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ABSTRACT

A non-uniform surface slip can cause a symmetry breaking in the geometry of an otherwise homogeneous spherical particle to give rise to an
anisotropic hydrodynamic resistance to the particle. Here, we develop a more general theoretical framework capable of decoding the surface-
pattern-dependent hydrodynamic features for single heterogeneous spheres having arbitrary non-uniform slip length distributions in small
variations, especially for those of weakly stick–slip or slip–slip Janus spheres in either the two-faced or striped type. Utilizing the Lorentz
reciprocal theorem in conjunction with surface spherical harmonic expansion, we derive a new coupled set of Faxen formulas for the hydro-
dynamic force and torque on a non-uniform slip sphere by expressing impacts of slip anisotropy in terms of surface dipole and quadrupole
without solving detailed flow fields. Our results reveal not only how various additional forces/torques arise from surface dipole and quadru-
pole, but also that it is the anti-symmetric dipole responsible for distinctive force-rotation/torque-translation coupling. These features are
very distinct from those of no-slip or uniform-slip particles, possibly spurring new means to characterize or sort Janus particles in microflui-
dic experiments. In addition, the coupled Faxen relations with surface moment contributions reported here may infer potential changes in
the collective nature of hydrodynamic interactions between non-uniform slip spheres. Furthermore, the present framework can also be read-
ily applied to heterogeneous self-propelled squirmers whose swimming velocities are sensitive to slip anisotropy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0067895

I. INTRODUCTION

Janus particles are colloidal particles comprising more than one
surface with distinct properties, showing promising uses in many
applications, such as self-assembly and drug delivery.1 They can be
made using amphiphilic materials to possess both hydrophobic and
hydrophilic faces.2 They can also take the form of composite drops
that can be conveniently made using the microfluidic approach.3

Hydrodynamically, particles of this sort can be either stick–slip or
slip–slip type because of slip disparity over their surfaces. For this rea-
son, the hydrodynamic characteristics of these particles are expected
to be very distinct from those of no-slip or uniform slip particles,
which could be vital when one would like to manipulate or transport
such particles. Slip and its non-uniformity may also be critical for the
swimming of squirmers self-propelled by prescribed slip velocities on
their surfaces4–8 because their propulsions cannot be fully transmitted
from the slip velocities. The situation could become more complicated
for heterogeneous squirmers whose surfaces are mixed with stick and
slip parts.

The present work is motivated by the need in understanding the
hydrodynamics of stick–slip or slip–slip Janus particles in order to

collaborate with a diversity of flow and actuation mechanisms for
achieving more precise steering or manipulation of these particles in
practice, for instance, under the theme of microfluidics. Here, we will
focus on particles in the spherical shape. Our aim is to develop more
general formulas for computing the hydrodynamic force and torque
on a non-uniform slip Janus sphere in order to describe how the
sphere behaves in its motion under arbitrary forcing or flow
conditions.

The main characteristic difference between a non-uniform slip
sphere and a no-slip/uniform slip sphere is that the hydrodynamic
resistance of the former becomes anisotropic. This could lead a non-
uniform slip sphere to experience a force when it undergoes rotation
or to feel a torque when it is translating. If the slip pattern is axisym-
metric like that of a Janus sphere, such translation-rotation coupling,
which is absent for a homogenous sphere, is somewhat similar to that
for a spheroid.9 It is this reason why a stick–slip sphere in a parabolic
flow field displays tumbling like what a spheroid does, as shown in
numerical simulations by Trofa et al.10 Previous studies on the hydro-
dynamics of a two-faced stick-slip Janus sphere mainly rely on solving
detailed flow fields around the sphere.9–13 However, it is generally
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difficult to see how a slip pattern affects the hydrodynamic force and
torque on the sphere. This, thus, motivates us to search for whether
there is a simpler way to obtain these quantities without having to
solve detailed flow fields. Like the Faxen laws for no-slip and uniform-
slip spheres,14–16 we seek modifications of these laws for non-uniform
slip spheres. However, such modifications will not be simple exten-
sions to those of homogeneous spheres. This is due to the fact that the
slip pattern may not have to be of two-faced type with an antisymmet-
ric slip distribution like those considered in previous studies,9–13,17 it
can well be stripe-like or taking a dipolar form with a symmetric slip
distribution. The hydrodynamic features of the latter can be very dif-
ferent from those of the former, especially when there is an imposed
flow in which the features of the force and torque have to be further
determined by the flow symmetry. Therefore, it is necessary to develop
a more general framework not only for identifying how different slip
patterns influence the hydrodynamics of a Janus sphere but also for
handling the situations in arbitrary imposed flow fields, which is the
main theme of this work.

It is worth mentioning that modified Faxen relations for two-
faced stick-slip Janus spheres have been previously derived by Swan
and Khair.17 Their analysis is formulated using the integral representa-
tion of the Stokes flow solution in terms of multipole moment expan-
sions. While this approach may appear general, it is not obvious how
different modes of the slip pattern such as surface dipole and quadru-
pole contribute to the force and torque on the sphere. To provide a sys-
tematic account for how a slip pattern plays a role, we extend
Anderson’s approach to pattern charge electrophoresis18 to take a sur-
face harmonic expansion for the spatially varying slip length of a non-
uniform slip sphere. As will be demonstrated, this approach will allow
us to develop a more general framework using the reciprocal theorem
(see Sec. II) for deriving the Faxen force and torque relations in a more
physics oriented form (see Secs. III and IV). The results will reveal not
only how various types of forces and torques arise mainly from surface
dipole and quadrupole but also that it is the antisymmetric dipole that
is responsible for distinctive translation-rotation coupling. In addition,
we will provide simple physical arguments in line with pictorial illustra-
tions for explaining how these surface-moment-induced forces and tor-
ques form due to stick-slip asymmetry (see Sec. V). Impacts of the new
Faxen relations by including these forces and torques will be discussed,
especially when ambient flows are of non-linear type (see Sec. VI).
New perspectives and outlooks will be given in the end (see Sec. VII).

II. FRAMEWORK TO ESTABLISH FORCE AND TORQUE
FORMULAS USING THE RECIPROCAL THEOREM

We first construct the framework to derive the formulas for com-
puting the hydrodynamic force and torque on a non-uniform slip
sphere. This can be done below by extending the previous formulism
for a uniform slip sphere15,16 using the Lorentz reciprocal theorem.

Consider the motion of a spherical particle of radius a in an
incompressible Newtonian fluid of density q and viscosity l under the
creeping flow condition. Let û be the disturbance fluid velocity field
and r̂ ¼ �Ip̂ þ lðrû þrûTÞ be the corresponding stress field due
to the presence of the particle, where p̂ is dynamic pressure. These
fields are governed by the Stokes flow equations

r � û ¼ 0; (1a)

r � r̂ ¼ 0; (1b)

with the point-force-like characteristics û � 1=r and r̂ � 1=r2 when
distance r to the particle becomes large compared to a. Let ðû1; r̂1Þ
and ðû2; r̂2Þ denote the solutions for the auxiliary problem and the
problem we wish to solve, respectively. They can be related by the fol-
lowing reciprocal relationship:19ð

Sp

û1 � ðr̂2 � nÞ dS ¼
ð
Sp

û2 � ðr̂1 � nÞ dS; (2)

where Sp is the particle surface with n being the unit normal vector
pointing into the fluid. Equation (2) will allow us to determine the
force and torque for the desired problem using the solution to the aux-
iliary problem.

To proceed, the auxiliary problem is chosen as a uniform slip
sphere having an arbitrary slip length ak in translational motion at
velocity U and/or in rotational motion at angular velocity X in a qui-
escent fluid [see Fig. 1(a)]. For the problem under investigation, we
look at the motion of a sphere with non-uniform slip length ak0 trans-
lating/rotating at the same velocity/angular velocity in an imposed
flow u1 with the corresponding stress field r1 [see Fig. 1(b)]. The
perturbed flow field in this problem can be written as ðû2; r̂2Þ
¼ ðu2;r2Þ � ðu1; r1Þ in terms of the actual flow field ðu2;r2Þ

FIG. 1. Selected problems for applying the reciprocal theorem. (a) The auxiliary
problem: a uniform slip sphere translating/rotating in a quiescent fluid. (b) The prob-
lem of interest: a non-uniform slip sphere moving at the same translational velocity/
angular velocity in an imposed flow.
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relative to the imposed flow field ðu1;r1Þ. For both problems, van-
ishing perturbed fluid velocity at infinity is imposed. Also, each is sub-
ject to the Navier-slip and the non-penetration boundary conditions
on the sphere surface jyj ¼ a. For the known auxiliary problem, these
conditions read as16

ðû1 � U �X� yÞ � ðI� nnÞ ¼ ak
l
ðr̂1 � nÞ � ðI� nnÞ; (3)

ðû1 � U �X� yÞ � n ¼ 0: (4)

Similarly, for the problem under investigation, the boundary condi-
tions are

ðû2�U �X� y þ u1Þ � ðI� nnÞ

¼ ak0ðyÞ
l
ðr̂2 � nÞ þ ðr1 � nÞ½ � � ðI� nnÞ; (5)

ðû2 � U �X� y þ u1Þ � n ¼ 0: (6)

In what follows, we will use (2)–(6) to derive the formulas for the force
and torque on the sphere.

We first re-write the left-hand side of (2) asð
Sp

û1 � ðr̂2 � nÞ dS ¼
ð
Sp

ðU þX� yÞ � ðr̂2 � nÞ dS

þ
ð
Sp

ðû1 � U �X� yÞ � ðr̂2 � nÞ dS: (7)

With (3) and (4), we replace ðû1 � U �X� yÞ � ðI� nnÞ in (7) by
ðak=lÞðr̂1 � nÞ � ðI� nnÞ, allowing us to re-express (7) asð
Sp

û1 � ðr̂2 � nÞ dS ¼U �
ð
Sp

ðr̂2 � nÞ dSþX �
ð
Sp

y � ðr̂2 � nÞ dS

þ ak
l

ð
Sp

ðr̂1 � nÞ � ðI� nnÞ � ðr̂2 � nÞdS: (8)

Similarly, the right-hand side of (2) can be re-written asð
Sp

û2 � ðr̂1 � nÞdS¼
ð
Sp

ðU þX� y� u1Þ � ðr̂1 � nÞdS

þ
ð
Sp

ðû2 �U �X� yþ u1Þ � ðr̂1 � nÞdS: (9)

In the second integral, ðû2 � U �X� y þ u1Þ � ðI� nnÞ can be
replaced by the slip term ðak0ðyÞ=lÞ½ðr̂2 � nÞ þ ðr1 � nÞ� � ðI� nnÞ
because of (5) and (6). Because k0 varies with position, we write
k0ðyÞ ¼ kþ ðk0ðyÞ � kÞ and re-express (9) asð
Sp

û2 � ðr̂1 � nÞdS

¼
ð
Sp

ðU þX� y � u1Þ � ðr̂1 � nÞdS

þ ak
l

ð
Sp

r̂2 � nð Þ þ r1 � nð Þ
� �

� I� nnð Þ � r̂1 � nð ÞdS

þ a
l

ð
Sp

ðk0ðyÞ � kÞ r̂2 � nð Þ þ r1 � nð Þ
� �

� I� nnð Þ � r̂1 � nð ÞdS:

(10)

Combining (8) and (10), the two identical ðak=lÞðr̂2 � nÞ � ðI �nnÞ
�ðr̂1 � nÞ terms are canceled out. This allows us to write the force

F ¼
Ð
Sp
ðr̂2 � nÞ dS and the torque T ¼

Ð
Sp
y � ðr̂2 � nÞ dS in terms of

the surface traction ðr̂1 � nÞ and the ambient flow quantities, leading
(2) to

U � F þX � T ¼
ð
Sp

ðU þX� y � u1Þ � ðr̂1 � nÞdS

þ ak
l

ð
Sp

ðr1 � nÞ � ðI� nnÞ � r̂1 � nð ÞdS

þ a
l

ð
Sp

ðk0ðyÞ � kÞ r̂2 � nð Þ þ r1 � nð Þ
� �

� I� nnð Þ � r̂1 � nð ÞdS: (11)

In (11), the last term accounts for the contribution from spatial var-
iations aðk0ðyÞ � kÞ in the slip length. As will be shown shortly, it is
this term responsible for coupling between translation and rotation.
Since it involves the unknown traction ðr̂2 � nÞ, we determine both
F and T approximately by assuming that ajk0ðyÞ � kj is small com-
pared to the average slip length ahk0i. Define ef ðyÞ � k0ðyÞ � hk0i
where e� 1 measures the amplitude of slip anisotropy described
by an O(1) function f ðyÞ. Also, for simplicity, hk0i is assumed O(1).
We further assign k, the dimensionless slip length for the auxiliary
uniform-slip problem, to be equal to hk0i. Thus, we can express
k0ðyÞ as

k0ðyÞ ¼ hk0i þ ef ðyÞ ¼ kþ ef ðyÞ: (12)

Equation (12) can also be applied to the weakly stick–slip situation
where hk0i ¼ OðeÞ. In this case, we can take the fluid motion around a
no-slip sphere as the auxiliary problem to which slip is a small
perturbation.

With e� 1 in (12), the unknown traction ðr̂2 � nÞ in (11) can be
expanded as ðr̂2 � nÞ ¼ ðr̂ð0Þ2 � nÞ þ ðr̂

ð1Þ
2 � nÞ þ � � � with a correction

ðr̂ð1Þ2 � nÞ of OðeÞ to the uniform-slip problem. In other words, we
seek the impacts of slip non-uniformity on (11) up to OðeÞ by keeping
the slip variation integral accurate to OðeÞ with

ðr̂2 � nÞ ¼ ðr̂ð0Þ2 � nÞ þ OðeÞ: (13)

Similar perturbation approaches have been employed to solve a
variety of problems.20–23 Using the stress field of an unperturbed
problem to approximate the unknown stress field of a desired prob-
lem due to small perturbation in the reciprocal theorem formula-
tion has been shown to provide a simpler way to compute the
hydrodynamic force and torque for the latter without having to
solve detailed flow fields.22

To derive the formulas for F and T from (11), it is more conve-
nient to write ðr̂ð0Þ2 � nÞ in terms of translation resistance tensor RT

and rotation resistance tensor RR,

ðr̂ð0Þ2 � nÞ ¼ lRT � ðU � u1ðxpÞÞ þ lRR � ðX�X1ðxpÞÞ � y
� �

:

(14)

The two resistance tenors RT and RR here are constructed in propor-
tional to the sphere’s velocity ðU � u1ðxpÞÞ and angular velocity
ðX�X1ðxpÞÞ relative to the imposed flow. u1 is the imposed flow
field, X1 ¼ ð1=2Þðr� u1Þ is half the vorticity of the imposed flow,
and both are evaluated at the sphere’s center at xp. For a uniform slip
sphere, these resistance tensors are given by16
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RT ¼ �1
a

3=2
1þ 3k

� �
I� 1

a
9k

1þ 3k

� �
nn; (15a)

RR ¼ �1
a

3
1þ 3k

� �
I: (15b)

Substituting (13) and (14) into (11), we keep the terms up to OðeÞ.
Furthermore, by making use of the linearity of the Stokes flow, we con-
vert (11) into a matrix representation to re-express F and T in a bilin-
ear form of U andX,

U ; X
� � F � F1

T � T1

� �
¼ l U ; X

� � RFU RFX

RTU RTX

� �
U � u1ðxpÞ
X�X1ðxpÞ

� �
;

(16)

F1¼ak
ð
Sp

RT
k � r1 �nð ÞdS�l

ð
Sp

u1 �RT dS

þea
ð
Sp

f ðyÞRT
k � r1 �nð ÞdS;

T1¼ak
ð
Sp

y� RR
jj � ðr1 �nÞ

h i
dS�l

ð
Sp

y�ðRR �u1ÞdS

þea
ð
Sp

f ðyÞy� RR
jj � ðr1 �nÞ

h i
dS;

RFU ¼l
ð
Sp

RTdSþeal
ð
Sp

f ðyÞRT �RT
jj dS;

RFX¼ eal
ð
Sp

f ðyÞRT � ðy�RR
jj ÞdS;

RTU ¼ eal
ð
Sp

f ðyÞy�ðRR �RT
jj ÞdS;

RTX¼l
ð
Sp

y�ðy�RRÞdSþeal
ð
Sp

f ðyÞy� RR � ðy�RR
jj Þ

h i
dS:

(17)

In the above, Rjj � ðI� nnÞ � R is the tangential projection of resis-
tance tensor. RFU is found symmetric, and so is RTX [in view of
(15b)]. The coupling tensors RFX and RTU also satisfy RFX ¼ ðRTUÞT .
In fact, the symmetries between these tensors are consequences of the
reciprocal theorem.22–25 Because ½F;T�T has to be linear in
½U � u1ðxpÞ;X�X1ðxpÞ�T and also because U and X are inde-
pendent and their choices are arbitrary, (16) without ½U ;X� in the
front of both sides must always hold. Similar to Oppenheimer et al.,22

we can eliminate the front ½U ;X� in (16) to obtain

F � F1

T � T1

� �
¼ l

RFU RFX

RTU RTX

� �
U � u1ðxpÞ
X�X1ðxpÞ

� �
: (18)

For clarity, we split ðF;TÞ above into the uniform-slip part ðF0;T0Þ
and the OðeÞ non-uniform slip part ðF0;T 0Þ as follows:

F ¼ F0 þ F0; (19a)

F0 ¼ l
ð
Sp

U � u1ð Þ � RTdSþ ak
ð
Sp

RT
jj � r1 � nð ÞdS; (19b)

F0 ¼ eal
ð
Sp

f ðyÞRT � RT
jj � ðU � u1ðxpÞÞ

h i
dS

"

þ
ð
Sp

f ðyÞRT � RR
jj � ððX�X1ðxpÞÞ � yÞ

h i
dS

þ
ð
Sp

l�1f ðyÞRT
jj � r1 � nð Þ dS

#
: (19c)

T ¼ T0 þ T 0; (20a)

T0 ¼
ð
Sp

y � RR � X� y� u1ð Þ
� �

dS

þ ak
ð
Sp

y� RR
jj � ðr1 � nÞ

h i
dS; (20b)

T 0 ¼ eal
ð
Sp

f ðyÞ y � RR � ðRR
jj � ððX�X1ðxpÞ � yÞÞ

h i
dS

"

þ
ð
Sp

f ðyÞ y � RR � ðRT
jj � ðU � u1ðxpÞÞÞ

h i
dS

þ
ð
Sp

l�1f ðyÞ y � RR
jj � r1 � nð Þ

h i
dS

#
: (20c)

Equations (19) and (20) provide the formulas for computing the
hydrodynamic force F and torque T exerted on a non-uniform slip
sphere. Inclusion of both leading order and OðeÞ contributions in the
formulation here is similar to what Swan and Khair17 did in their inte-
gral representation of the Faxen relations. However, to better see how
these e terms in (19) and (20) contribute to the additional force F0 and
torque T 0 for a given non-uniform slip length k0ðyÞ, it is necessary to
expand k0ðyÞ in terms of surface spherical harmonics. This essentially
decomposes k0ðyÞ into a combination of surface moments, such as
dipole, quadrupole, and octupole. Since these surface moments repre-
sent either even or odd distributions with distinct polarities over a
sphere, this approach will offer a more systematic way to reveal how
slip anisotropy breaks spherical symmetry in affecting the force and
torque on the sphere. More importantly, these surface moments can
be readily incorporated into tensor calculus for computing the force
and torque.

III. SURFACE HARMONIC EXPANSION FOR
A NON-UNIFORM SLIP DISTRIBUTION

Following the preceding section, prior to deriving the Faxen rela-
tions, we follow Anderson18 to expand the spatially varying slip length
k0ðyÞ as a series of surface spherical harmonics,

k0ðyÞ ¼
X
m

ða=rÞmþ1Am �½ �Sm: (21)

Here, the m-th order polyadic Sm is the set of surface spherical
harmonics,

Sm � rmþ1ðr � � �rÞm r�1ð Þ;

giving S0 ¼ 1; S1 ¼ �n; S2 ¼ 3nn� I; etc. Am are the coefficients to
form a scalar product with Sm through operator ½��. These coefficients
can be determined by applying the orthogonal relationships between
these surface harmonics according to

hSmSki ¼ 1= 4pa2ð Þ
ð
Sp
SmSkdS; (22)

which is non-zero if m¼ k and zero otherwise. Here, h� � �i ¼ 1=
ð4pa2Þ

Ð
Sp
ð� � �ÞdS is the average over the sphere’s surface. The first few

of these orthogonal relationships are
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hS0S0i ¼ 1;

hS1S1iij ¼
1
3
dij;

hS2S2iijkl ¼
1
5
�2dijdkl þ 3dikdjl þ 3dildjk
� �

:

Using (22), we can express (21) in terms of monopole (surface
average) hk0S0i ¼ hk0ið¼ kÞ, surface dipole P1 � �hk0S1i; surface
quadrupole P2 � hk0S2i; etc.: k0ðyÞ ¼ hk0i � 3P1 � S1 þ ð5=6ÞP2 :
S2 þ � � � ; or

ef ðyÞ ¼ �3P1 � S1 þ ð5=6ÞP2 : S2 þ � � � (23)

after subtracting hk0i. Note that hSmi ¼ 0 except for the average mode
m¼ 0 because of the orthogonality between m 6¼ 0 and k¼ 0 accord-
ing to (22). Here, we assume that the slip length varies spatially in a
scale of sphere’s size or larger. This will ensure that effects of slip
anisotropy can be fairly captured by the first few surface harmonic
contributions without having to include high harmonic contributions.
Also, given that a spherical Janus particle is typically of two-faced or of
striped type,18 it suffices to consider the first two-surface harmonics:
dipole P1 and quadrupole P2. Dipole P1 can be pictured as a half-
faced pattern, representing the first odd surface harmonic mode.
Quadrupole P2 represents the first (non-zero) even surface harmonic
mode, describing a dipolar pattern with two equal caps at the poles.
Thus, if a slip–slip Janus sphere is made of two unequal faces, it can be
thought of as a uniform-slip sphere with hk0i plus a linear superposi-
tion of first odd P1 and even P2 modes due to slip anisotropy, as
illustrated in Fig. 2(a).

As either two-faced type or striped type possesses a polarity rep-
resented by a stick-slip director d, it is more convenient to form P1

and P2 in terms of d. To this end, we can re-construct (23) in terms of
d and dd as

ef ðyÞ ¼ 3Dd � S1 þ ð5=2ÞQdd : S2 þ � � � : (24)

Thus, the surface moments P1 and P2 in (23) can be expressed in
terms of d with the coefficients D and Q measuring the strengths of
these surface moments,

P1 � �ehf S1i ¼ D d; (25a)

P2 � ehf S2i ¼ Qð3dd� IÞ: (25b)

Note that bothD andQ are OðeÞ because of ef ðyÞ in (24).
To illustrate how P1 and P2 are determined by a given slip length

distribution, we assume that the distribution is axisymmetric so that it
can be expressed as a Legendre series,

k0 ¼ g0P0 þ g1P1ðgÞ þ g2P2ðgÞ þ � � � : (26)

Here, P0ðgÞ ¼ 1;P1ðgÞ ¼ g; P2ðgÞ ¼ ð3g2 � 1Þ=2; etc., are the
Legendre polynomials with g ¼ cos h in terms of the polar angle h
with respect to the symmetry axis, and the coefficients gn are given by

gn ¼ ðnþ 1=2Þ
Ð 1
�1 k0PnðgÞdg. In connection to (23) we have hk0i

¼ g0;D ¼ g1=3 and Q ¼ g2=5: For a two-faced Janus sphere with slip
lengths kþ and k�; it has

hk0i ¼ ð1=2Þ k� � kþð Þcos aþ kþ þ k�ð Þ;
D ¼ ð1=4Þ kþ � k�ð Þ sin2a;

Q ¼ ð1=4Þ kþ � k�ð Þ sin2a cos a;
(27)

where a is the dividing angle for the more slippery kþ part. Note that
both D and Q are proportional to ðkþ � k�Þ of OðeÞ. Also, Q
¼ D cos a indicates that surface dipole P1 is generally more dominant
than surface quadrupole P2. For a symmetric slip–stick–slip sphere
having two more slippery caps in equal size (of dividing angles a and
p� a) and a less slippery stripe in the middle, we have

hk0i ¼ kþð1� cos aÞ þ k� cos a;

D ¼ 0;

Q ¼ ð1=2Þ kþ � k�ð Þ sin2a cos a:
(28)

Thus, the non-uniform slip part of this case is completely governed by
P2 with Q > 0 pointing outward. Because of the less hydrodynamic
resistance on the two more slippery poles, such a slip–stick–slip sphere
may act like a prolate spheroid. Similarly, for a symmetric stick–slip–
stick sphere, it is characterized by P2 with Q < 0 pointing inward in

FIG. 2. (a) The slip length distribution of a slip-slip Janus sphere can be represented by its average slip length plus a linear combination of odd and even contributions repre-
sented, respectively, by surface dipole P1 and quadrupole P2. (b) Symmetric slip–stick–slip and stick–slip–stick spheres can be represented by outward and inward quadru-
poles, respectively.
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analogy to an oblate spheroid. Figure 2(b) illustrates these dipolar
Janus spheres represented by outward and inward surface
quadrupoles.

It is worth re-stating that we are mainly looking at the first order
effects of slip anisotropy at OðeÞ. Possible non-linear interactions or
coupling between different surface harmonics may occur at higher
orders and, hence, can be negligible here.

IV. COUPLED FAXEN FORCE AND TORQUE RELATIONS
FOR A NON-UNIFROM SLIP JANUS SPHERE

Now, we are in the position to evaluate force (19) and torque
(20). We first expand u1 and r1 with respect to the sphere’s center
located at x ¼ xp as

u1 ¼ u1ðxpÞ þ y � ru1jxp þ
y y
2!

: rru1jxp þ � � � ; (29a)

r1 ¼ r1ðxpÞ þ y � rr1jxp þ
y y
2!

: rrr1jxp

þ y y y
3!

..

.
rrrr1jxp þ � � � ; (29b)

where y ¼ x � xp.
Substituting (23), (15), and (29) into (19) and (20), the evalua-

tions of various integrals in (19) and (20) require the following identi-
ties involving even surface moments:ð

Sp

ninjdS ¼ ð4=3Þpa2dij; (30a)

ð
Sp

ninjnknmdS ¼ ð4=15Þpa2Aijkm; (30b)

ð
Sp

npnqninjnknmdS ¼ ð4=105Þpa2Bpqijkm; (30c)

ð
Sp

npnqninjnknmnnnldS ¼ ð4=945Þpa2Cpqijkmnl; (30d)

where Aijkm ¼ dijdkm þ dikdjm þ dimdjk, Bpqijkm ¼ dpqAijkm þ dpiAqjkm

þdpjAiqkm þ dpkAijqm þ dpmAijkq, and Cpqijkmnl ¼ dkmBpqijnl þ dkn
Bpqijml þ dklBpqijnm þ dkpBmqijnl þdkqBpmijnl þ dkiBpqmjnl þ dkjBpqimnl:

In the following, we merely present main results and provide
detailed derivations in Appendixes A and B.

A. Faxen force relation

The force given by (19) is made of the uniform slip part F0 and
non-uniform slip part F0. The former is the usual Faxen force relation,

F0 ¼ �6plaK U � 1þ a2

6ð1þ 2kÞr
2

 !" #
u1 xpð Þ; (31)

with K ¼ ð1þ 2kÞ=ð1þ 3kÞ being the Hadamard–Rybczynski factor
in analogy to the Stokes drag on a spherical drop.12,16 Equation (31)
recovers the Faxen force law for uniform-slip spheres.15,16 Its deriva-
tion is standard, which involves the use of (30a) and (30b) [see (A2b),
(A3), and (A4)].

The OðeÞ non-uniform slip part F0 ¼ F0D þ F0Q consists of the
dipole force F0D and the quadrupole force F0Q. Each force involves con-
tributions from both the imposed flow and the body movements.
These forces are found to be

F0D � ea
ð
Sp

3 hf S1i � S1½ �RT
jj � r1jxp þ

yy
2!

: rrr1jxp þ � � �
� 	

� n dS

þeal
ð
Sp

3 hf S1i � S1½ �RT � ðRR
jj � ððX�X1ðxpÞÞ � yÞÞdS

¼ 18pla2

ð1þ 3kÞ2
ðX�X1ðxpÞÞ � P1

� 36
5

pla2

ð1þ 3kÞ 1þ 5a2

42
r2

� 	
E1 xpð Þ � P1

þ 6
35

pa4

ð1þ 3kÞrrr1jj jxp � P1; (32)

F0Q � ea
ð
Sp

ð5=6Þ hf S2i : S2½ �RT
jj

� y � rr1jxp þ
yyy
3!

..

.
rrrr1jxp þ � � �

� 	
� n dS

þeal
ð
Sp

ð5=6Þ hf S2i : S2½ �RT � RT
jj � ðU � u1ðxpÞÞdS

¼� 3pla

ð1þ 3kÞ2
P2 � ðU � u1ðxpÞÞ �

10
7

pa3

ð1þ 3kÞ 1þ 7a2

90
r2

� 	

rr1jxp : P2 þ
2
7

pa3

ð1þ 3kÞ 1þ a2

18
r2

� 	
r r1jxp : P2


 �

þ 2
7

pa3

ð1þ 3kÞrr1jj jxp � P2: (33)

Here, E1 ¼ ð1=2Þðru1 þru1TÞ is the local rate of strain tensors.
For deriving (32), we have used (30a)–(30c) for computing the inte-
grals. Equation (33) can be obtained after simplifying the integral with
(30a)–(30d). More details are given in (A5)–(A13).

Combining (31)–(33), we arrive at the Faxen force relation,

F ¼ � 6plaK U � 1þ a2

6ð1þ 2kÞr
2

 !
u1 xpð Þ

"

þ 1=2
ð1þ 2kÞð1þ 3kÞP2 � ðU � u1ðxpÞÞ

�

þ 18pla2

ð1þ 3kÞ2
ðX�X1ðxpÞÞ � P1 �

36
5

pla2

ð1þ 3kÞ

� 1þ 5a2

42
r2

� 	
E1 xpð Þ � P1 þ

6
35

pa4

1þ 3k
rrr1jj jxp � P1

� 10
7

pa3

ð1þ 3kÞ 1þ 7a2

90
r2

� 	
rr1jxp : P2

þ 2
7

pa3

ð1þ 3kÞ 1þ a2

18
r2

� 	
rðr1jxp : P2Þ

þ 2
7

pa3

ð1þ 3kÞrr1jj jxp � P2: (34)

As indicated by (34), non-uniform slip can bring four additional forces
through surface moments P1 and P2 at OðeÞ: (i) the quadrupole drag
through P2, (ii) the dipole force from the linear (straining) part of the
imposed flow through P1, (iii) the quadrupole force from the quadratic
part of the imposed flow through P2, and (iv) the force due to rota-
tional coupling through P1. In (ii) and (iii), higher order Faxen
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corrections can exist when the imposed flow gradient becomes non-
uniform. This can be the case for the multi-particle situation where a
non-uniform slip sphere is surrounded by other particles in motion,
and the former can be subjected to a flow caused by the latter.

Since (34) contains both the non-uniform slip contributions of
OðeÞ and the finite-size correction terms of Oðða=LÞ2Þ or smaller
(with L being the macroscopic length over which flow gradients
occur), the latter can be negligible compared to the former if

e	 ða=LÞ2: (35)

Under the above condition, we can neglect the finite-size correction
terms r2E1ðxpÞ � P1; rrr1jj jxp � P1; rr1jxp : P2; rðr1jxp : P2Þ
and rr1jj jxp � P2 in (34) due to non-uniform flow gradients, which
simplifies (34) to

F¼�6plaK Iþ 1=2
ð1þ2kÞð1þ3kÞP2

� 	
� ðU�u1ðxpÞÞ

þ 18pla2

ð1þ3kÞ2
ðX�X1ðxpÞÞ�P1�

36
5

pla2

ð1þ3kÞ E1ðxpÞ �P1: (36)

As a result, quadrupole P2 will contribute a correction P2 � ðU � u1

ðxpÞÞ to the Stokes drag. Dipole P1 will cause an additional force due
to body rotation and/or the straining component E1 of an imposed
flow. Owing to linearity, the former can only be constructed as
ðX�X1ðxpÞÞ � P1, whereas the latter can only take the form of
E1 � P1, as shown in (36).

In Sec. V, we will provide pictorial illustrations of how these dipole
and quadrupole forces arise physically due to stick–slip asymmetry.

B. Faxen torque relation

Similarly, we can evaluate each term of (20) for the torque as fol-
lows. For the uniform-slip part, only the body rotation ðX� y � u1Þ
term contributes, recovering the usual Stokes torque obtained by pre-
vious studies,15,16

T0 ¼
�8pla3

1þ 3k
X�X1ðxpÞ
� �

: (37)

The torque exerted by the imposed flow stress, the second term in T0

in (20b), is identically zero. The derivation of (37) is standard after
using (30a) and (30b) in (20b) [see (B2) and (B3)].

For the non-uniform slip part T 0, it has two contributions: the
dipole torque T 0D and the quadrupole torque T 0Q. Each contribution
consists of the torque exerted by the imposed flow and the torque gen-
erated by the body movements. These torques can be evaluated as

T 0D � ea
ð
Sp

3 hf S1i � S1½ � y

� RR
jj � y � rr1jxp þ

yyy
3!

..

.
rrrr1jxp þ � � �

� 	
� n

� �
dS

þeal
ð
Sp

3 hf S1i � S1½ �y � RR � RT
jj � ðU � u1ðxpÞÞ


 �h i
dS

¼ 18pla2

ð1þ 3kÞ2
P1 � ðU � u1ðxpÞÞ

� 12
5

pa4

ð1þ 3kÞ 1þ a2

14
r2

� 	
r� r1jxp � P1; (38)

T 0Q�ea
ð
Sp

ð5=6Þ hf S2i :S2½ �

y� RR
jj � r1jxpþ

yy
2!

:rrr1jxpþ���
� 	

�n
� �

dS

þeal
ð
Sp

ð5=6Þ hf S2i :S2½ �y� RR � ðRR
jj � ððX�X1ðxpÞÞ�yÞÞ

h i
dS

¼� 12pla2

ð1þ3kÞP2 � ðX�X1ðxpÞÞ�
8pla3

ð1þ3kÞP2

� 1þ a2

14
r2

� 	
E1 xpð Þ�

4
7

pa5

ð1þ3kÞr�rr1jxp :P2: (39)

Both (38) and (39) are the results after reducing the integrals by using
(30a)–(30d). How to arrive at these results in detail can be found in
(B4)–(B10).

Combining (37)–(39) yields the Faxen torque relation as

T ¼� 8pla3

1þ 3k
Iþ 3=2

1þ 3k
P2

� 	
� ðX�X1ðxpÞÞ

þ 18pla2

ð1þ 3kÞ2
P1 � ðU � u1ðxpÞÞ

� 8pla3

1þ 3k
P2 � 1þ a2

14
r2

� 	
E1 xpð Þ

� 12
5

pa4

ð1þ 3kÞ 1þ a2

14
r2

� 	
r� r1jxp � P1

� 4
7

pa5

ð1þ 3kÞr �rr1jxp : P2: (40)

Equation (40) reveals that OðeÞ non-uniform slip affects the torque in
three ways: (i) body rotation via P2; (ii) translation coupling via P1,
and (iii) the imposed flow via both P1 and P2. In (iii), the contribu-
tions can further involve higher order finite-size corrections if the
imposed flow gradient is non-uniform. Again, if the imposed flow is
linear or (35) is satisfied, we can neglect the higher order terms
a2r2;r� r1jxp � P1 and r�rr1jxp : P2 in (40). This reduces
(40) to

T ¼� 8pla3

1þ 3k
Iþ 3=2

1þ 3k
P2

� 	
� ðX�X1ðxpÞÞ

þ 18pla2

ð1þ 3kÞ2
P1 � ðU � u1ðxpÞÞ �

8pla3

ð1þ 3kÞP2 � E1 xpð Þ: (41)

As indicated by (41), dipole P1 will contribute to a coupling torque
through the translational velocity ½U � u1ðxpÞ� with respect to the
imposed flow. Since torque is a pseudovector, this torque can only be
constructed as P1 � ðU � u1ðxpÞÞ through linearity. Quadrupole P2

will provide a correction to the Stokes torque. Similarly, this quadru-
pole torque can only take the form of P2 � ðX�X1ðxpÞÞ relative to
the imposed flow vorticity. Moreover, when there is an imposed flow,
an additional quadrupole torque arising from the straining component
E1 can only be constructed as P2 � E1. How these torques are gener-
ated due to stick–slip asymmetry will be discussed next in Sec. V.

V. SURFACE-MOMENT FORCES AND TORQUES
ARISING FROM STICK–SLIP ASYMMETRY

As displayed in (36) and (41), we have shown a variety of addi-
tional hydrodynamic forces and torques induced by surface dipole P1
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and surface quadrupole P2. In this section, we provide pictorial physi-
cal explanations for how these forces and torques form due to stick-
slip asymmetry. They can be generated either by body movements or
exerted under the actions of imposed flows, which are discussed sepa-
rately below.

A. Additional resistance forces and torques induced
by surface moments

Body translation/rotation will generate a resistance force/torque
to oppose the motion of a sphere. Dipole P1 basically creates an anti-
symmetry in the forces on different faces of a non-uniform slip Janus
sphere. This results in translation-rotation coupling, generating a
rotation-coupling force faX� P1 (in scale of elXa2 with f � la
being the drag coefficient) or a translation-coupling torque faP1 � U
(in scale of elUa2Þ. How such a force/torque form can be pictured
using a two-faced stick–slip Janus sphere when it is translating/spin-
ning in a quiescent fluid, as illustrated in Fig. 3.

First, consider the situation where the sphere is rotating at an
angular velocity X in a quiescent fluid. As illustrated in Fig. 3(a), the
stick face will impart a more shear force on the fluid than the slip face
along the spinning direction, exceeded by an order of elXa2 due to
the slip difference e. In other words, the stick face will receive a more
drag force against the spinning motion, which, in turn, drives the

sphere to migrate. Similarly, when the sphere is translating at a pre-
scribed velocity U ; the drag force on the stick face will be greater than
that on the slip face in a magnitude of elUa. This generates a couple
elUa2 on the sphere to make it rotate, as illustrated in Fig. 3(b).

As for quadrupole P2, we use a symmetric slip–stick–slip Janus
sphere to illustrate how P2 causes additional force and torque acting
differently along the two axes of symmetry of the sphere. This explains
the induced force �fP2 � U (in scale of elUaÞ and torque�fa2P2 �X
(in scale of elXa3Þ. As shown in Fig. 4(a), we first consider the case
when the sphere is moving at a prescribed velocity U in a quiescent
fluid. For simplicity, we assume that the sphere orients with 45




respect to U so that the poles along direction d and the stripe in the
orthogonal direction d � ðI� ddÞ will feel an equal amount of impacts
from the velocity. However, due to the stick-slip asymmetry, the slip
poles will experience a less drag force than the stick stripe in a magni-
tude of elUa, making the overall drag force on the sphere no longer
be parallel to�U . Because P2 ¼ Qð3d d� IÞ according to (25b), such
a quadrupole drag force can be decomposed as

F 0Q � �fP2 � U ¼ �2Qdd � fU � Qðdd� IÞ � fU : (42)

FIG. 3. Schematic illustrations of how the dipole force F0D and torque T 0D arise due
to translation-rotation coupling. (a) illustrates how a rotation-coupling force F0D
¼ �faX� P1 is generated onto a stick–slip sphere when it spins at an angular
velocity X. Such a force is a result of the asymmetric shearing forces exerted on
the stick and the slip faces. Similarly, if the sphere is moving at a velocity U, an
asymmetric drag force pair on the stick and the slip faces will produce a translation-
coupling torque T 0D ¼ �faP1 � U to the sphere, as illustrated in (b).

FIG. 4. Schematic illustrations of how the quadrupole force F0Q and torque T 0Q are
generated on a slip–stick–slip Janus sphere. (a) When the sphere is moving at a
constant velocity U, the slip poles will feel lower drag force than the stick stripe,
resulting in the overall resistance force F0Q ¼ �fP2 � U no longer parallel to �U .
(b) Similarly, T 0Q ¼ �fa2P2 �X can be generated in a direction dis-aligned to the
rotation axis when the sphere spins at an angular velocity X.
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Thus, in the present example, the drag force on the poles will be twice
that on the stripe.

A similar picture shown in Fig. 4(b) can also be used to visualize
how the quadrupole resistance torque �fa2P2 �X is generated when
the sphere rotates at an angular velocity X,

T 0Q � �fa2P2 �X ¼ �2Qdd � fa2X� Qðdd� IÞ � fa2X: (43)

As indicated by (43), this torque will be dis-aligned to the principal
rotation axis due to the stick–slip asymmetry.

As explained above, because of stick-slip asymmetry, these addi-
tional resistance forces and torques arising from P1 and P2 will not be
acting in parallel to the prescribed velocities U and X. This means
that if there is an external force or torque applied to a non-uniform
slip sphere, the sphere will translate/rotate in a direction unparallel to
the applied force/torque due to P2. In addition, because the translation
and rotation are now coupled due to P1, the applied force may cause
the sphere to rotate, whereas the applied torque may set up a transla-
tion to the sphere.

B. Surface-moment forces and torques due to
imposed flow gradients: Joint stick–slip asymmetry
and flow symmetry

Unlike resistance force/torque against body motion, an imposed
flow will exert a propulsion force/torque on a non-uniform slip sphere
to make the sphere move along with the stream. While slip anisotropy
breaks symmetry in geometry, this geometrical asymmetry can join
with the symmetry/anti-symmetry of an imposed flow to generate
additional forces and torques. When the flow is linear, dipole P1 and
quadrupole P2 can couple to the flow’s symmetric straining compo-
nent E1 to generate additional force faP1 � E1 (in scale of elE1a2Þ
and torque fa2P2 � E1 (in scale of elE1a3Þ on the sphere, as given
in (36) and (41).

In Fig. 5, we use stick–slip and slip–stick–slip Janus spheres to
illustrate the above effects of P1 and P2 in the presence of linear flow
fields. Figure 5(a) illustrates how the dipole straining force faP1 � E1 is
generated by placing a stick–slip Janus sphere at the center of a pure
straining flow. It is clear that if the sphere is not aligned to the compres-
sion axis or to the stretching axis of the flow, the sphere will experience
asymmetric forces on its two faces. Specifically, the slip face will receive
a less force from the applied straining flow than the stick face. Since
these two forces are acting in the opposite directions, a net force will be
resulted to act on the stick side of the sphere and, hence, will drive the
sphere away from the flow center. Note that no torque is generated by
dipole in this case since �ijkP1jE1jk is identically zero because of the sym-
metry of E1jk . Figure 5(b) illustrates how the quadrupole-straining tor-
que fa2P2 � E1 is generated on a stick–slip–stick Janus sphere when it
is placed at the center of a pure straining flow. In this case, a force pair
of the same amount but in the opposite directions is acting on the two
slip poles, so is that on the stripe portion. This anti-symmetric force
pair, thus, generates a couple onto the sphere without net force.

As for the vorticity component X1 of the imposed flow, it pro-
duces effects exactly like those due to the angular velocity X of the
sphere but in the opposite manner because of pushing by the flow.
Similar to Figs. 3(a) and 4(b) due to X, there are additional dipole
force faX1 � P1 and quadrupole torque fa2X1 � P2 generated by
X1, as illustrated in Fig. 6 by having a non-uniform slip sphere held

fixed at the center of a pure rotating flow field. If the sphere is freely
suspended, to ensure both force and torque free, faX1 � P1 must be
canceled out exactly by �faX� P1 and so be fa2X1 � P2 by
�fa2X � P2, just like the leading order uniform slip case where the
Stokes torque fa2ðX�X1Þ is zero. In this case, the sphere will sim-
ply display a rigid body rotation at X ¼ X1, meaning that there is no
impact from X on the sphere’s motion.

Similar to the effects of X1 as above, the imposed flow velocity
u1ðxpÞ can also set up surface moment force and torque of the same
types as those caused by the translational velocity U of a non-uniform
slip sphere. They are the dipole torque faP1 � u1ðxpÞ due to transla-
tion coupling and the quadrupole torque fP2 � u1ðxpÞ. As illustrated in
Fig. 7, these torque and force are acting in the manner opposite to those
set up by U [see Figs. 3(b) and 4(a)]. Thus, when the sphere is freely sus-
pended as both force and torque on the sphere are zero, the sphere
must migrate along the stream at U ¼ u1ðxpÞ, just like the leading
order uniform slip case where the Stokes force fðU � u1ðxpÞÞ is zero.

VI. NEW IMPACTS DUE TO SURFACE-MOMENT-
MEDIATED FAXEN CORRECTIONS

As shown in (36) and (41), the additional surface-moment-
induced forces and torques exerted by imposed flows are the first

FIG. 5. Schematic illustrations of how additional force and torque arise onto a non-
uniform slip Janus sphere when it is placed at the center of a pure straining flow.
(a) illustrates that a two-faced stick–slip Janus sphere possessing a dipole P1 can
experience opposite but unequal forces on the stick and the slip faces. This gener-
ates a dipole-straining force faP1 � E1 onto the sphere, which will drive the sphere
away from the flow center. (b) Similarly, a quadrupole-straining torque fa2P2 � E1

can be generated onto a symmetric slip–stick–slip Janus sphere due to the anti-
symmetric force pair induced by a quadrupole P2.
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effects due to slip anisotropy based on the assumption (35) under
which the standard Faxen-type finite-size corrections or non-uniform
flow gradient effects are negligible so that the more general Faxen rela-
tions (34) and (40) can be reduced to the simplified forms (36) and
(41). However, if the imposed flow field happens to be non-linear like
a pressure-driven quadratic flow in a channel, then the more general
Faxen relations (34) and (40) should be employed for better character-
izing the hydrodynamic force and torque on the sphere in that
situation. Such finite-size Faxen corrections may also be vital in the
multi-particle situation such as a dilute suspension of stick–slip or
slip–slip spheres. In this case, hydrodynamic interactions between
these heterogeneous spheres need to be quantified using the method of
reflections with the full Faxen relations (34) and (40). In such a situa-
tion, the background flow u1 around a test sphere can be taken to be
the disturbance flow field generated by the surrounding spheres. The
gradient of such a flow is clearly non-uniform, reflected by the terms
E1; rr1; rrr1; r� r1, and r�rr1 working jointly with
surface dipole or quadrupole. The form of these terms appears to
resemble those for ellipsoid due to joint geometry and flow effects.26

Because the effects of such surface moment terms tend to act in

preferential directions either along or across the velocity gradients of
the background flow, hydrodynamic interactions between non-
uniform slip spheres will become anisotropic even in a uniformly dis-
tributed suspension of such spheres. Also, for this reason, the first
finite-size corrections to the force on a non-uniform slip sphere due to
background flow gradient effects will no longer be of the standard
Faxen type under the operator a2r2, but come from surface moment
contributions. The latter is mainly from the dipole-straining term
P1 � E1ðxpÞ in (34) due to the linear part of the background flow.
Similarly, the quadrupole-straining term P2 � E1ðxpÞ in (40) will be
the main finite-size contribution to the torque. Note that involving the
rate of strain tensor E1 is typically associated with the symmetric
force dipole, namely, stresslet, for computing the effective viscosity of
a particle suspension.27 This suggests that the force and stresslet on a
non-uniform slip sphere will also be coupled and so will the torque
and stresslet. Further notice that either coupling can exist alone or
both co-exist, depending on whether the sphere is of two-faced type
dominated by dipole, striped type dominated by quadrupole, or mixed
with these two types. This means that the nature of hydrodynamic
interactions between non-uniform slip spheres will depend on the type
of slip pattern. In light of the above, the rheology of a suspension of
such spheres is expected to differ both qualitatively and quantitatively
compared to that of a suspension of no-slip or uniform slip spheres.

FIG. 6. Schematic illustrations of how additional force and torque arise onto a non-
uniform slip Janus sphere when it is held fixed at the center of a pure rotating flow
field. (a) illustrates that the flow vorticity X1 can set up a rotation-coupling force
faX1 � P1 due to the dipole of a two-faced stick–slip sphere, similar to Fig. 3(a).
(b) illustrates how an extra quadrupole torque fa2X1 � P2 is generated in a direc-
tion dis-aligned to the principal rotation axis of a symmetric slip–stick–slip Janus
sphere, similar to Fig. 4(b).

FIG. 7. Schematic illustrations of how surface-moment-induced force and torque
arise onto a non-uniform slip Janus sphere that is held fixed in an arbitrary flow field
u1. (a) illustrates how a torque faP1 � u1ðxpÞ is induced by a dipole through
coupling to the imposed flow velocity u1ðxpÞ at the sphere’s position, similar to
Fig. 3(b). (b) illustrates how a force fP2 � u1ðxpÞ is generated by a quadrupole,
similar to Fig. 4(a).
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VII. PERSPECTIVES AND OUTLOOKS

We have developed a theory capable of unraveling essential
hydrodynamic features for non-uniform slip spheres. The main idea is
that an uneven slip length distribution will render an asymmetric force
distribution over the surface of a non-uniform slip sphere because of
symmetry breaking. This will induce additional hydrodynamic forces/
torques on the sphere, depending on how the slip length varies spa-
tially along the sphere’s surface.

The theory is built upon a new and more generalized framework
formulated by the reciprocal theorem in conjunction with surface har-
monic expansion, allowing us to derive a new set of the Faxen formu-
las for the hydrodynamic force and torque on a weakly non-uniform
slip sphere with an arbitrary slip length distribution. With the aid of
these formulas, we are able to codify various forces and torques arising
from slip anisotropy—all can be interpreted in terms of surface dipole
and quadrupole, corresponding to antisymmetric stick-slip-like and
symmetric slip-stick-slip-like distributions, respectively.

One might think that a non-uniform slip Janus sphere may act
hydrodynamically like a spheroid or a rod-like particle. It seems that
such an analogy holds only when the sphere is of striped or slip-stick-
slip type dominated by quadrupole, but not for two-faced stick-slip
type dictated by dipole. The reason for this is that quadrupole pre-
serves geometrical symmetry in terms of the two principal axes of
body revolution. Specifically, the drag forces on different parts of the
sphere’s surface can still display a spatial symmetry with respect to the
two principal axes of revolution. On the other hand, dipole breaks geo-
metrical symmetry in one particular direction, which often gives rise
to an unequal drag force pair when the applied force is not aligned to
that direction. It is this reason why dipole can give rise to coupling
between force and rotation as well as a coupling between torque and
translation. Such dipole-induced hydrodynamic coupling becomes
more manifested in the presence of imposed flows. For a dipolar
sphere like a two-faced stick–slip sphere, dipole can be coupled to the
straining component of the imposed flow field to produce an asym-
metric force, which will make the sphere drift across the streamlines.

Quadrupole, on the other hand, typically dominates in the
motion of a slip–stick–slip or stripe-like sphere. It mainly produces a
drag force in plane with the director and translational velocity U of
the sphere, pointing in a direction unparallel to �U . Similarly, an
additional torque can also be introduced by quadrupole. This torque is
acting in plane with the director and angular velocity X of the sphere,
making the overall torque dis-aligned to the principal axis of rotation.
When there is an imposed flow, the same quadrupole torque, but in
the opposite direction, can also arise from the vorticity component of
the flow, X1. If the sphere is freely suspended, these two oppositely
acting quadrupole torques of the same type will exactly cancel out like
the equal but adverse Stokes torques generated by X and X1 in the
uniform slip case, leading the sphere to rotate at X ¼ X1 [up to
OðeÞ]. In other words, except for trivial rigid body rotation, there is no
impact from X1 [up to OðeÞ] on the motion of the sphere due to
quadrupole under the freely suspended situation.

In view of the above, given that the effects of surface dipole and
quadrupole are rather distinct, it is possible to make use of their char-
acteristic differences to tell which one dominates the surface pattern of
a non-uniform slip Janus sphere. That is, one can utilize the hydrody-
namic features of dipole and quadrupole to tell whether a Janus sphere
belongs to two-faced or striped type. For instance, to see whether the

sphere is of two-faced type characterized by dipole, one can place the
sphere at the center of a pure straining field (of E1) to see if the sphere
can undergo spinning due to the quadrupole-straining torque [the
P2 � E1 term in (41)] or exhibit drifting across the streamlines due to
the dipole-straining force [the P1 � E1 term in (36)]. To identify
whether the sphere is of striped type controlled by quadrupole, perhaps
it can be achieved by placing the sphere in a simple shear flow and by
observing if its rotation dynamics display Jeffery orbits like those of a
spheroid [due to the P2 � E1 term in (41)]. In any case, the dynamics
of a non-uniform slip sphere should reveal some insights into how
dipole or quadrupole plays a role. In particular, by observing how non-
uniform spheres respond to various applied forcing or flow conditions,
one might be able to utilize these responses to characterize or sort the
spheres hydrodynamically. All these aspects can be tested experimen-
tally using microfluidic devices. But prior to performing such an experi-
ment, it is necessary to analyze how a non-uniform slip sphere behaves
in its motion, depending on the specific forcing or flow condition
applied. This requires applying the new Faxen force and torque relations
(36) and (41) to determine both the translational and rotational dynam-
ics of the sphere. Solving such mobility problems is of particular interest
for the swimming of a squirmer self-propelled by a prescribed slip veloc-
ity on its surface.4,5 Along this line, it will be interesting to look at the sit-
uation where a squirmer possesses both stick and slip portions on its
surface. For such a heterogeneous squirmer, its swimming velocity is
expected to be sensitive to the stick–slip partition, which can be readily
described by the new framework given in the present study.

Finally, the full Faxen relations (34) and (40) with surface
moment contributions should modify effects at play in systems involv-
ing more than one non-uniform slip spheres, especially on the nature
of hydrodynamic interactions between such spheres. This is rooted in
the fact that these surface moment contributions to a test sphere tend
to act in preferential directions along or across the velocity gradients
of the background flow generated by the surrounding spheres. The
effects would become much more pronounced in a suspension of non-
uniform slip spheres. The reason is that even if these spheres are uni-
formly distributed, hydrodynamic interactions between them could
become anisotropic because of preferential polarity effects of surface
moments. This may alter not only the collective nature of hydrody-
namic interactions but also the microstructure of such suspension. For
this reason, the rheological properties of such suspension are expected
to be distinct from those of a suspension of no-slip or uniform slip
spheres. Studying suspension hydrodynamics of this sort will be the
next topic requiring more investigations. The present work at least
provides some foundations for future pursuit of such a study.
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APPENDIX A: DERIVATION OF THE FAXEN FORCE
RELATION (34)

To compute the force using (19), we need the following resis-
tance tensors according to (15):

RT
ij ¼Adij þBninj; (A1a)

RT
ijjj ¼A dij � ninj

� �
; (A1b)

RR
ij ¼ Cdij; (A1c)

RR
ijjj ¼ C dij � ninj

� �
; (A1d)

where A ¼ �3=½2að1þ 3kÞ�; B ¼ �18k=½2að1þ 3kÞ�, and
C ¼ �3=½að1þ 3kÞ�.

The force (19) consists of the uniform-slip part F0 and the
non-uniform slip part F 0,

F ¼ F0 þ F0; (A2a)

F0 ¼ l
ð
Sp

Uj � u1j
� �

RT
ij dSþ ak

ð
Sp

RT
ijjj r

1
jk nk dS; (A2b)

F0 ¼ ea
ð
Sp

f ðyÞRT
ijjj r

1
jk nk dS

þ eal
ð
Sp

f ðyÞRT
ij R

R
jkjj ekmn ðXm � X1m ðxpÞÞ yn dS

þeal
ð
Sp

f ðyÞRT
ij R

T
jkjj ðUk � u1k ðxpÞÞ dS: (A2c)

1. Uniform slip part F0

As indicted by (A2b), this part is made of two terms: the body
translation ðU � u1Þ term and the term due to the imposed flow
stress r1. The former can be evaluated by expanding u1 as (29a)
in which only the even terms contributes. The integral can be evalu-
ated with (A1a), (30a), and (30b), giving

l
ð
Sp

ðUj�u1j ÞRT
ij dS

¼l
ð
Sp

Uj� u1j xpð Þþ
ypyq
2!
rprqu

1
j jxp þ���

� 	� �
ðAdijþBninjÞdS

¼pla2 4AUiþ
4
3
BUi�4Au1i ðxpÞ�

4
3
Bu1i ðxpÞ

�

�a
2

2
4
3
Ar2u1i jxp þ

4
15

BAijpqrprqu
1
j jxp

� 	�

¼�6pla
1þ2k
1þ3k

Ui� 1þ a2

6ð1þ2kÞr
2

 !" #
u1i xpð Þ

þ6
5
pla3

k
1þ3k

� 	
r2u1i jxp : (A3)

For deriving Eq. (A3), in the terms of Aijpqrprqu1j ; ðdipdjq þ diqdjpÞ
rprqu1j are identically zero because of the continuity riu1i ¼ 0:
The terms higher than the quadratic terms in (29a) will not make any
contributions becauser4u1i ¼ 0.

For the imposed flow stress term, we expand r1 as (29b) and
find that only the odd terms contribute. With (A1b), (30a), and
(30b), the integral can be evaluated as

ak
ð
Sp

RT
ijjjr
1
jk nkdS

¼ ak
ð
Sp
A dij � ninj
� �

ymrmr1jk jxp þ � � �

 �

nkdS

¼ pa4kA
4
3
dijdkmrmr1jk jxp �

4
15

Aijkmrmr1jk jxp

� �

¼ � 4
15

pa4kArir
1
jj jxp

¼ � 6
5
pla3

k
1þ 3k

� 	
r2u1i jxp : (A4)

For deriving Eq. (A4), we have used the fact that dijdkm rmr1jk jxp
and ðdijdmk þ dikdjmÞrmr1jk jxp in the Aijkmrmr1jk jxp term are identi-

cally zero because of rkr1jk ¼ 0: We have also used

rr1jj ¼ �3rp1; rjr1ij ¼ 0, and rjr1ij þrip1 ¼ lr2u1i to sim-

plify the results.
Combining (A3) and (A4) gives (31).

2. Non-uniform slip part F 0

The force arising from slip anisotropy F0 constitutes dipole
force F0D and quadrupole force F0Q. Each contribution is evaluated
separately by substituting (23) into (19).

a. Dipole force F 0D

The dipole force has two contributions,

F0D � F0D1 þ F0D2; (A5a)

F0D1 ¼ ea
ð
Sp

f ðyÞRT
ijjj r

1
jk nk dS; (A5b)

F0D2 ¼ eal
ð
Sp

f ðyÞRT
ij R

R
jkjj ekmnðXm � X1m ðxpÞÞyn dS: (A5c)

F0D1 is the force exerted by the imposed flow stress, while F0D2 is the
force generated by rotation coupling. For the former, we take an
expansion (29b) for r1 and identify that only the even terms con-
tribute. With (A1b) and (30a)–(30c), we can evaluate (A5b) as

F0D1 ¼ea
ð
Sp

3hf S1miS1m A dij � ninj
� �

� r1jk xpð Þ þ
ypyq
2!
rprqr

1
jk jxp þ � � �

� 	
nk dS

¼� 3pa3Aehf S1mi r1jk xpð Þ
4
3
dijdkm �

4
15

Aijkm

� 	�

þ a2

2
rprqr

1
jk jxp

4
15

Apqkmdij �
4
105

Bijkmpq

� 	�

¼� 3pa3Aehf S1mi
4
5

r1im þ dimp
1� �

xp
þ 2
15

a2r2r1imjxp

�

� 4
105

a2 r2r1imjxp þrirmr1jj jxp

 ��

: (A6)

For deriving Eq. (A6), we have used S1m ¼ �nm and r1jj ¼ �3p1.
The term ðdmpdkq þ dkpdmqÞrprqr1jk jxp in Apqkmrprqr1jk jxp and
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the term ðdjpAikmq þ djqAikmpÞ rprqr1jk jxp in Bijkmpqrprqr1jk jxp are
identically zero because of rjr1ij ¼ 0. Also, in Bijkmpqrprqr1jk jxp ,
the term dpqdimdjkrprqr1jk jxp in dpqAijkmrprqr1jk jxp is zero

because of r2p1 ¼ 0. Using r1ij þ dijp1 ¼ 2lE1ij and r2r1ij
¼ 2lr2E1ij in terms of the strain tensor E1ij � ð1=2Þ
ðriu1j þrju1i Þ; we reduce (A6) to

F0D1 ¼
36
5

pla2

1þ 3k
1þ 5a2

42
r2

� 	
E1ij xpð Þehf S1ji

� 6
35

pa4

1þ 3k
rirkr

1
jj jxPehf S1ki:

(A7)

As for F0D2 given by (A5c), we evaluate it using (A1a), (A1d), (30a),
and (30b), yielding

F0D2 ¼ eal
ð
Sp

3hf S1piS1p Adij þBninj
� �

� C djk � njnk
� �

ekmnðXm � X1m ðxpÞÞyn dS

¼ �3lpa4ACehf S1pi
4
3
dpndik �

4
15

Apink

� �
ekmnðXm � X1m ðxpÞÞ

¼ � 18pla2

ð1þ 3kÞ2
eimpðXm � X1m ðxpÞÞ ehf S1pi: (A8)

Combining (A7) and (A8), we write the final result in terms of
P1 � �ehf S1i; as given by (32).

b. Quadrupole force F0Q

The quadrupole force F 0Q also has two contributions,

F0Q � F0Q1 þ F0Q2; (A9a)

F0Q1 ¼ ea
ð
Sp

f ðyÞRT
ijjj r

1
jk nk dS; (A9b)

F0Q2 ¼ eal
ð
Sp

f ðyÞRT
ij R

T
jkjj ðUk � u1k ðxpÞÞ dS: (A9c)

F0Q1 is the force exerted by the imposed flow stress, while F0Q2 is
the force arising from body translation. To evaluate F0Q1, we
expand r1 as (29b) by knowing that only the odd terms contrib-
ute. Recognizing that S2pq ¼ 3npnq � dpq and making use of
(A1b), (30a), (30b), and ehf S2pqidpq ¼ 0, (A9b) can be evaluated
as

F0Q1 ¼ e ð5=6Þa
ð
Sp

hf S2pqiS2pq A dij � ninj
� �

� ysrsr
1
jk jxp þ

ymynyl
3!
rmrnrlr

1
jk jxp þ � � �

� 	
nk dS

¼ 5
2
pa3Aehf S2pqi arsr

1
jk jxp

4
15

Apqksdij �
4
105

Bpqijks

� 	�

þ a3

6
rmrnrlr

1
jk jxp

4
105

Bkpqmnldij �
4
945

Cpqijmnlk

� 	�
:

(A10)

With rjr1ij ¼ 0, (A10) reduces to

F0Q1 ¼
4
21

pa4Aehf S2pqið5rpr
1
iq jxp �rir

1
pqjxp � diprqr

1
jj jxpÞ

� 2
189

pa6Aehf S2pqiðrir2r1pq jxp þrirprqr
1
jj jxp

þ diprqr2r1jj jxpÞ þ
2
27

pa6Aehf S2pqir2
pr
1
iq jxp : (A11)

In Eq. (A11), rqr2r1jj jxp ¼ �3rqr2p1jxp ¼ 0 and rirp

rqr1jj jxp ¼ �3rirprqp1jxp ¼ 0. Similarly, it can also be shown
that even higher derivative terms in (29b) make no contributions at
all. Therefore, (A11) becomes

F0Q1 ¼�
10
7

pa3

ð1þ 3kÞ 1þ 7a2

90
r2

� 	
rpr

1
iq jxpehfS2pqi

þ 2
7

pa3

ð1þ 3kÞ 1þ a2

18
r2

� 	
rir

1
jq jxpehf S2jqi

þ 2
7

pa3

ð1þ 3kÞrqr
1
jj jxpehf S2iqi: (A12)

For F0Q2 given by (A9c), it can be computed using (A1a), (A1b),
(30a), and (30b), which gives

F0Q2 ¼ð5=6Þa
ð
Sp

ehf S2pqiSpq Adij þBninj
� �

�A djk � njnk
� �

ðUk � u1k ðxpÞÞdS

¼ 5a
6
A2ehf S2pqi;ð

Sp

ð3npnq � dpqÞðdik � ninkÞðUk � u1k ðxpÞÞdS

¼ 5pa3

2
A2ehf S2pqiðUk � u1k ðxpÞÞ

4
3
dpqdik �

4
15

Apqik

� 	

¼ � 3pla

ð1þ 3kÞ2
ehf S2ikiðUk � u1k ðxpÞÞ: (A13)

For deriving Eq. (A13), we have used ehf S2pqidpq ¼ 0.
Combining (A12) and (A13) and writing the final result in

terms of P2 � ehf S2i; we can finally arrive at (33).

APPENDIX B: DERIVATION OF THE FAXEN TORQUE
RELATION (40)

Likewise, to determine the torque using (20), we also need the
resistance tensors given in (A1a)–(A1d). The torque (20) consists of
the uniform slip part T0 and the non-uniform slip part T 0,

T ¼ T0 þ T 0; (B1a)

T0 ¼
ð
Sp

eijk yj R
R
kl elmn Xmyn � u1l
� �

dSþ ak
ð
Sp

eimj ym RR
jkjj r

1
kpnp dS;

(B1b)

T 0 ¼ ea
ð
Sp

f ðyÞ eimj ym RR
jkjj r

1
knnn dS

þeal
ð
Sp

f ðyÞ eijk yj RR
kl R

T
lmjjðUm � u1m ðxpÞÞ dS

þeal
ð
Sp

f ðyÞ eijk yj RR
kl R

R
lmjj empqðXp � X1p ðxpÞÞyq dS: (B1c)

The two contributions are evaluated separately below.
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1. Uniform slip part T0

According to (B1b), T0 is made of the body rotation term
ðX� y � u1Þ and the term from the imposed flow stress r1. For
the former, we expand u1 as (29a) in which only odd terms will
contribute. With (A1c), (30a), and (30b), the integral can be evalu-
ated asð

Sp

eijkyjR
R
kl elmnXmyn � u1l
� �

dS

¼ a
ð
Sp

eijk yj Cdkl elmnXmyn � yprpu
1
l xpð Þ þ � � �

� �� �
dS

¼ 4
3
pa4C djn eijk emnk Xm �

4
3
pa4C djp eijmrpu

1
m jxp

¼ 8
3
pa4CXi �

4
3
pa4C eijkrju

1
k jxp

¼ � 8pla3

1þ 3k
X�X1 xpð Þ
� �

: (B2)

For deriving Eq. (B2), we have used eijkemnk ¼ dimdjn � dindjm. Also
recognizing that eijkrju1k ¼ 2X1i is the vorticity of the imposed
flow.

The imposed flow stress term in (B1b) is evaluated by expand-
ing r1 as (29b) where only even terms contribute. By using (A1c)
and (30a)–(30c), the integral is found to be

ak
ð
Sp

eimjymR
R
jkjjr

1
knnndS

¼a2kC
ð
Sp

eimjnm djk�njnk
� �

r1kn xpð Þþ
ypyq
2!
rprqr

1
knjxpþ���

� �
nndS

¼pa4kCeimj r1kn xpð Þ
4
3
djkdmn�

4
15

Amnjk

� 	�

þa
2

2
rprqr

1
knjxp

4
15

Apqmndjk�
4
105

Bpqmnjk

� 	�
: (B3)

Because of rjr1ij ¼ 0 and eijkr1jk ¼ 0, (B3) is identically zero.
Combining (B2) and (B3) gives (37).

2. Non-uniform slip part T0

Slip anisotropy induces dipole torque T 0D and quadrupole tor-
que T 0Q. We evaluate each separately below.

a. Dipole torque T 0D

The dipole torque T 0D is made of two contributions,

T 0D � T 0D1 þ T 0D2; (B4a)

T 0D1 ¼ ea
ð
Sp

f ðyÞ eimj ym RR
jkjj r

1
kn nn dS; (B4b)

T 0D2 ¼ eal
ð
Sp

f ðyÞ eijk yj RR
kl R

T
lmjj ðUm � u1m ðxpÞÞ dS: (B4c)

T 0D1 is the torque exerted by the imposed flow stress, whereas T 0D2 is
the torque generated by coupling to translation. For the former
given by (B4b), we expand r1kn as (29b) where only odd terms

contribute. Furthermore, by making use of (A1d) and (30a)–(30d),
we find

T 0D1 ¼ ea
ð
Sp
3hf S1liS1l eimj ym C djk � njnk

� �
� ysrsr

1
knjxp þ

ypyqyr
3!
rprqrrr

1
knjxp þ � � �

� �
nndS

¼� 3pa4Cehf S1lieimj arsr
1
knjxp

4
15

Amnlsdjk �
4
105

Bmnjkls

� 	�

þ a3

6
rprqrrr

1
knjxp

4
105

Bmnpqrldjk �
4
945

Cmnpqrjkl

� 	�

¼� 4
5
pa5Cehf S1lieijkrjr

1
kl jxp �

2
35

pa7Cehf S1lieijkr2rjr
1
kl jxp

¼ 12
5

pa4

ð1þ 3kÞ 1þ a2

14
r2

� 	
eijkrjr

1
kl jxpehf S1li: (B5)

For deriving Eq. (B5), we have used S1l ¼ �nl; eijkr1jk ¼ 0 and
rjr1ij ¼ 0.

T 0D2 can be computed by using (A1b), (A1c), (30a), and (30b),
giving

T 0D2 ¼ eal
ð
Sp

3hf S1piS1p eijkyj Cdkl A dlm � nlnmð ÞðUm � u1m ðxpÞÞ dS

¼ �3pa4ACehf S1pieijk
4
3
dpjdkm �

4
15

Ajpkm

� �
ðUm � u1m ðxpÞÞ

¼ � 18pa4

ð1þ 3kÞ2
eijk ehf S1jiðUk � u1k ðxpÞÞ: (B6)

For deriving Eq. (B6), we have used djkeijk ¼ 0.
The end result can be obtained by combining (B5) and (B6),

and written in terms of P1 � �ehf S1i; giving (38).

b. Quadrupole torque T 0Q

The quadrupole torque T 0Q is also made of two contributions,

T 0Q � T 0Q1 þ T 0Q2; (B7a)

T 0Q1 ¼ ea
ð
Sp

f ðyÞ eimjym RR
jkjj r

1
knnn dS; (B7b)

T 0Q2 ¼ eal
ð
Sp

f ðyÞ eijk yj RR
kl R

R
lmjj empqðXp � X1p ðxpÞÞyq dS: (B7c)

T 0Q1 is the torque exerted by the imposed flow stress, whereas T 0Q2 is
the torque arising from body rotation. To evaluate the former, we
expand r1kn as (29b) where only even terms contribute. Using (A1b)
and (30a)–(30d), we can evaluate (B7b) as

T 0Q1 ¼ a
ð
Sp
ð5=6Þehf S2pqiS2pq eimj ym C djk � njnk

� �
� r1kn xpð Þ þ

yrys
2!
rrrsr

1
knjxp þ � � �

� �
nn dS

¼ 5
2
pa4Cehf S2pqieimj r1kn xpð Þ

4
15

Apqmndjk �
4
105

Bpqmnjk

� 	�

þ a2

2
rrrsr

1
knjxp

4
105

Bpqmnrsdjk �
4
945

Cpqmnjkrs

� 	�
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¼ 4
3
pa4C eipk ehf S2pqi 1þ a2

14
r2

� 	
r1kq xpð Þ

þ 4
21

pa6C eimk ehf S2pqirmrq r1kp jxp : (B8)

For deriving Eq. (B8), we have used S2pq ¼ 3npnq � dpq;
ehf S2pqidpq ¼ 0, and djmeimj ¼ 0. Also notice that eipkehf S2pqi r1kq
¼ eipkehf S2pqi2lE1kq because eipkehf S2pqip1dqk¼ 0: As a result, (B8)
becomes

T 0Q1 ¼�
8pla3

ð1þ 3kÞ eipk ehf S2pqi 1þ a2

14
r2

� 	
E1kq xpð Þ

� 4
7

pa5

1þ 3k
eimk ehf S2pqirmrq r1kp jxp : (B9)

As for T 0Q2 given by (B7c), we can compute it as follows using
(A1c), (A1d), (30a), and (30b):

T 0Q2 ¼eað5=6ÞC2
ð
Sp
hf S2rsið3nrns � drsÞ

� eijk yj dkl dlm � nlnmð ÞempqðXp � X1p ðxpÞÞyq dS

¼ 5
2
pa5C2ehf S2rsieijkempqðXp � X1p ðxpÞÞ

� 4
15

Arsjqdkm �
4
105

Brsjqkm

� 	

¼� 4
3
pa5C2eijmempq ðXp � X1p ðxpÞÞ ehf S2jqi

¼ � 12pla2

ð1þ 3kÞ ðXj � X1j ðxpÞÞ ehf S2iji: (B10)

For obtaining Eq. (B10), we have used ehf S2pqidpq ¼ 0;
eijmempq ¼ dipdjq � diqdjp; and dmjeimj ¼ 0.

Combining (B9) and (B10) gives (39) that is written in terms
of P2 � ehf S2i.

REFERENCES
1A. Walther and A. H. E. Muller, “Janus particles: Synthesis, self-assembly, phys-
ical properties, and applications,” Chem. Rev. 113, 5194–5261 (2013).

2S. Jiang, M. J. Schultz, Q. Chen, J. S. Moore, and S. Granick, “Solvent-free syn-
thesis of Janus colloidal particles,” Langmuir 24, 10073–10077 (2008).

3P. Sundararajan, J. Wang, L. A. Rosen, A. Procopio, and K. Rosenberg,
“Engineering polymeric Janus particles for drug delivery using microfluidic sol-
vent dissolution approach,” Chem. Eng. Sci. 178, 199–210 (2018).

4T. J. Pedley, “Spherical squirmers: Models for swimming micro-organisms,”
IMA J. Appl. Math. 81, 488–521 (2016).

5S. Wang and A. M. Ardekani, “Unsteady swimming of small organisms,”
J. Fluid Mech. 702, 286–297 (2012).

6H. Nganguia, K. Zheng, Y. Chen, O. Pak, and L. Zhu, “A note on a swirling
squirmer in a shear-thinning fluid,” Phys. Fluids 32, 111906 (2020).

7S. Yazdi and A. Borhan, “Effect of a planar interface on time-averaged locomo-
tion of a spherical squirmer in a viscoelastic fluid,” Phys. Fluids 29, 093104
(2017).

8K. D. Housiadas, “An active body in a Phan-Thien and tanner fluid: The effect
of the third polar squirming mode,” Phys. Fluids 33, 043110 (2021).

9A. Ramachandran and A. S. Khair, “The dynamics and rheology of a dilute
suspension of hydrodynamically Janus spheres in a linear flow,” J. Fluid Mech.
633, 233 (2009).

10M. Trofa, G. D’Avino, and P. L. Maffettone, “Numerical simulations of a stick-
slip spherical particle in Poiseuille flow,” Phys. Fluids 31, 083603 (2019).

11Q. Sun, E. Klaseboer, B. C. Khoo, and D. Y. C. Chan, “Stokesian dynamics of
pill-shaped Janus particles with stick and slip boundary conditions,” Phys. Rev.
E 87, 043009 (2013).

12A. R. Premlata and H. H. Wei, “The Basset problem with dynamic slip: Slip-
induced memory effect and slip–stick transition,” J. Fluid Mech. 866, 431–449
(2019).

13A. R. Premlata and H.-H. Wei, “History hydrodynamic torque transitions
in oscillatory spinning of stick–slip Janus particles,” AIP Adv. 9, 125113
(2019).

14J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-
Hall, 2012), Vol. 1.

15H. J. Keh and S. H. Chen, “The motion of a slip spherical particle in an arbi-
trary Stokes flow,” Eur. J. Mech. B 15, 791–807 (1996).

16A. R. Premlata and H. H. Wei, “Atypical non-Basset particle dynamics due to
hydrodynamic slip,” Phys. Fluids 32, 097109 (2020).

17J. W. Swan and A. S. Khair, “On the hydrodynamics of ‘slip–stick’ spheres,”
J. Fluid Mech. 606, 115–132 (2008).

18J. L. Anderson, “Effect of nonuniform zeta potential on particle movement in
electric fields,” J. Colloid Interface Sci. 105, 45–54 (1985).

19J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (D. Reidel
Publishing Co., Hingham, MA, 1983).

20H. Brenner, “The Stokes resistance of a slightly deformed sphere,” Chem. Eng.
Sci. 19, 519–539 (1964).

21W. Zhang and H. A. Stone, “Oscillatory motions of circular disks and nearly
spherical particles in viscous flows,” J. Fluid Mech. 367, 329–358 (1998).

22N. Oppenheimer, S. Navardi, and H. A. Stone, “Motion of a hot particle in vis-
cous fluids,” Phys. Rev. Fluids 1, 014001 (2016).

23H. Masoud and H. A. Stone, “The reciprocal theorem in fluid dynamics and
transport phenomena,” J. Fluid Mech. 879, P1 (2019).

24H. Brenner, “The Stokes resistance of an arbitrary particle-II: An extension,”
Chem. Eng. Sci. 19, 599–629 (1964).

25K. Kamrin and H. A. Stone, “The symmetry of mobility laws for viscous flow
along arbitrarily patterned surfaces,” Phys. Fluids 23, 031701 (2011).

26C. P. Martin, S. Wang, and S. Kim, “Surface tractions on an ellipsoid in Stokes
flow: Quadratic ambient fields,” Phys. Fluids 31, 021209 (2019).

27G. Batchelor, “The stress system in a suspension of force-free particles,” J. Fluid
Mech. 41, 545–570 (1970).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 112003 (2021); doi: 10.1063/5.0067895 33, 112003-15

Published under an exclusive license by AIP Publishing

https://doi.org/10.1021/cr300089t
https://doi.org/10.1021/la800895g
https://doi.org/10.1016/j.ces.2017.12.013
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1017/jfm.2012.177
https://doi.org/10.1063/5.0029068
https://doi.org/10.1063/1.5002574
https://doi.org/10.1063/5.0048987
https://doi.org/10.1017/S0022112009007472
https://doi.org/10.1063/1.5109305
https://doi.org/10.1103/PhysRevE.87.043009
https://doi.org/10.1103/PhysRevE.87.043009
https://doi.org/10.1017/jfm.2019.57
https://doi.org/10.1063/1.5131678
https://doi.org/10.1063/5.0021986
https://doi.org/10.1017/S0022112008001614
https://doi.org/10.1016/0021-9797(85)90345-5
https://doi.org/10.1016/0009-2509(64)85045-4
https://doi.org/10.1016/0009-2509(64)85045-4
https://doi.org/10.1017/S0022112098001670
https://doi.org/10.1103/PhysRevFluids.1.014001
https://doi.org/10.1017/jfm.2019.553
https://doi.org/10.1016/0009-2509(64)85051-X
https://doi.org/10.1063/1.3560320
https://doi.org/10.1063/1.5054698
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1017/S0022112070000745
https://scitation.org/journal/phf

	s1
	s2
	d1a
	d1b
	d2
	f1
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15a
	d15b
	d16
	d17
	d18
	d19
	d19a
	d19b
	d19c
	d20
	d20a
	d20b
	d20c
	d21
	d22
	s3
	d23
	d24
	d25a
	d25b
	d26
	d27
	d28
	f2
	s4
	d29a
	d29b
	d30a
	d30b
	d30c
	d30d
	s4A
	d31
	d32
	d33
	d34
	d35
	d36
	s4B
	d37
	d38
	d39
	d40
	d41
	s5
	s5A
	d42
	f3
	f4
	d43
	s5B
	s6
	f5
	f6
	f7
	s7
	l
	app1
	dA1a
	dA1b
	dA1c
	dA1d
	dA2a
	dA2b
	dA2c
	s10A
	dA3
	dA4
	s10B
	s10B1
	dA5a
	dA5b
	dA5c
	dA6
	dA7
	dA8
	s10B2
	dA9a
	dA9b
	dA9c
	dA10
	dA11
	dA12
	dA13
	app2
	dB1a
	dB1b
	dB1c
	s11A
	dB2
	dB3
	s11B
	s11B1
	dB4a
	dB4b
	dB4c
	dB5
	dB6
	dB7a
	dB7b
	dB7c
	s11B2
	dB8
	dB9
	dB10
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27

