øR2. Densities of both fluids are
matched and denoted byr. Because the flow fields are as-
sumed to be axisymmetric, we only consider velocity com-
ponentsv* = su* ,0 ,w* d in terms of the cylindrical coordi-
natessr * , u* , z* d. Let r * = R1 be the undisturbed interface.
The base flows are driven by a constant pressure gradient
¹* p* =−FeIz* with F.0. The characteristic length and ve-
locity are chosen asR1 and the centerline velocityW0

=FsR1
2sm2−m1d+R2

2m1d /4m1m2, respectively. Pressure is
scaled withrW0

2 and time has a scale ofR1/W0. The surface
surfactant concentration is scaled withG0

* , an unperturbed,
uniform surface concentration associated with the interfacial
tensions0

* . Define the viscosity ratiom=m2/m1 and the ra-
dius ratioa=R2/R1, the base state is

FIG. 1. Geometry of a two-fluid core-annular flow with an insoluble
surfactant.
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W̄srd = 1 −
mr2

sa2 + m− 1d
for 0 ø r ø 1,

w̄srd =
sa2 − r2d

sa2 + m− 1d
for 1 ø r ø a, s1d

fp̄g =
1

Re1Ca
, Ḡ = 1,

wheref·g=s·d1−s·d2. Re1=rW0R1/m1 and Ca=m1W0/s0
* de-

note the Reynolds number and the capillary number, respec-
tively. The nondimensional governing equations for each
fluid are

1

r
srudr + wz = 0, s2d

wt + uwr + wwz = − pz +
1

Rei
¹2w, s3ad

ut + uur + wuz = − pr +
1

Rei
S¹2u −

1

r2uD . s3bd

The Reynolds numbers are given byRei =Re1/mi with m1

=1 andm2=m for i =1,2. Thesystem is subject to the fol-
lowing boundary conditions. The velocities vanish on the
wall:

w2 = u2 = 0 at r = a. s4d

Velocities are continuous at the interface:

fwg = 0,fug = 0 on r = Ssz,td. s5d

The tangential stress and normal stress conditions at the in-
terfacer =Ssz,td are given by

1

s1 + Sz
2d
F 1

Re
swr + uzds1 − Sz

2d +
2

Re
sur − wzdSzG =

1

CaRe1
sz,

s6d

− Fp −
2

Re
ur − S− p +

2

Re
wzDSz

2 +
2

Re
sur + wzdSzG

=
ssGd

CaRe1
FSzz−

1

S
s1 + Sz

2dGs1 + Sz
2d−3/2. s7d

The equation of state is assumed to be linear:

s = 1 −ElsG − 1d, s8d

where El=−sG0
* /s0

*ds]s* / ]G* dG0
* denotes the elasticity

number of surfactant, an ability to lower the interfacial ten-
sion in response to surface impurities. The kinematic condi-
tion is

u = St + wSz on r = Ssz,td. s9d

Finally, for an insoluble surfactant with negligible surface
diffusion, the surfactant transport equation along the inter-
face is18

Gt −
StSz

1 + Sz
2Gz +

1

SÎ1 + Sz
2SSsw + uSzd

Î1 + Sz
2

GD
z

+
su − wSzd
s1 + Sz

2d2 S1 + Sz
2

S
− SzzDG = 0. s10d

III. SCALING ANALYSIS

With the base state as above, we now begin to analyze
the corresponding linear stability. Our aim is to asymptoti-
cally examine the stability in the thin-annulus limit. To de-
rive the leading order linear stability equations, our strategy
essentially follows the previous CAFF studies.5,7,13We shall
first perform the scaling analysis to identify the dominant
instability mechanisms and to estimate the scales of pertur-
bation quantities. We then expand governing equations and
boundary conditions with these perturbation quantities to de-
rive the leading order linear stability equations. Since the
early asymptotic analysis for a clean-interface CAFF5 has
been justified by comparison with the study obtained from
directly solving for the Orr–Sommerfeld equations,1 we be-
lieve that the present asymptotic analysis should capture
some essential features that are expected to be found in the
full analysis.

Let « be the ratio of the undisturbed annular thickness to
the core radius. The thin-film limits«!1d allows one to
introduce a stretched film variabley=1−sr −1d /« to separate
the radial scales in the film and the core. Form=Os1d, the

leading order base flows arew̄=2«y/m andW̄=1−r2 for the
film and the core, respectively. Let us introduce infinitesimal
disturbances of sized1s!«d and d2s!1d to the unperturbed
interface and surface concentration, respectively:

Ssz,td = 1 +d1hsz,td, s11ad

Gsz,td = 1 +d2Gsz,td. s11bd

Prior to proceeding any further, we have to recognize the
fact that the mechanisms of driving perturbed flows can be
derived from different routes. For a strong tension or lowCa,
when the annulus is thin, capillarity due to an interfacial
perturbation usually furnishes a large perturbed pressure to
drive the film flow. In addition, Marangoni forces generated
by the perturbed surfactant distribution also can exert on the
interface to induce a flow. This scenario can occur when the
tension is weak(i.e., highCa). In this case, the Marangoni-
driven mechanism dominates the instability.

To estimate the scales of perturbation quantities, let
sw9 ,u9 ,p9d and sW9 ,U9 ,P9d denote the perturbation quanti-
ties for the annulus and the core, respectively. We begin with
the capillary scaling for the perturbed film flow and check
the consistencya posteriori. The perturbed film pressure es-
timated from the normal stress condition(7) is p9
,d1/Re1Ca. The equation of motions(3) and continuity(2)
in the film yield w9,«2d1/Ca andu9,«3d1/Ca. As for the
core quantities, the continuity of axial velocities across the
interface(5) results inW9,d1. The lack of separation be-
tween the axial and radial length scales demandsU9,d1 and
P9,d1/Re1. The key to including both the core and Ma-
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rangoni effects at the leading order lies in the tangential
stress condition(6). It requiresCa,« in view of balancing
both the film and core shear stresses at the leading order.7

This leads the film quantities top8,d1/«Re1, w9,«d1 and
u9,«2d1. Balancing the viscous shear stresses and the Ma-
rangoni stress yieldsd1,d2Ma whereMa=El /Ca is the Ma-
rangoni number. To gain further information aboutd1, d2,
Ma and the time scale, we examine the kinematic condition
(9) and the surfactant transport equation(10). In a traveling
frame with the speed of the basic interfacial velocity, viz.z
→z−w̄s1dt, it is necessary to introduce a slow time scalet
=«2t to (9) in order to obtain nontrivial dynamics of the
perturbed interface. To show more clearly how to derive the
relevant surfactant equation and scalings, we first write the
linearized form of (10) in terms of unscaled perturbation
quantities in thefixedcoordinate:

Gt8 + w̄sy = 1dGz8 + uw̄rur=1hz8Ḡ + wz9sy = 1dḠ

+ su8 − w̄hz8dy=1Ḡ = 0, s12d

where h8;d1h and G8;d2G are the unscaled interfacial
perturbation and surfactant disturbance, respectively. We

have retainedḠ s=1d here to expedite interpretation of the
terms. Notice thatw̄=s2« /mdy andw̄r =−2/m have different
orders of magnitude. The first term of(12) is the local time
rate of change of the surfactant concentration. The other
terms except the last term all derive from the surface con-
vection. The second termfOs«d1dg is a typical traveling term
due to the basic interfacial velocity and clearly has no impact
on the stability. The third termfOsd1dg reflects the effect due
to the perturbation of the basic interfacial velocityuw̄rur=1h8,
and the fourth termfOs«d1dg derives from the perturbed axial
velocity w9. The last termfOs«d1dg is attributed to the sur-
face expansion–contraction of the interface. Hence, at the
leading order,(12) can be rewritten, in the moving frame of
z→z−w̄s1dt, as

«2d2Gt −
2

m
d1hzḠ = Os«d1d. s13d

Here we have invoked the same long time scalet=«2t used
in the kinematic condition. Consequently, a proper scaling
relation betweend1 andd2 should come from balancing the
first two terms in(13), which yieldsd1,«2d2. This together
with the earlier scalingd1,d2Ma from (6) givesMa,«2. In
short, the scaling constraints for engaging both surfactant
effects and the core dynamics are

Ca, «, Ma , «2 andd1 , «2d2. s14d

With the above scalings, the perturbed film pressure arising
from the surface tension variation due to surfactant isp9
,d2El /Re1Ca,d1/Re1 which is of a higher order than the
capillary pressurep9,d1/«Re1. Since the current study is
focused on thelinear stability analysis, sizes of disturbances,
in fact, must beinfinitesimal regardless of«. Nevertheless,
the constraintsd1!«!1 andd2!1 must be at least satisfied
here. The scalingd1,«2d2 leads tod1!«2 which is also
reasonable for the linear stability analysis.

Further comments should be made on the scalings(14).
Ca,« is first derived from the capillary scaling for retaining
the core dynamics. To recruit Marangoni effects has to fur-
ther demandMa,«2. SinceEl=MaCa, one requires rather
diluted surfactant contamination or small surfactant elastic-
ity. In fact, as we shall show next, the analysis for including
both Marangoni effects and the core dynamics only requires
Ma,«2 andd1,«2d2. It thus can be extended to the regimes
beyondCa,«. In that case, it may not requireEl to be very
small.

For Ca@«, Marangoni forces can drive the film flow at
the first place instead of capillary forces. In this case, the
perturbed film flow hasw9,«d2Ma and u9,«2d2Ma. Bal-
ancing the Marangoni-driven film stress and the core stress
of (6) yields d2Ma,d1. This leads the kinematic condition
(9) to have the same long time scalet=«2t as theCa,«
case. Applying this time scale to the surfactant transport
equation(10) yields «2d2,d1. With d2Ma,d1, we obtain
Ma,«2 and again arrive at the same scaling conditions as
(14) except Ca,«. With the scalingsMa,«2 and d1

,«2d2, the perturbed film velocities arew9,«d2Ma,«d1

and u9,«2d1. Inspecting the capillary scales for the film
velocities reveals that forCa@«, w9,«2d1/Ca!«d1 and
u9,«3d1/Ca!«2d1, indicating that Marangoni effects domi-
nate the instability of the film and the capillary instability is
of a higher order effect. All of the perturbed core quantities
retain the same scales as earlier regardless of the scale ofCa.

As such, as long asCa*«, the scalingsMa,«2 and
d1,«2d2 of (14) are sufficient to ensure the retaining of both
the core and Marangoni effects at the leading order in«. This
is because the perturbed flows can be solely driven by Ma-
rangoni stresses without necessarily having capillary forces.
SinceCa could be much larger than«, the required surfactant
elasticityEl=MaCa is not necessarily small. This scenario in
practice could occur in oil recovery processes wherein sur-
factants are used to reduce interfacial tensions to the ultra-
low level of 10−5–10−3 dyne/cm.19 For m1=0.01 poise and
the slug’s speed of 1 cm/s,Ca=Os10d–Os103d which ranges
from Os«−1d to Os«−3d for «=0.1. Therefore,El can span a
wide range fromOs«d to Os«−1d.

The above discussion is for the regime ofCa*« and
Ma,«2. For other parameter regimes, the dominant mecha-
nisms of instability can differ from the above mentioned. If
Ma@«2, applying similar scaling procedures to a
Marangoni-driven flow leads to the time scalet=«Ma1/2t
and the scalingd1,«Ma1/2d2. Now inspecting the scale of
w9 reveals thatw9,«d2Ma,d1Ma1/2 for the Marangoni
scale, andw9,«2d1/Ca for the capillary scale. Accordingly,
Ma1/2Ca/«2 (@Ca/« because ofMa@«2) indicates the rela-
tive importance of Marangoni to capillary effects. As a re-
sult, for Ma@«2, whenCa*«, Marangoni effects dominate
the instability. On the other hand, ifCa!« (e.g.,Ca,«2),
Marangoni forces are not comparable to capillary forces until
Ma,«4/Ca2. Since the core shear stress isOsd1d and of a
higher order than the filmOsd1Ma1/2/«d, the system’s insta-
bility is dictated by the film dynamics to which the core
dynamics are slaved. This film-determined instability with
surfactant has been identified by Wei and Rumschitzki.13 The
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above discussion for various parameter regimes is also sum-
marized in Table I.

In the following section for the detailed formulation of
the linear stability, we shall focus on the capillary-Marangoni
system that satisfies the scaling conditions(14). The case of
Ca@« can be regarded as the weak tension limit of that
system.

IV. FORMULATION OF THE LEADING ORDER LINEAR
STABILITY

With the scalings(14), the leading order linear stability
problem is formulated below. LetCa=«Ca0 and Ma=«2M0

with Os1d Ca0 andM0. The film quantities can be expanded
as

w = w̄ + «d1w8 + Os«2d1d,

u = «2d1u8 + Os«3d1d, s15ad

p = p̄ + sd1/«Re1dp8 + Osd1/Re1d.

For the core,

W= W̄+ d1W8 + Os«d1d,

U = d1U8 + Os«d1d, s15bd

P = P̄ + sd1/Re1dP8 + Os«d1/Re1d.

After substituting the above into(2)–(10) and expanding
them with respect to the base state, the leading order govern-
ing equations of the film become

uy8 = wz8, s16ad

0 = − pz8 + mwyy8 , s16bd

0 = − py8. s16cd

The no-slip conditionsw8sy=0d=u8sy=0d=0 are applied on
the wall. The leading order tangential and normal stress con-
ditions at the interface are given by

mwy8sy = 1d = − sWr8 + Uz8dr=1 − M0Gz, s17d

p8 =
1

Ca0
sh + hzzd. s18d

At the leading order, the continuity of velocities at the inter-
face is

W8sr = 1d = 2S1 −
1

m
Dh, s19ad

U8sr = 1d = 0. s19bd

The leading order kinematic condition and surfactant trans-
port equation, in the traveling frame with the basic interfacial
velocity w̄sy=1d, become

u8 = ht, s20d

Gt −
2

m
hz = 0. s21d

Here we have introduced a long time scalet=«2t. Notice
again that forMa,«2 the surface convection due to the per-
turbed basic interfacial velocity dominates the leading order
surfactant transport(21). Further notice thatMa,«2 admits
the absence of the immobilizing effect on the interface due to
large surfactant elasticity.

Finally, the leading order governing equations for the
core are

1

r
srU8dr + Wz8 = 0, s22ad

Re1s− 2rU8 + s1 − r2dWz8d = − Pz8 + ¹2W8, s22bd

Re1s1 − r2dUz8 = − Pr8 + S¹2U8 −
U8

r2 D . s22cd

The core dynamics that satisfy(19a) and(19b) can be either
expressed in terms of the modified Bessel functions forRe1

=Os«d (i.e., Stokes flow), or represented by the Kummer
functions forRe1=Os1d. The detailed derivations for the core
dynamics can be found in the work of Papageoriouet al.7

The film flow field is first determined by using the no-slip
conditions,(17) and (18). We then apply this film flow to
(20) and (21) for deriving the evolution equations for the
interfacial disturbance and the surfactant concentration per-
turbation, respectively. As a result, the interfacial evolution
equation for theRe1=Os«d core flow is

ht +
1

3mCa0
shzz+ hzzzzd +

M0

2m
Gzz

+
i

pm
S1 −

1

m
DE

−`

`

NBskdE
−`

`

hsx,tdeiksz−xddxdk= 0,

s23d

where

NBskd =
k2I1

2skd
kI1

2skd − kI0
2skd + 2I0skdI1skd

,

and the functionI ’s and K’s are the modified Bessel func-
tions of various orders.

For Re1=Os1d, the corresponding interfacial evolution
equation becomes

TABLE I. Dominant mechanisms in various parameter regimes.

Ma,«2 Ma@«2

Ca*« Capillary-Marangoni
instability; the core dynamics
are included

Film-determined instability;
Marangoni effect dominates

Ca!« Film-determined instability;
capillarity dominates

Film-determined instability;
Marangoni effect is not
comparable to capillarity until
Ma,«4/Ca2
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ht +
1

3mCa0
shzz+ hzzzzd +

M0

2m
Gzz

−
i

2pm
S1 −

1

m
DE

−`

`

NKskdE
−`

`

hsx,tdeiksz−xddxdk= 0,

s24d

where

NKskd =
I1skde−lMsL,2,2ld

N1skdI0skd − N2skdI1skd
,

with

l = 1
2skRe1d1/2e−ip/4, L = 1 +k2/8l − l/2,

N1skd =E
0

1

sI1skdK1sksd

− I1sksdK1skdds2e−ls2
MsL,2,2ls2dds,

N2skd =E
0

1

sI0skdK1sksd

+ I1sksdK0skdds2e−ls2
MsL,2,2ls2dds,

andMsL ,2 ,xd is the confluent hypergeometric function(the
Kummer function).

Notice that our theory is based on lubrication in the film,
which requires that the radial length scale in the annulus is
much shorter than the axial scale. The analysis is only valid
for disturbance wavelengths that are much larger compared
to «. In addition,Re1«3/m!1 is also required for ensuring
the validity of lubrication in the film.

V. RESULTS OF THE LEADING ORDER LINEAR
STABILITY

For the linear stability analysis, we apply normal modes:

sh ,Gd=sĥ ,Ĝdeikz+st to the derived sets of the evolution
equations wherek s!«−1d is the wave number of the distur-
bance ands is the complex growth rate. The system’s stabil-
ity is determined by the real part ofs, sr. The system is stable
(unstable) whensr ,0s.0d. Both Re1=Os«d andRe1=Os1d
cases are examined separately as below.

A. The Re1=O„«… case

For Re1=Os«d or Stokes flow, Eqs.(21) and(23) govern
the leading order instability. The dispersion equation fors,

after taking normal modes and eliminatingĜ, is

s2 + F 1

3mCa0
sk4 − k2d +

2i

m
S1 −

1

m
DNBGs− i

M0

m2 k3 = 0.

s25d

The solution to(25) is given by

s=
1

6mCa0
sk2 − k4d −

i

m
S1 −

1

m
DNBskd ±

1

2
ÎF 1

3mCa0
sk4 − k2d +

2i

m
S1 −

1

m
DNBskdG2

+
4

m2ik3M0, s26d

which admits two roots ofs. For a given set of parameters,
we are interested in the most unstable mode whoses has the
largest real part. In the absence of surfactantsM0=0d, Eq.
(26) agrees with the linear stability result of Papageorgiouet
al.,7 and the core contribution to the instability is merely
dispersive. In view of the fact that(26) contains the term
4ik3M0/m2 inside the square root, surfactant generally makes
the system more unstable than the surfactant-free case. When
viscosities of both fluids are matchedsm=1d, the core dy-
namics are absent and the system’s instability is solely deter-
mined by the film. The long wavelengthsk→0d expansion of
(26) with m=1 yields

s= ±
1
Î2

i1/2M0
1/2k3/2 + Osk2d, s27d

indicating that surfactant destabilizes the system for long
waves. The leading order growth rates for long waves are
Osk3/2d due to Marangoni effects, and capillarity(due to its
circumferential component) does not contribute to the insta-
bility until Osk2d. The form of (27) is also identical to the
m=1 result of Wei and Rumschitzki13 in spite of different
scalings applied in their study. This is not unexpected be-

cause the instability of both systems is film-determined and
Marangoni effects dominate for long waves. It is also con-
sistent with them=1 result of Frenkel and Halpern16 for the
planar system with a semi-infinite upper layer.

The mechanism of the flow-induced Marangoni destabi-
lization has been elucidated by the previous studies.13,16 For
completeness, below we choose them=1 case(in which the
core dynamics are absent) for illustrating the instability
mechanism. Consider the film flow region with a sinusoidal
interfacial disturbance. As indicated by(21), the term 2hz/m
due to the perturbed basic interfacial velocity causes higher
(lower) surfactant concentrations for thehz.0 shz,0d por-
tions of the interface. Such a perturbed surfactant distribution
has maxima–minima at the interface nodessh=0d, but has
no changes at the interface crests/troughsshz=0d. That is, the
surfactant distribution has a phase differencep /2 with the
interface. The resulting Marangoni stresses in turn create
flows from the interface nodes toward the crests/troughs,
causing the interface to grow. Such Marangoni destabiliza-
tion works for allks!«−1d, but is compromised by the short-
wave capillary stabilization.

For mÞ1 how surfactant interacts with viscosity strati-
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fication via coupling to the core flow becomes complicated.
Figure 2 shows thesr −k curves with Ca0=1 and m=1.5
.1 for variousM0. For m.1, in comparison with theM0

=0 case, adding surfactant makes the system unstable for all
k s!«−1d. Although the stabilizing effect of the axial capil-
larity slows down the growth rates for short waves, it does
not make the growth rates negative. IncreasingM0 magnifies
the destabilization. Note thatM0 here is restricted toOs1d for
ensuringMa=«2M0=Os«2d to retain the core coupling in
view of (14).

The corresponding growth rate curves for the case of
m=0.5,1 are shown in Fig. 3. The system with surfactant is
more unstable than the surfactant-free case. There is a non-
smooth change in a growth rate, indicating that two eigen-
modes switch their dominance in a range ofk. IncreasingM0

promotes the longwave capillary destabilization while it sup-
presses the shortwave capillary stabilization. Since the short-
wave capillary stabilization is mediated by the Marangoni
destabilization, increasingM0 shifts the critical wavelength
toward a shorter one.

The long wavelength analysis may provide some in-
sights into the above observations. FormÞ1, in the limit of
k→0, with the aid ofNB=2k+ 1

6k3+Osk5d, two roots of(26)
become

s=
M0

4sm− 1d
k2 + Osk3d, s28ad

s= −
4i

m
S1 −

1

m
Dk + F 1

3mCa0
−

M0

4sm− 1dGk2 + Osk3d.

s28bd

In contrast to(27) for them=1 case whose longwave growth
rates areOsk3/2d, the combined effects of surfactant and vis-
cosity stratification on the long wavelength instability occurs
at Osk2d. This ordering is also consistent with themÞ1 re-
sult of Frenkel and Halpern.16 The first mode(28a) involves
the Marangoni-viscosity-stratification effect while the second
(28b) further includes the usualOsk2d destabilization of the
circumferential capillarity. The first mode is destabilizing
(stabilizing) for m.1 sm,1d. The second mode can desta-
bilize the system form.1 if M0Ca0,

4
3s1−1/md, and is

always unstable form,1. In the limit of Ca0→` (i.e.,
Ca0@«), the dominant growth rate of both modes form
Þ1 is sr =M0k

2/4um−1u+Osk3d, indicating that the large-Ca
system is always unstable for long waves.

B. The Re1=O„1… case

The leading order linear stability forRe1=Os1d is gov-
erned by Eqs.(21) and (24). It is determined by the follow-
ing dispersion equation:

s2 + F 1

3mCa0
sk4 − k2d −

i

m
S1 −

1

m
DNKGs− i

M0

m2 k3 = 0,

s29d

which has two solutions ofs:

s=
1

6mCa0
sk2 − k4d +

i

2m
S1 −

1

m
DNK ±

1

2
ÎF 1

3mCa0
sk4 − k2d −

i

m
S1 −

1

m
DNKG2

+
4

m2ik3M0. s30d

It can be shown that theRe1→0 limit of (30) recovers the
Stokes flow case as in the previous subsection. Figure 4 dem-

onstrates the effect ofRe1 on the growth rates withm.1.
For small and moderateRe1, the growth rate curves have

FIG. 2. The Marangoni effect on the growth rate curves for the Stokes flow
case.m=1.5, Ca0=1.

FIG. 3. The Marangoni effect on the growth rate curves for the Stokes flow
case.m=0.5, Ca0=1.
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similar trends to those of Stokes flows, and increasingRe1

makes slight increases in both the maximum growth rate
sr max and the corresponding wave numberkmax. For a large
Re1s.8d, however, the growth rate curve starts to exhibit an
additional hump in a certain range ofk. A nonsmooth tran-
sition between two humps indicates that two eigenmodes
switch their dominance of the instability. AsRe1 increases,
the first hump appearing in the smallerk regime starts to
grow, but the second one in the largerk regime only slightly
increases its maximum. The maximum of the first hump
eventually becomes larger than the second at a sufficiently
large Re1 (that still satisfiesRe1«3/m!1 for ensuring the
validity of lubrication in the film).

For m,1, it is known that the core inertia acts to stabi-
lize the system.5 Adding surfactant could cause instability
due to the flow-induced Marangoni effect. The stability
arises from these two competing effects. Below we again
utilize the long wavelength analysis to elucidate the com-
bined effects of the core inertia and surfactant on the stability
in more detail.

With the aid ofNk=−4k− ik2Re1/12+Osk3d, two roots of
(30) in the k→0 limit become

s=
M0

4sm− 1d
k2 + Osk3d, s31ad

s= −
4i

m
S1 −

1

m
Dk + S 1

3mCa0
−

M0

4sm− 1d

+
1

12m
S1 −

1

m
DRe1Dk2 + Osk3d. s31bd

In comparison with thek→0 asymptotics(28a) and(28b) of
theRe1=Os«d case, the first mode(31a) is identical to(28a),
and is merely attributed to the Marangoni-viscosity-
stratification effect that depends on neitherRe1 nor Ca. For
the second mode(31b), it just adds the inertial correction to
(28b). It is also clear from(31b) that the core inertia stabi-
lizes (destabilizes) the system form,1 sm.1d. For m,1,
the first mode is stabilized while the second mode is desta-
bilized due to Marangoni effects. Therefore, form,1 the
instability is determined by the second mode(31b). There

also exists a critical Reynolds numberRe1
* beyond which the

instability is completely suppressed by the core inertia. In
fact, Re1

* can be estimated by setting theOsk2d part of (31b)
to be zero:

Re1
* <

1

S 1

m
− 1D1 4

Ca0
+

3M0

S 1

m
− 1D2 for m, 1. s32d

Equation (32) suggests that surfactant destabilizes them
,1 system in a manner thatRe1

* increases withM0. That is,
the larger surfactant elasticityEl=MaCa, the higherRe1 re-
quired to stabilize the system. Table II lists the comparison
betweenRe1

* numerically evaluated by(30) and those using
(32). The agreement is fairly good, indicating that(32) pro-
vides a lucid way to findRe1

* .

VI. CONCLUDING REMARKS

We have asymptotically investigated the linear stability
of a surfactant-laden CAF in the thin annular films«→0d
limit. A scaling analysis is utilized to identify the dominant
instability mechanisms in various parameter regimes. Ratio-
nal scalings are established to examine the combined effects
of Marangoni forces and viscosity stratification on the lead-
ing order linear stability of the system. For both cases in the
absence and the presence of core inertia, the respective
coupled sets of the linear stability evolution equations are
derived for the interfacial deflection and the surfactant con-
centration.

For a core flow with negligible inertia, in contrast to the
clean-interface case whose core dynamics do not contribute
to the system’s stability, the interaction between surfactant
and the core flow can significantly affect the stability. When
the film is more viscous, surfactant makes the system un-
stable for all disturbance wavelengths that are much longer
than the annulus thickness. For the system with a more vis-
cous core, surfactant promotes the longwave destabilization
and the shortwave stabilization of capillarity.

In the case in the presence of the core inertia, the fea-
tures of instability can be modified due to surfactant, espe-
cially for the system with a more viscous core. There exists a
critical Reynolds numberRe1

* beyond which the instability is
completely suppressed by the core inertia. Surfactant desta-
bilizes the system in a manner thatRe1

* increases with sur-
factant elasticity.

Extension of the current linear stability analysis to the
weakly nonlinear regime could be rather interesting. On the
one hand, surfactant could induce more severe destabiliza-

FIG. 4. The effect ofRe1 on the growth rates.m=2, M0=2, Ca0=1.

TABLE II. The critical Reynolds numberRe1
* for variousM0. m=0.5, Ca0

=1.

M0 Re1
* from (30) Re1

* from (32)

0.0 4.00 4.00

0.2 4.45 4.60

0.5 5.35 5.50

1.0 6.85 7.00

2.0 9.85 10.0

027101-8 Hsien-Hung Wei Phys. Fluids 17, 027101 (2005)



tion than the clean-interface case; on the other hand, the
instability could be arrested in the weakly nonlinear regime
due to steepening interfacial deflections and to shortwave
capillary stabilization. The fate of the interface seems to
hinge on the competition between these effects, depending
on the sizes of perturbations and the scales of all relevant
parameters. For example, if the size of an interfacial pertur-
bation hasd1,«2 as in Papageorgiouet al.,7 then the surfac-
tant concentration could have a variation ofd2,Os1d ac-
cording to our present analysis. This means that although the
interfacial perturbation is confined within the small-
amplitude regime, the surfactant concentration variation is
large. A similar approach to Kerchman’s8 might provide
more insights into all occurrences in this scenario.

Moreover, Papageorgiouet al.7 demonstrated for clean-
interface CAFF’s that the interfacial dynamics derived from
Kuramoto–Sivashinsky-type equations could exhibit travel-
ling waves or chaotic motions. If the interfacial instability
with surfactant can be indeed arrested in the weakly nonlin-
ear regime, one may raise another question how surfactant
modifies the spatio-temporal features of the nonlinear inter-
facial dynamics.
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