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ABSTRACT
Surface slip does not simply reduce drag but strongly influences the behavior of unsteady particle motion. In this work, we revise the Maxey–
Riley type equations in conjunction with the modified Faxen laws, showing that slip particles in unsteady motion, even if the amounts of slip
are minuscule, can behave markedly different than no-slip particles due to the non-Basset history force and torque. The non-Basset memory
kernels here are identified to be of Mittag–Leffler type but featured with the unique slip–stick transition that exists only for partial slip particles
but not for full slip bubbles. The impacts especially manifest in the short time regime, illustrated with transient sedimentation, translational
response to a suddenly applied stream, and angular response to a torque impulse. In these examples, the translational and angular velocities of
a slip sphere are found to vary with time in different powers compared to those of single no-slip spheres. Dynamic distinctions to a spherical
bubble can be best revealed by the asynchronous spinning of a slip sphere in an oscillatory vortical flow, showing that an additional inertia
torque can arise from slip to give rise to a non-monotonic spinning response when the sphere is lighter than the surrounding fluid. As these
non-Basset particle dynamics are rather atypically sensitive to the slip length, the impacts could be crucial to aerosol suspensions and inertial
swimming of active hydrophobic particles where slip effects can no longer be negligible. The features might also have potential uses for
achieving efficient hydrodynamic sorting of slip particles.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021986., s

I. INTRODUCTION
Unsteady hydrodynamics plays an important role in many par-

ticulate systems. The impacts can be seen in swimming of self-
propelled microorganisms,1,2 acoustically or magnetically driven
particle motion,3,4 aerosol transport,5 inertial particle trapping,6 and
particle clustering in turbulence.7 For a spherical particle (of radius
a) advected by an ambient flow field u∞ in a viscous fluid (of den-
sity ρ and viscosity μ), its motion when migrating at a velocity
U is commonly described by the following classical Maxey–Riley
equation:8–12
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Equation (1) is valid only when the particle Reynolds number is
small based on the particle’s velocity relative to that of the fluid. It
is essentially the Basset–Boussinesq–Oseen equation13–15 with the
inclusion of finite-size effects reflected by additional Faxen correc-
tions, a2

∇
2u∞. In (1a)–(1c), mp = (4π/3)ρpa3 is the mass of the

particle (of density ρp) positioned at X(t), mf = (ρ/ρp)mp is the fluid
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mass displaced by the particle, and D/Dt is the substantial deriva-
tive. As revealed by Eq. (1), aside from the instantaneous Stokes
drag FS, the particle will further undergo three additional hydrody-
namic forces to counteract the driving external force Fex, the fluid
inertial force FFI , the added mass FAM , and the history force FH .
Among these forces, the history force takes the form of a memory
integral with the Basset kernel GB to account for effects of vortic-
ity diffusion during viscous relaxation in the time scale a2/ν (with
ν = μ/ρ being the kinematic viscosity of the fluid). For this rea-
son, this force has been shown to play an important role in particle
dynamics.5,7,11,16–21

Notice that in the derivation of the Maxey–Riley equation (1),
the no-slip boundary condition is assumed on the surface of a par-
ticle. In the situations involving aerosols and hydrophobic particles,
however, a considerable amount of fluid slippage may exist on the
surfaces of these particles. In this case, one may think that slip does
nothing but drag reduction by merely modifying the coefficients
in Eq. (1) without causing any qualitative changes in the particle
motion. However, this is not true. The reason is that the memory
kernel with slip, no matter how small the slip length is, will no longer
take the no-slip Basset type-like Eq. (1g),22–24 which may, in turn,
change the features of unsteady particle motion qualitatively. Most
of the existing studies have been devoted to resistance problems by
looking at how the unsteady force and torque on a particle are mod-
ified by slip under prescribed particle motions.22–30 However, much
harder mobility problems, which aim to determine the non-Basset
motion behavior of a slip particle in response to such force and
torque, are still lacking, in noticeable contrast to extensive studies
on the Basset dynamics of single no-slip particles under the Basset–
Boussinesq–Oseen/Maxey–Riley paradigm. Given that a fraction of
slip can change the memory kernel from Basset type to non-Basset
type, how does a slip particle in unsteady motion behave compared
to a no-slip particle? This is the main question we want to answer in
this work.

We notice that non-Basset memory kernels can also happen to
fluid particles whose surfaces are generally slipping.31,32 There are a
few reports on the transient motion responses of bubbles/full slip-
ping particles and drops in the spherical shape.32–37 However, on
the non-Basset dynamics for slip particles, it is still waiting to be
explored. A natural question is as follows: Would a slip particle in
unsteady motion behave differently than a fluid particle?

Aside from the above issues that motivate this work, another
incentive to look at the non-Basset particle dynamics arising from
slip effects is the need of discriminating slip particles from no-slip
or fluid particles hydrodynamically. This is essentially pertaining to
how to sort slip particles experimentally. In practice, it is generally
difficult to perform hydrodynamic sorting for slip particles under
the steady Stokes flow condition. This is because the Stokes drag on a
slip particle merely deviates up to 2/3 value of that on a no-slip parti-
cle. Compared to the drag on a bubble or drop, it is even harder to tell
the difference because there is always slip on a fluid–fluid interface.
If a particle is partially slip, especially when its slip length is much
smaller than its size, it would be even unlikely to see any appar-
ent difference in its motion compared to those of no-slip and fluid
particles. Yet, in the unsteady situation, since these different types
of particles have their own memory kernels, it seems possible that
particle sorting can be made more effective in a dynamic manner,
especially by utilizing differences in their unsteady motion responses

resulting from distinct history force characters. Therefore, to realize
such dynamic particle sorting, it demands not only the knowledge
of how a slip particle behaves dynamically but also how its motion
differs compared to those of no-slip and fluid particles.

As non-Basset kernels are not limited to slip particles but also
can occur to fluid particles, why those for slip particles are so special?
To see this, it is, first of all, necessary to look at how a non-Basset ker-
nel differs from the Basset kernel (1g). A non-Basset memory kernel
typically involves a functional form,

exp(γt)erfc((γt)1/2
), (2)

where γ measures the rate of the temporal attenuation of the kernel.
Such a function is actually a special class of Mittag–Leffler func-
tions,38 and the memory kernels of this type frequently appear in the
fractional Langevin equation for modeling anomalous diffusion.39

Equation (2) reveals that it is finite as t → 0, in contrast to the
Basset kernel (1g) that diverges as t → 0. This is the main differ-
ence between non-Basset and Basset kernels. For a fluid drop, it
has been shown that its memory kernel constitutes an additional
non-Basset kernel like (2) on top of a Basset kernel.31,32 Hence,
the memory kernel in this case is of mixed type and is singular at
t = 0. It has to be the case since it guarantees that it reduces to
the singular Basset kernel (1g) when the drop’s viscosity is taken
to be infinite in the rigid-particle limit. The memory kernels of this
sort can also occur to nearly spherical rigid particles having small
asphericity in particle shape40,41 or to stick–slip Janus spheres.30

However, in the special case where a viscous drop becomes an invis-
cid bubble, the singular Basset kernel completely vanishes, making
the entire memory kernel governed solely by the regular non-Basset
kernel.31,32

Now, turn the attention to a partial slip particle. Its memory
force kernel takes the same functional form (2) as that for a full
slip bubble.22 Given that the difference between a partial slip particle
and a full slip bubble is merely the extent of slip and also that both
have the same Mittag–Leffler type of memory kernels, one might
think that not much difference in the physics exists between the two.
Actually, this is not true. The reason is that the values of γ in (2)
for these two cases, which control the respective temporal attenua-
tion rates of their memory kernels, turn out to be rather different in
terms of the associated time and length scales. In the bubble case,
γbubble ∼ ν/a2, corresponding to the typical viscous relaxation time
across the particle size a. For the slip case, on the contrary, espe-
cially when the slip length λ is much smaller than a, γslip ∼ ν/λ2 is not
characterized by a but by λ,22,29 corresponding to the slip–stick tran-
sition time. This disparity in the time scales implies that the detailed
particle dynamics of these two cases likely differ qualitatively. This
observation also implies that even though memory kernels take
the same functional form, they do not necessarily imply the same
physics.

It actually turns out in the study by Premlata and Wei22 that the
non-Basset force kernel due to slip involves two distinct time scales:
the slip–stick transition time tλ = λ2/ν and the viscous relaxation
time tν = a2/ν, controlling short-time and long-time force behav-
iors for a slip particle, respectively. In fact, tλ marks the moment
when the boundary layer changes from being thin to being thick with
respect to the slip length λ. Its impacts on the history force have been
illustrated with a slip sphere moving suddenly from rest to a constant
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velocity, showing that the force on the sphere can exhibit a constant
plateau for time t shorter than tλ followed by a t1/2 decay prior to the
Basset t−1/2 attenuation during a much longer relaxation period of
tν. This is very different from the Basset force that always decays as
t−1/2 for a no-slip sphere.

As such, if a slip particle does not undergo an impulsive motion
but is propelled by an external force or advected by a time-dependent
imposed flow, we anticipate that its unsteady motion will behave
rather differently than that of a no-slip particle or fluid particle.
In this work, we thus look at possible characteristic changes in
unsteady particle motion in terms of changes in history force/torque
from the Basset type to non-Basset type due to slip effects. To this
end, we notice that the unsteady Faxen formulas with slip have
been reported previously for the force and torque on a slip parti-
cle.23–26 However, these formulas are somewhat incomplete since
they involve the unresolved surface and volume integrals of the
background flow velocity and moment over a particle without mak-
ing finite-size effects explicit in the standard Faxen form. Hence, it
is less convenient to apply them directly to demonstrate the non-
Basset particle dynamics by solving the Maxey–Riley-type equations
of motion in the presence of background flows. In order to provide
a more systematic account for how a slip particle responds to an
external forcing or to an imposed flow, instead of using these pre-
viously established Faxen formulas directly, we will rederive them
not only to obtain the non-Basset kernels needed for determin-
ing the particle motion but also to capture finite-size effects that
resulted from an imposed flow. The equations of the particle motion
will also be derived in line by modifying the classical Maxey–Riley
equation.

Along the lines above, the paper is organized as follows: In
Secs. II–IV, we first establish Faxen’s formulas and the modified
Maxey–Riley type equations, providing the framework needed for
determining the motion of a slip particle in an arbitrary time-
dependent Stokes flow. In Sec. V, we find that while the changes
in these formulas and equations may appear in mathematical for-
mality, the impacts are actually substantial in physics. We inspect
unsteady motion responses of a slip particle for a number of situa-
tions, showing that a fraction of slip can make the particle motion
responses qualitatively different from those of a no-slip particle and
to a full slip bubble. For transient motion, the differences are found
to mainly manifest in the short time regime due to the atypical non-
Basset kernels brought by slip, showing that the translational and
angular velocities of a slip particle can vary with time in different
powers compared to those of single no-slip particles. Dynamic dis-
tinctions of a slip particle to a full slip bubble become even more
evident in an oscillatory vortical flow, showing that an additional
inertial torque can be introduced by slip effects through the new
Faxen term. In Sec. VI, we conclude this work and discuss potential
impacts of our findings in broader perspectives.

II. HYDRODYNAMIC FORCE AND TORQUE ON A SLIP
SPHERE IN AN UNSTEADY STOKES FLOW

Although the unsteady Faxen formulas for a slip sphere
have been reported previously by several authors, we still feel
the need to rederive them after reviewing these early develop-
ments below. Albano et al.25 and Felderhof26 derived their results

in terms of Fourier frequency using the induced force density
approach by redistributing a point force over the surface of a sphere.
Pienkowska24 used the same approach to rederive the formulas in
terms of time, showing non-Basset history terms due to slip effects.
Gatignol23 used the reciprocal theorem to arrive at essentially the
same results as those mentioned above. However, in all these early
developments, the results were expressed in terms of surface and vol-
ume average quantities over a sphere. In other words, their results
did not make finite-size effects explicit in terms of additional Faxen
terms by expanding the quantities at the sphere’s center. This makes
their formulas less convenient to evaluate the force and torque on a
sphere in the presence of background flows. In this work, we rem-
edy this issue by re-formulating the derivations. In the first step, we
apply the reciprocal theorem42 to develop general formulas below
for the force and torque exerted on a slip sphere.

Consider the unsteady fluid motion around a slip spherical par-
ticle of radius a in an incompressible Newtonian fluid of density ρ
and viscosity μ. Let (û, σ̂)e−iωt be the fluid velocity and stress fields,
where ω is the oscillation frequency and t is the time. At a small
particle Reynolds number, the equations of motion in Fourier space
are

∇ ⋅ û = 0, (3)

∇ ⋅ σ̂ = −iωρû, (4)

where the stress is σ̂ = −Ip̂ +μ(∇û+∇ûT
), with p̂ being the dynamic

pressure. Let (û1, σ̂1) and (û2, σ̂2) be two flow solutions satisfying
(3) and (4) subject to the same type of boundary conditions. Work-
ing with reciprocal operations û1 ⋅ (∇ ⋅ σ̂2) = ∇ ⋅ (û1 ⋅ σ̂2)−∇û1 : σ̂2
and û2 ⋅ (∇ ⋅ σ̂1) = ∇ ⋅ (û2 ⋅ σ̂1) − ∇û2 : σ̂1, the subtraction between
them yields

∇ ⋅ (û1 ⋅ σ̂2) − û1 ⋅ (∇ ⋅ σ̂2) = ∇ ⋅ (û2 ⋅ σ̂1) − û2 ⋅ (∇ ⋅ σ̂1). (5)

Integrating (5) over the volume enclosing the particle and applying
the divergence theorem with the assumption that the velocity and
stress vanish at infinity, (5) becomes

∫
Sp

û1 ⋅ (σ̂2 ⋅ n)dS + ∫
V
û1 ⋅ (∇ ⋅ σ̂2)dV

= ∫
Sp

û2 ⋅ (σ̂1 ⋅ n)dS + ∫
V
û2 ⋅ (∇ ⋅ σ̂1)dV, (6)

where Sp is the particle surface with n being the unit normal vec-
tor pointing outward and V is the volume outside the particle. For
the volume integral terms in (6), replacing ∇ ⋅ σ̂ by −iωρû using
(4), we find that they are identical and thus canceled out. For arbi-
trary time-dependent flows, the problems can be formulated using
Laplace transform in terms of the Laplace variable s = −iω. In this
case, these two volume integrals can only be eliminated under the
condition that the flows start from rest with u1(t = 0−) = 0 and
u2(t = 0−) = 0.8 In other words, the two volume integrals can be elim-
inated in either steady oscillatory flows or flows starting from rest. In
any case, (6) is reduced to the well-known reciprocal relationship,

∫
Sp

û1 ⋅ (σ̂2 ⋅ n)dS = ∫
Sp

û2 ⋅ (σ̂1 ⋅ n)dS. (7)
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Equation (7) allows us to determine the force and the torque for the
desired problem (denoted as Problem 2) using the solution to the
auxiliary problem (denoted as Problem 1). For the latter, we choose
the particle undergoing translation with velocity Ue−iωt or/and rota-
tion with angular velocity Ωe−iωt in a quiescent fluid [see Fig. 1(a)].
In the former, we seek the force/torque on the particle that trans-
lates/rotates at the same velocity/angular velocity in a non-uniform
imposed flow u∞e−iωt with the corresponding stress field σ∞e−iωt

[see Fig. 1(b)]. For this problem, the disturbed flow field can be writ-
ten as (û2, σ̂2) = (u2, σ2) − (u∞, σ∞) with respect to the imposed
flow. For either problem, aside from the vanishing fluid velocity
at infinity, each is subject to the impenetration and the Navier-slip
(with the slip length λ) boundary conditions on the particle surface
|x| = a as follows:22,43

For Problem 1,

(û1 −U −Ω × x) ⋅ (I − nn) =
λ
μ
(σ̂1 ⋅ n) ⋅ (I − nn), (8)

(û1 −U −Ω × x) ⋅ n = 0. (9)

For Problem 2,

(û2 −U −Ω × x + u∞) ⋅ (I − nn)

=
λ
μ
[(σ̂2 ⋅ n) + (σ∞ ⋅ n)] ⋅ (I − nn), (10)

(û2 −U −Ω × x + u∞) ⋅ n = 0. (11)

To provide the formulas for evaluating the force and the torque
on the particle, we first rewrite the left-hand side of (7) as

∫
Sp

(U + Ω × x) ⋅ (σ̂2 ⋅ n)dS

+ ∫
Sp

(û1 −U −Ω × x) ⋅ (σ̂2 ⋅ n)dS. (12)

In the second integral of the above, because of (8) and (9),
(û1 −U −Ω × x) ⋅ (I − nn) can be replaced by (λ/μ)(σ̂1 ⋅n) ⋅(I−nn).
Hence, (12) can be re-expressed as

FIG. 1. The selected problems for applying the reciprocal theorem. (a) The auxil-
iary problem: a slip particle translating/rotating unsteadily in a quiescent fluid. (b)
The problem of interest: a slip particle moving unsteadily at the same translational
velocity/angular velocity in a time-dependent non-uniform imposed flow.

U ⋅ ∫
Sp

(σ̂2 ⋅ n)dS + Ω ⋅ ∫
Sp

(x × (σ̂2 ⋅ n))dS

+
λ
μ ∫Sp

(σ̂1 ⋅ n) ⋅ (I-nn) ⋅ (σ2 ⋅ n)dS. (13)

Next, we consider the right-hand side of (7). It can be recasted
as

∫
Sp

(û2 −U −Ω × x + u∞) ⋅ (σ̂1 ⋅ n)dS

+ ∫
Sp

(U + Ω × x − u∞) ⋅ (σ̂1 ⋅ n)dS. (14)

In the first integral of the above, we make use of (10) and (11) to
rewrite (û2 − U − Ω × x + u∞) ⋅ (I − nn) as (λ/μ)((σ̂2 ⋅ n) + (σ∞
⋅ n)) ⋅ (I − nn), turning (14) into

λ
μ ∫Sp

(σ̂1 ⋅ n) ⋅ (I-nn) ⋅ (σ̂2 ⋅ n)dS

+
λ
μ ∫Sp

(σ∞ ⋅ n) ⋅ (I-nn) ⋅ (σ̂1 ⋅ n)dS

+ ∫
Sp

(U + Ω × x − u∞) ⋅ (σ̂1 ⋅ n)dS. (15)

Combining (13) and (15), the two identical integrals (λ/μ)(σ̂1 ⋅ n) ⋅
(I-nn) ⋅ (σ̂2 ⋅ n) are canceled out. This allows us to write the force
F = ∫Sp(σ̂2 ⋅ n)dS and the torque T = ∫Sp x × (σ̂2 ⋅ n)dS in terms of
the surface traction (σ̂1 ⋅ n) and the ambient flow quantities,

U ⋅F + Ω ⋅T = ∫
Sp

(U + Ω × x − u∞) ⋅ (σ̂1 ⋅ n)dS

+
λ
μ ∫Sp

(σ̂1 ⋅ n) ⋅ (I-nn) ⋅ (σ∞ ⋅ n)dS. (16)

We notice that Eq. (16) derived by far is not limited to a sphere but
applicable to a particle of an arbitrary shape. Let (U + Ω × x − u∞)
≡ ũ∞ and further write (σ̂1 ⋅n) in terms of the translation resistance
density matrix RT and the rotation resistance density matrix RR,

(σ̂1 ⋅ n) = (σ̂T
⋅ n) + (σ̂R

⋅ n) =RT
⋅U + RR

⋅ (Ω × x). (17)

For an isotropic sphere in an unbounded flow, there will be no
translation–rotation coupling, allowing us to determine F and T as

F = ∫
Sp

RT
⋅ [ũ∞ +

λ
μ
(I-nn) ⋅ (σ∞ ⋅ n)]dS, (18)

T = ∫
Sp

x × [RR
⋅ (ũ∞ +

λ
μ
(I-nn) ⋅ (σ∞ ⋅ n))]dS. (19)

Equations (18) and (19) are essentially the starting formulas derived
by Gatignol23 [see his Eq. (22)], consisting of two contributions: the
slip velocity ũ∞ and the slip stress (I − nn) ⋅ (σ∞ ⋅n) exerted by
the background flow. It is clear that for λ = 0, the slip stress part
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vanishes, making (18) and (19) reduced to the usual formulas for
no-slip sphere. Recall that the previous Faxen formulas are written
in terms of the surface integrals of the background flow velocity and
moment over a sphere.23,24 These integrals come from ũ∞ and σ∞,
as clearly seen in (18) and (19). In Secs. III and IV, we will re-express
these integrals in the Faxen form by expanding ũ∞ and σ∞ at the
sphere’s center. It actually turns out that such calculations are highly
non-trivial, as they can involve even moment surface integrals up to
nnnnnn, especially in the derivation of the Faxen second law for the
torque (see Sec. IV).

We remark that the steady force and torque formulas obtained
by Keh and Chen43 are also identical to (18) and (19). In their for-
mulas, the slip stress part (λ/μ)(σ̂1 ⋅ n) ⋅ (I-nn) ⋅ (σ∞ ⋅ n) in (16) is
replaced by (û1 − U − Ω × x) ⋅ (σ∞ ⋅n), since the traction (σ̂1 ⋅ n)
in the unsteady case, because of −iωρû in (4), takes a very different
form than that in the steady case. This is why additional history and
added mass terms will arise in the unsteady force and torque.

Aside from Faxen’s first and second laws for particle force and
torque, there is also Faxen’s third law for the particle stresslet. Such
a law can be used to calculate the effective viscosity of a parti-
cle suspension since it was first derived by Batchelor and Green.44

Extensions have been made for slip spheres,43 composite spheres,45

and stick–slip Janus spheres46,47 under the steady situation. For the
unsteady situation, a modified Faxen third law for slip spheres can,
in principle, be derived using a formula similar to that of Keh
and Chen43 but with (û1, σ̂1) in a linear flow field in terms of
the unsteady stresslet.48 This law can be used to study the rheol-
ogy of a suspension of inertial self-propelled sphere swimmers on
which the hydrodynamic force and torque do not vanish because
of unsteadiness.2 This is a topic worth investigating but beyond
the scope of the present work, which will be pursued in our future
study.

III. MODIFIED FAXEN FORCE LAW AND MAXEY–RILEY
EQUATION FOR A SLIP SPHERE

To evaluate the force from (18), it first requires the translation
resistance density matrix by solving Problem 1 (see Appendix A for
detailed derivation),

RT
= −

3μ
2a
[

α + 1
λ̂(α + 3) + 1

]I −
μ

2a
[

18(α + 1)λ̂
λ̂(α + 3) + 1

+ α2
]nn, (20)

where α2 = − iωa2/ν is the dimensionless complex frequency, with
ν = μ/ρ being the kinematic viscosity, and λ̂ = λ/a is the dimen-
sionless slip length. Next, we expand ũ∞ and σ∞ at the sphere’s
center,

ũ∞ = ũ∞(0) + x ⋅ ∇ũ∞∣
0

+
x x

2
: ∇∇ũ∞∣

0
+⋯, (21)

σ∞ = σ∞(0) + x ⋅ ∇σ∞∣
0

+
x x

2
: ∇∇σ∞∣

0
+⋯. (22)

Because Ω × x makes no contribution to the force, we can substitute
(20)–(22) with ũ∞ = U − u∞ into (18). The ũ∞ term in (18) gives

4πa2
(
−3μ
2a
)[

α + 1
λ̂(α + 3) + 1

]ũ∞(0)

+
4
3
πa2
(
−μ
2a
)[

18(α + 1)λ̂
λ̂(α + 3) + 1

+ α2
]ũ∞(0)

+
4
3
πa4
(
−3μ
4a
)[

α + 1
λ̂(α + 3) + 1

]∇
2ũ∞∣

0

+
4

15
πa4
(
−μ
4a
)[

18(α + 1)λ̂
λ̂(α + 3) + 1

+ α2
]∇

2ũ∞∣
0
. (23)

The slip term in (18) contributes to a force of

(
−3μ
2a
)[

α + 1
λ̂(α + 1) + 1

](
λ
μ
)[

4
3
πa3
∇ ⋅ σ∞∣

0

−
4

15
πa3
(2∇ ⋅ σ∞∣

0
+∇σ∞ii ∣0)]. (24)

In deriving (23) and (24), we have used the identities ∫Sp ninjdS
= (4πa2

/3)δij and ∫Sp ninjnknmdS= (4πa2
/15)[δijδkm + δikδjm

+ δimδjk]. Combining (23) and (24) together with ∇σ∞ii = −3∇p∞,
∇ ⋅ σ∞ +∇p∞ = μ∇2u∞, and∇2u∞ = −∇2ũ∞, we obtain the Faxen
first law for the force,

F

−6πμa
= (Λ +

Λ2α
1 + βα

)[1 +
a2

6(1 + 2λ̂)
∇

2
]ũ∞∣

0

+
α2

9
[1 +

a2

10
∇

2
]ũ∞∣

0
, (25)

where Λ = (1+2λ̂)/(1+3λ̂) is the analogous Hadamard–Rybczynski
factor for the Stokes drag and β = λ̂/(1 + 3λ̂), as will become clear
later, can be thought of as the slip coefficient for the history force.
Equation (25) agrees with the previous force formula that involves
the surface and volume averages of the fluid velocity within the
sphere.25,26 Here, we turn these averages explicitly into the Faxen
form.

To convert (25) in terms of time t/tν with respect to the viscous
relaxation time tν = a2/ν, we let α2 = −iωtν = s to rewrite (25) in terms
of the Laplace variable s,

F(s)
−6πμa

= [
Λ
s

+ Λ2G(s)]s[1 +
a2

6(1 + 2λ̂)
∇

2
]ũ∞∣

0

+
s
9
[1 +

a2

10
∇

2
]ũ∞∣

0
, (26)

where G(s) = 1/(s1/2 + βs). Performing an inverse Laplace trans-
form and making use of the convolution theorem L−1

{G(s)sf (s)}
= ∫

t
0 G(t − t′) df (t′)/dt′ dt′ + G(t)f (t = 0) with the memory kernel

G(t) =L−1
[

1
s1/2(1 + βs1/2)

]

= β−1 exp(β−2t/tν)erfc(β−1√t/tν), (27)
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we convert (26) into

F(t)
−6πμa

= Λ[1 +
a2

6(1 + 2λ̂)
∇

2
]ũ∞(t)∣

0
+

1
9

d
dt
[1 +

a2

10
∇

2
]ũ∞(t)∣

0

+Λ2
{∫

t

0
G(t − t′)

d
dt′
[1 +

a2

6(1 + 2λ̂)
∇

2
]ũ∞(t′)∣

0
dt′

+ G(t)[1 +
a2

6(1 + 2λ̂)
∇

2
]ũ∞(t = 0−)∣

0
}. (28)

Equation (28) essentially recovers the previous force formula23,24

with the surface and volume averages of the fluid velocity now being
expanded into the Faxen terms. In (28), the first term is the instan-
taneous Stokes drag, in agreement with that obtained by Ref. 43.
The second term recovers the added mass in the equation derived
by Ref. 8. This term is purely of the potential-flow origin regard-
less of whether a particle is slip or not. The third term represents
the non-Basset history force. It consists of two parts. The first part
is the memory integral involving the kernel (27) with the addi-
tional Faxen correction when slip is present. This part without the
Faxen correction also recovers the memory integral obtained pre-
viously.22–24 The second part accounts for the mismatch between
the initial particle velocity and the initial flow velocity, U(t = 0−)
− (1 + [6(1 + 2λ̂)]−1a2

∇
2
)u∞(t = 0−)∣

0
. In the no-slip limit in

which λ̂ = 0 and G becomes the Basset kernel (1/
√
π)(tν/t)1/2, (28)

is reduced to the result obtained previously.8,9

Figure 2 plots how the slip-induced non-Basset kernel G varies
with time t. This is equivalent to looking at the temporal response
of the history force on a slip sphere when it moves suddenly from
rest to a constant velocity.22 As shown in Fig. 2, G can display a
number of different features compared to the no-slip Basset kernel
GB = (1/

√
π)(tν/t)1/2. First of all, G is finite at t = 0 as opposed

to GB. This makes the former decay with time less rapidly than the

latter, as shown in Fig. 2(a). Looking into its short-time asymptotic
behavior,

G(t) = β−1
⎡
⎢
⎢
⎢
⎢
⎣

1 −
2
√
π
(

t
β2tν
)

1/2⎤
⎥
⎥
⎥
⎥
⎦

+ O(t/tν), (29)

such a non-singular characteristic of G actually comes from the con-
stant β−1

= λ̂−1 +3 as t→ 0. The constant is attributed to the constant
shear stress that resulted from strong slip effects when the viscous
boundary layer δ ∼ (νt)1/2 is much thinner than the slip length λ.22,49

When λ̂ is small, in particular, (29) reduces to

G(t) ≈ λ̂−1
[1 −

2
√
π
(

t
tλ
)

1/2
] + O(t/tλ). (30)

Rather than by the viscous relaxation time tν = a2/ν, G is now charac-
terized by the slip–stick transition time tλ = λ̂2tν = λ2

/ν correspond-
ing to the time scale when δ ∼ (νt)1/2 grows to the size of λ. Compared
to the no-slip Basset kernel GB that is singular at t = 0, (30) reveals
that even if the amount of slip is small, the memory kernel is regular
at t = 0. This means that adding slip changes the memory kernel from
singular type to regular type. As also indicated by (30) and shown in
Fig. 2(b), G will start with a constant value. The constant continues
until tλ after which G declines with time. At times longer than tν,
G = (1/

√
π)(tν/t)1/2 + O((tν/t)3/2

) and recovers GB as t →∞. In
other words, G involves two time scales: tλ = λ2/ν and tν = a2/ν, con-
trolling the short-term and the long-term responses of a slip particle,
respectively. These features of G are very distinct from GB, which
is characterized solely by tν and always falls off as (tν/t)1/2. It is
worth mentioning that an additional non-Basset memory kernel like
(27) can also be introduced by either asphericity40,41 or fluidity.31,32

However, unlike the single memory kernel (27) brought by slip, the
total memory kernel in either situation still includes singular GB and
hence becomes diverging as t → 0. An exception is the bubble case

FIG. 2. Temporal response of the non-Basset memory kernel G given by (27) for the unsteady translation of a single slip sphere. (a) Plot of G against time τ = t/tν normalized
by the viscous time tν for different values of the slip length λ̂. At λ̂ = 0, G is reduced to the Basset kernel GB = 1/(πτ)1/2 (dashed-dotted line). Increasing λ̂ lowers G. However,
at sufficiently long times, G recovers GB regardless of λ̂, as shown in the inset. (b) Log–log plot of G vs τ. At a sufficiently short time, G at a given λ̂ keeps a constant level,
in contrast to GB that diverges as τ→ 0. When τ is increased to a certain point, G will start to turn toward GB, signifying a slip–stick transition (SST) at around the crossover
time τ ∼ λ̂2 between the short-time plateau and the τ−1/2 Basset decay. Increasing λ̂ not only lowers the level of G in the short-time regime but also delays the SST time.
Although G for a full slip bubble with λ̂→∞ also takes the same functional form like (27), it does not have SST like that for a partial slip particle.
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whose memory kernel is Gbubble = 3 exp(9(t/tν))erfc(3(t/tν)1/2
),31

as can also be obtained from (27) by taking the λ̂ →∞ limit. In this
case, Gbubble remains finite at t = 0. However, for t > 0, Gbubble will
decrease monotonically with time in the usual time scale tν. Hence,
it will not display any slip–stick transition like the slip case described
by (27). This is the main difference between a partial slip particle and
a full slip bubble.

Another remark worth making is that while there is a hydro-
dynamic analogy in the Stokes drag between a slip particle and a
viscous drop,22,50 there is no such analogy for the history force. The
reason is that the memory kernel for the drop case generally does
not reduce to that for the slip case. Specifically, because of fluid slip-
page on the surface of a slip particle, the particle’s momentum can be
dissipated by the finite viscous stress brought by slip upon the start
of the particle’s motion.49 For a viscous drop, however, its momen-
tum can only be dissipated within the thin viscous boundary layers
developing inside and outside the drop in the vicinity of the drop
surface, and the stresses associated with these layers are enormous
in the beginning of the drop’s motion. It is also this reason why the
memory kernel for the slip case is purely of the non-Basset type and
remains finite at t = 0, whereas that for the drop case further includes
a Basset kernel and is thus singular at t = 0.32

In view of the above, such a non-Basset G brought by slip is dis-
tinct from those by asphericity and fluidity. As will be demonstrated
in Sec. V, this new memory kernel will result in completely differ-
ent motion responses for a slip particle, especially in the short-time
regime in which the resultant history force often dominates when
the slip length λ is small.

Following Ref. 8, we can add the hydrodynamic force (28) to
the force balance over a slip sphere, modifying the Maxey–Riley
equation of motion (1) to

mp
dU
dt
= Fex + mf

Du∞

Dt
∣
X(t)

−
mf

2
d
dt

⎡
⎢
⎢
⎢
⎢
⎣

U − u∞(X(t), t) −
a2

10
∇

2u∞∣
X(t)

⎤
⎥
⎥
⎥
⎥
⎦

− 6πμaΛW

− 6πμaΛ2
[∫

t

0
G(t − t′)

dW
dt′

dt′ + G(t)W(0−)], (31)

W(t) = U(t) − u∞(X, t) −
a2

6(1 + 2λ̂)
∇

2u∞∣
X(t)

. (32)

As in Ref. 8, (31) is valid when the particle Reynolds number Rep
= ρ|U − u0|a/μ is small, where u0 and |U − u0| represent the velocity
scales for the imposed flow u∞ and the perturbed flow u′, respec-
tively. In addition, the inertial terms ρ[u′ ⋅ ∇u∞ + u∞ ⋅ ∇u′] are
negligible compared to the viscous term μ∇2u′ in the fluid momen-
tum equation provided that the shear Reynolds number Reshear
= (a2/ν)(u0/L) is small in the length scale L over which ∇u∞ varies.
Also given that mf Du∞/Dt differs than mf ∂u∞/∂t by mf u∞ ⋅ ∇u∞,
this difference, because of Reshear≪ 1, is O(a2u0/νL) compared to the
Stokes drag term of O(μu0a) and is hence small. Therefore, Du∞/Dt
under this condition can be approximated as ∂u∞/∂t. In Sec. V, we
will illustrate particle dynamics by solving (31) under Rep ≪ 1 and
Reshear ≪ 1.

IV. MODIFIED FAXEN TORQUE LAW AND EQUATION
OF ANGULAR DYNAMICS FOR A SLIP SPHERE

Similar to Sec. III, we evaluate the torque using (19) with the
following rotation resistance density matrix (which is derived in
Appendix B):

R R
=
−3μ

a
[

1 + α + α2
/3

(1 + α)(1 + 3λ̂) + λ̂α2
]I. (33)

Using (21) with ũ∞ = Ω × x − u∞ because of no contributions from
U , the ũ∞ term in (19) contributes to a torque of

− 8πa3μ[
1 + α + α2

/3
(1 + α)(1 + 3λ̂) + λ̂α2

](Ω −
1
2
(∇× u∞)0). (34)

Using (22) to evaluate the slip term in (19), we find that the only
contribution comes from (1/2)xx: ∇∇σ∞(0) in (22). It can also be
shown that the integral ∫Sp x × n n ⋅ (1/2)xx : ∇∇σ∞(0) ⋅ ndS is
identically zero (see Appendix C for the detailed derivation). The
result will end up with a form like∇× (∇ ⋅ σ∞)0 = ∇× (−iωρu∞)0,
giving

−
4
5
λπa5
[

1 + α + α2
/3

(1 + α)(1 + 3λ̂) + λ̂α2
](∇× (−iωρu∞))0. (35)

Combining (34) and (35) yields the Faxen second law for the torque,

T

−8πμa3 = [
1 + α + α2

/3
(1 + α)(1 + 3λ̂) + λ̂α2

]{(Ω −
1
2
(∇× u∞)0)

+
λ̂

10
α2
(∇× u∞)0}. (36)

Equation (36) basically agrees with the torque expression obtained
previously by Felderhof.26 However, here, the surface integral of
the background flow velocity in his expression is now made more
explicit in terms of the local vorticity of the imposed flow, (∇×u∞)0.
In steady motion with α = 0, it recovers the result obtained by Ref. 43.
Equation (36) without imposed flows (i.e., u∞ = 0) also reduces to
the torque on a slip sphere undergoing rotary oscillations.22 When
there is an unsteady imposed flow, however, an additional inertia
torque—the last term in (36)—will arise from slip through the local
flow vorticity. This contribution is new because it is absent in the
no-slip situation.

To derive the corresponding time-dependent form of (36), we
let α2 = s to rewrite (36) as

T(s)
−8πa3μ

=
1

1 + 3λ̂
[

1
s

+ Q(s)]{sΩ̃(s) +
λ̂

10
s2
(∇× u∞(s))0}. (37)

In the above, Ω̃(s) = Ω(s) − (1/2)(∇ × u∞(s))0, and Q(s), the
Laplace transform of the yet-determined memory kernel, is given by
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Q(s) =
1

3λ̂(s + β−1s1/2 + β−1)

=
1

3λ̂(b2 − b1)
[

1
(s1/2 + b1)

−
1

(s1/2 + b2)
], (38)

with

b1 =
1 −
√

1 − 4β
2β

, b2 =
1 +
√

1 − 4β
2β

.

Using the following inverse Laplace transform in terms of the
dimensionless time τ = t/tν:

L−1
{

1
s1/2 + b

} =
1
√
πτ
− b exp(b2τ)erfc(b

√
τ), (39)

we can determine the memory kernel for λ̂ ≠ 1 as

Q(τ) =
1

3λ̂(b2 − b1)
[−b1 exp(b2

1τ)erfc(b1
√
τ)

+ b2 exp(b2
2τ)erfc(b2

√
τ)], (40)

in accordance with the memory integral reported previously.22–24

Next, we take an inverse Laplace transform for (37) with

L −1
{Q(s)sΩ̃(s)} = ∫

t

0
Q(t − t′)

dΩ̃(t′)
dt′

dt

+ Q(t)Ω̃(t = 0), (41)

L −1
{sQ(s)s(∇× u∞(s))0}

=
d
dt ∫

t

0
Q(t − t′)

d
dt′
(∇× u∞(t′))0dt′. (42)

We can then convert (37) into the following form:

T(t)
−8πa3μ
1 + 3λ̂

= [Ω(t) −
1
2
(∇× u∞(t))0]

+ ∫
t

0
Q(t − t′)

d
dt′
[Ω(t′) −

1
2
(∇× u∞(t′))

0
]dt′

+ Q(t)[Ω(t = 0−) −
1
2
(∇× u∞(t = 0−))0]

+
λ̂

10
d
dt ∫

t

0
Q(t − t′)

d
dt′
(∇× u∞(t′))0dt′. (43)

Equation (43) agrees with the time-dependent torque reported pre-
viously,23,24 except that the surface integral of the fluid angular
momentum within the sphere in the latter is now expanded as the
Faxen terms. In the absence of slip, (43) reduces to the Basset torque
found previously48,51–53 with the memory kernel

QB(t) =
1
3
{

1
√
π
(

tν
t
)

1/2
− exp(

t
tν
)erfc[(

t
tν
)

1/2
]}. (44)

Much like the situation occurring to a nearly spherical no-slip par-
ticle40,41 or to a spherical drop,31,32 (44) is made of a singular Basset
part and a regular non-Basset part. Because of the Basset part, QB
will diverge as t−1/2 as t→ 0. However, for long times, the Basset part
will be killed by the non-Basset part, making QB = (1/6

√
π)(tν/t)3/2

+ O((tν/t)5/2
) to decay as t−3/2.

For the slip case, on the contrary, Q given by (40) behaves rather
differently, as can be seen in Fig. 3 that plots Q against t. Figure 3
is essentially equivalent to looking at the torque response when a
slip sphere rotates suddenly from rest to a constant angular velocity.
Compared to the no-slip kernel QB given by (44), the first differ-
ence is that Q is finite at t = 0, as can be revealed from its short-time
behavior,

Q(t) =
1

3λ̂

⎡
⎢
⎢
⎢
⎢
⎣

1 −
2
√
π
(

t
β2tν
)

1/2⎤
⎥
⎥
⎥
⎥
⎦

+ O(t/tν). (45)

FIG. 3. (a) Temporal evolution of the non-Basset memory kernel Q given by (40) for the unsteady rotation of weak slip spheres with λ̂≪ 1, displaying a behavior similar to G
for unsteady translation shown in Fig. 2(a). (b) is the corresponding log–log plot. These results are plotted against time τ = t/tν scaled by the viscous time tν. At short times,
Q approaches a constant plateau as time τ → 0, in contrast to the τ−1/2 Basset decay for the no-slip case. A transition from the former to the latter takes places at around
their crossover time τ ∼ λ̂2 due to the slip–stick transition. At sufficiently long times, Q decays as τ−3/2, regardless of the amount of slip.
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Similar to G given by (27), Q displays a constant plateau 1/3λ̂ as
t → 0, which is again attributed to the constant shear stress that
resulted from strong slip effects.22 Because of (45), Q will decay with
time less rapidly compared to QB, as shown in Fig. 3(a). However,
unlike G for the translational problem, Q will vanish in the bubble
λ̂ → ∞ limit because a full slip particle will not rotate at all due to
zero shear stress on the particle. For λ̂≪ 1, (45) behaves as

Q(t) ≈
1

3λ̂

⎡
⎢
⎢
⎢
⎢
⎣

1 −
2
√
π
(

t
λ̂2tν
)

1/2⎤
⎥
⎥
⎥
⎥
⎦

+ O(t/λ̂2tν). (46)

Hence, Q in this case will start to decrease with time at around the
slip–stick transition time tλ = λ̂2tν = λ2

/ν, similar to G given by (30)
for the translational problem. However, for long times where vor-
ticity has already been diffused to a distance δ ∼ (νt)1/2 much larger
than the slip length λ̂, Q = (1/6

√
π)(tν/t)3/2 + O((tν/t)5/2

) from
(40) becomes irrelevant of λ̂ to decay with time as t−3/2, recover-
ing the long-time behavior of QB, as shown in Fig. 3(b). As will be
demonstrated in Sec. V C, the differences between Q and QB men-
tioned above can be best revealed from the angular response of a slip
particle when it is subjected to a torque impulse.

To determine the angular dynamics of a slip sphere, we need
to solve the following equation of motion by including the hydrody-
namic torque (43):

Ip
dΩ
dt
= Tex + (1/2)If ∇×

Du∞

Dt
∣
0

+ T(t), (47)

where Ip = (2/5)mpa2 and If = (ρ/ρp)Ip represent the rotational iner-
tias for the particle and the surrounding fluid, respectively, and Tex
is the applied torque. Similar to (31), (36) holds when the particle
Reynolds number Rep = a|aΩ − u0|/ν is small. The second term on
the right-hand side of (36) accounts for the fluid angular accelera-
tion around the sphere ρ ∫Vp x × Du∞/DtdV with an expansion of
Du∞/Dt at the particle’s center.54 This term can be approximated as
(1/2)If ∂(∇× u∞)0/∂t by further assuming that the shear Reynolds
number Reshear = (a2/ν)(u0/L) is small.

V. IMPACTS OF SLIP ON UNSTEADY PARTICLE
MOTIONS: ATYPICAL NON-BASSET DYNAMICS

Given the non-Basset memory kernels (27) and (40), in this sec-
tion, we will solve the modified equations of motion (31) and (47)
with specific examples to illustrate dynamic distinctions of a slip
particle to a no-slip particle, as well as to a bubble.

A. Transient sedimentation
We first consider the transient sedimentation of a slip particle

under the gravity force Fg = (mp − mf )g (with g being gravitational
acceleration). Assume that the particle is initially at rest, U(t = 0−)
= 0. The equation of particle motion(31) is reduced to

(mp +
1
2

mf )
dU
dt
= Fg − 6πμaΛU − 6πμaΛ2

∫

t

0
G(t − t′)

dU
dt′

dt′.

(48)

We rescale the particle velocity as V = U/U0 with the no-slip
Stokes terminal velocity U0 = Fg/6πμa and time τ = t/tν with the
viscous relaxation time tν = a2/ν. Using the above, (48) can be
non-dimensionalized as

M
dV
dτ
= 1 −ΛV −Λ2

∫

τ

0
G(τ − τ′)

dV
dτ′

dτ′, (49)

where M = (2ρp/ρ + 1)/9 is the effective particle mass. Here, the par-
ticle Reynolds number is Rep = U0a/ν = tν/t0, which is also the ratio
of tν = a2/ν to the characteristic traveling time t0 = a/U0. Effects of
particle inertia to viscous damping is reflected by the Stokes num-
ber St = tdamp/t0 in terms of the ratio of the viscous damping time
tdamp = a2ρp/μ to t0 = a/U0. Take a micrometer-sized aerosol par-
ticle (of a ∼ μm) falling in air as an example. With typical values
ρp ≈ 2 g/cm3, ρ ≈ 10−3 g/cm3, and μ ≈ 2 × 10−4 g/cm − s, the par-
ticle’s terminal velocity is U0 = (2a2/9μ)(ρp − ρ)g ∼ 2 × 10−2 cm/s.
Hence, both Rep ∼ 10−5 and St ∼ 2 × 10−2 are pretty small, to which
(49) can be applied.

The solution to (49) can be determined analytically using the
Laplace transform as follows: We first take Laplace transform for
(49) with V(τ = 0−) = 0, which yields

V(s) =
1

βMs
[
βs1/2 + 1
D1(s1/2)

], (50)

with the characteristic equation

D1(z) = z3 + β−1z2 + M−1
(Λ + Λ2β−1

)z + Λ(βM)−1. (51)

To invert (50), we recast it into the following form:

V(s) =
1
βM
[

A1

s(s1/2 + γ1)
+

A2

s(s1/2 + γ2)
+

A3

s(s1/2 + γ3)
], (52)

where γ1, γ2, and γ3 are the roots of D1(−z) = 0 from (51). The
coefficients A1, A2, and A3 are determined as

A1 =
1 − βγ1

(γ1 − γ2)(γ1 − γ3)
, A2 =

1 − βγ2

(γ2 − γ1)(γ2 − γ3)
,

A3 =
1 − βγ3

(γ3 − γ1)(γ3 − γ2)
.

Equation (52) allows us to make its inversion with

L −1
{

1
s(s1/2 + γ)

} = γ−1
(1 − exp(γ2τ)erfc(γ

√
τ)), (53)

yielding an analytical solution for V(τ),

V(τ) =
1
βM

3

∑
n=1

Anγ−1
n [1 − exp(γ2

nτ)erfc(γn
√
τ)]. (54)

Using (54), we plot V against τ for various values of λ̂, as shown
in Fig. 4(a). For a given value of λ̂, V typically grows rapidly with
time at early times and then gradually slows down toward the Stokes
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FIG. 4. Effects of slip on the transient velocity response of a settling particle with M = 1. (a) Plot of the particle falling speed V described by (54) against τ. It reveals that V
with slip accelerates faster than that without slip (D4) and that increasing slip makes V even faster. The inset shows the corresponding curves in the long-time regime with
dotted lines representing the asymptotic results for the slip case (57) and the no-slip case (D7). (b) The short-time plot for the velocity correction to the constant acceleration
τ/M, showing that the correction for the slip case first enters as O(τ2) in contrast to O(τ3/2) for the no-slip case. Short-time asymptotic results (dotted lines) are also plotted
for the slip case (55) and the no-slip case (D5). Note that at some later time, the velocity correction for a weak slip particle will undergo a slip–stick transition, as shown for
λ̂ = 0.01 and 0.05. In the bubble λ̂→∞ limit, on the contrary, the trend still keeps as O(τ2) because of the lack of the slip–stick transition.

terminal velocity at late times. Increasing λ̂ makes V faster because
of drag reduction by slip effects. However, this speedup effect will
become saturated when further increasing λ̂ toward the bubble limit
λ̂ → ∞ whose terminal velocity is 1.5 times faster than that of the
no-slip case. To gain more insight into how slip effects modify the
characteristics of the particle motion, in the following, we carry out
asymptotic analyses for both short-time and long-time regimes. The
results are found to well capture the trends calculated from (54), as
also shown in Fig. 4(a).

For short times τ ≪ 1, the behavior can be determined much
easier by taking a large s expansion for (50),

V(s) =
1
M
[

1
s2 −

1
s3
Λ + β−1Λ2

M
+

1
s7/2

β−2Λ2

M
] + O(s−4

).

The corresponding inversion is then

V(τ) =
τ
M
− (

Λ + β−1Λ2

2M2 )τ2 +
8

15
√
π
β−2Λ2

M2 τ5/2 + O(τ3
), (55)

which well describes the short-term behavior of (54), as shown in
Fig. 4(b). As indicated by (55), the leading contribution is constant
acceleration τ/M, corresponding to the free-fall speed UM = (Fg/(mp
+ m/2))t as expected. The correction due to viscous retardation first
appears as O(τ2). This is markedly different from O(τ3/2) found for
the no-slip case55 (see also Appendix D 1) and for the drop case,32 as
clearly shown in Fig. 4(b). A more heuristic way to see such an O(τ2)
correction can be realized by solving (49) asymptotically with V
= V (0) + V (1) +⋯ in which the correction velocity V (1) to the constant
acceleration V (0) = τ/M can be determined by solving the following
equation:

M
dV(1)

dτ
= −ΛV(0) + Λ2 dV(0)

dτ ∫

τ

0
G(τ − τ′)dτ′, (56)

wherein G given by (27) is taken in a small τ expansion: G
= β−1

(1 − (2/
√
π)[τ/β2

]
1/2
) + O(τ3/2

). As indicated by (56), the

O(τ2) velocity correction comes from two contributions: (i) the
instantaneous Stokes drag at speed V (0) (the Λ term) and (ii)
the linear acceleration by the history force due to V (0)(τ) (the Λ2

term). Because G(τ ≪ 1) ≈ β−1
= 3 + λ̂−1 here, the history force

contribution will dominate when the slip length λ̂ is small. As also
indicated by (55), for small λ̂, the constant acceleration will start to
be slowed down by the history force in a time scale of τ ∼ O(λ̂M) or
t ∼ (λa/ν)M, which is a reminiscent of the slip–stick transition. Com-
pared to the no-slip case where V (1) occurs at O(τ3/2), this character-
istic change in the particle motion is attributed to different natures
between non-Basset force and Basset force. In the slip case, V (1) is
driven by a non-Basset force that gives rise to a dominant slip force
plateau Fλ ∼ μUM(t)a2/λ∝ t at short times, resulting from the shear
stress μUM(t)/λ across the slip length λ much thicker than the parti-
cle size a.49 The velocity acceleration by this force thus leads to V (1)

∝ t2. In contrast, in the no-slip case, V (1) is accelerated by a Basset
force FB ∼ μUM(t)a2/δ(t) ∝ t1/2 due to the shear stress across the
vorticity diffuse layer of thickness δ(t) ∼ (νt)1/2 and hence varies as
t3/2 (see Appendix D 1).

It is worth mentioning that the same O(τ2) velocity correction
also occurs to a rising of a spherical bubble whose memory kernel
Gbubble also takes the form (27) with λ̂ → ∞. In this case, since G
becomes saturated as λ̂ → ∞ and Gbubble(τ ≪ 1) = 3 − (2/

√
π)τ1/2

+ O(τ3/2
) is reduced to a constant irrelevant of λ̂ as τ → 0, both the

Stokes drag and the history force in (56) become comparable. Con-
sequently, from (55), the time scale to see a slowdown of the constant
acceleration is τ ∼ O(M) or t ∼ (a2/ν)M, longer by a factor λ̂−1 com-
pared to τ ∼ O(λ̂M) or t ∼ (λa/ν)M for the weak slip case discussed
above. For a nearly spherical no-slip particle or a spherical liquid
drop, while a non-Basset kernel can emerge, the total memory kernel
still contains the Basset kernel that diverges as τ−1/2 as τ→ 0.31,32,40,41
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Hence, the short-time particle dynamics in these cases will be nearly
the same as that of a no-slip spherical particle, predominated by the
singular Basset kernel. This explains why a similar O(τ3/2) velocity
correction is also found in the transient settling/rising of a spherical
drop.32

In fact, the dynamic distinction between a weak slip particle and
a full slip bubble can be seen in the detailed behaviors of their short-
time responses. As shown in Fig. 4(b), at some later time, a weak slip
particle with λ̂ ≪ 1 will start to depart from O(τ3/2) and gradually
approach toward the no-slip case due to the second order correction
V (2). In this case, (55) shows that V (2) occurs at O(τ5/2) with magni-
tude β−2Λ−2

/M ∼ λ̂−2
/M purely due to the history term. Since the

corresponding first order correction V(1) ∼ (λ̂−1
/M)τ2 is also dom-

inated by the history term, its transition to the O(τ5/2) correction
will take place at τ ∼ λ̂2 or t ∼ λ2/ν around the slip–stick transition
point, as seen in the curves of λ̂ = 0.01 and 0.05 in Fig. 4(b). For a
full slip bubble with λ̂ → ∞, on the contrary, such an O(τ5/2) cor-
rection will take place at a time scale much longer than the weak slip
case, meaning that one will have to wait an even longer time to see
a change in the velocity correction to a different trend other than
O(τ2). This explains why the velocity correction in this case is kept
virtually at O(τ2) throughout the short-time regime, as displayed in
Fig. 4(b).

For long times τ≫ 1, (50) in a small s expansion is

V(s) =
1
Λs
−

1
s1/2

+⋯,

hence leading to

V(τ) =
1
Λ
−

1
√
πτ

+⋯, (57)

which fairly captures the long-term behavior of (54), as shown in
the inset of Fig. 4(a). In the dimensional form, (57) is essentially the
Stokes terminal velocity Us = Fg/6πμaΛ = U0/Λ plus the prior Basset
t−1/2 attenuation regardless of the amount of slip.

To explain (57), we anticipate that the long-term behavior of
the particle velocity takes the form of V = V(0)∞ + V(1)∞ + ⋯, where
V(1)∞ = U(1)∞ /U0 being the first correction to the terminal velocity
V(0)∞ = 1/Λ can be sought by solving (49) asymptotically. Given G(τ)
= 1/(πτ)1/2 + O(τ−3/2) for τ≫ 1, to correctly capture the history force
asymptotically, we first extract the Basset kernel GB(τ) = 1/(πτ)1/2

from G to rewrite the memory integral as

∫

τ

0
G(τ − τ′)

dV
dτ′

dτ′ = ∫
τ

0
[G(τ − τ′) −GB(τ − τ′)]

dV
dτ′

dτ′

+ ∫
τ

0
GB(τ − τ′)

dV
dτ′

dτ′. (58)

In (58), the first term on the right is O(τ−3/2) or smaller. Next,
following Ref. 21, we re-express the second term as

1
√
π ∫

τ

0

1
√
τ − τ′

dV
dτ′

dτ′ =
1
√
π

d
dτ ∫

τ

0

1
√
τ − τ′

V(τ′)dτ′

−
1
√
π

V(0)
√
τ

. (59)

Because V(0) = 0 here, only the first term of the above contributes
and appears as O(τ−1/2). Finally, after substituting V = V(0)∞ + V(1)∞
into (49) with the approximate memory integral (59), we arrive at
the following equation for V(1)∞ :

M
dV(1)∞

dτ
= −ΛV(1)∞ −Λ

2 V(0)∞
√
πτ

. (60)

As indicated by (60), as τ →∞, the inertial term on the left will be
damped out, making V(1)∞ approach −ΛV(0)∞ /(πτ)1/2

= −1/(πτ)1/2.
In the dimensional form, this is essentially the result by balancing
the Stokes drag −6πμaΛU(1)∞ to the Basset force −6πΛμUsa2/δ(t)
within the vorticity diffuse layer δ(t) = (πνt)1/2. In other words, for
long times, because vorticity has already diffused to a distance much
larger than the slip length λ, slip does nothing but reduce the drag
coefficient without changing the viscous relaxation characteristics.
This also explains why V(1)∞ appears independent of λ.

B. Translational response to a suddenly applied
stream

In the second case, we consider the situation with flow to look
at how a slip particle responds. Here, the fluid is initially stationary
and suddenly subject to a non-uniform flow: u∞(x, t) = v∞(x)H(t)
with the Heaviside step function H(t) = 0 for t = 0; otherwise 1 for t
> 0. The particle is initially moving at a constant velocity U i before
the flow is applied. At the moment t = 0+ when the flow is applied,
the particle velocity is suddenly changed to U(t = 0+) = Ustart due to
the instantaneous advection by the imposed flow or to perturbations.
Let v∞(X) = v∞|0 at the particle position X in the direction of U i.
The particle motion governed by (28) in this case takes the form

(mp +
1
2

mf )
dU
dt
= (mp +

1
2

mf )(Ustart −Ui)
dH
dt

+ mf [v
∞
∣0 +

1
2
[1 +

a2

10
∇

2
]v∞∣

0
]

dH
dt

− 6πμaU(t), (61)

where

U(t) = ΛU(t) −Λ[1 +
a2

6(1 + 2λ̂)
∇

2
]v∞∣

0
H(t)

+Λ2
{∫

t

0
G(t − t′)

dU
dt′

dt′

− G(t)[1 +
a2

6(1 + 2λ̂)
∇

2
]v∞∣

0
+ G(t)Ui}. (62)

The particle Reynolds number in this case is Rep = ΔUa/ν in terms
of the relative velocity ΔU = ∣Ui − v∞∣0∣. For a micrometer-sized
particle in an aqueous solution (of ν ≈ 10−2 cm2/s), ΔU has to be
much smaller than 102 cm/s to ensure Rep≪ 1 under which (61) can
be applied. This requirement can usually be fulfilled in practice. The
shear Reynolds number Reshear = (a2/ν) (v∞|0/L) = Rep(v∞|0/ΔU)
(a/L) also needs to be small. Since both Rep and a/L (<10−2) are
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typically small, Reshear is normally even smaller than unity unless
v∞|0 is much larger than ΔU.

Rescaling (61) with V = U/v∞|0 and τ = t/tν, we rewrite it in the
dimensionless form,

M
dV
dτ
=M(Vstart − Vi)

dH
dτ

+ J
dH
dτ
−ΛV

−Λ2
[∫

τ

0
G(τ − τ′)

dV
dτ′

dτ′ + G(τ)Vi]

+ [ΛH(τ) + Λ2G(τ)][1 +
k

6(1 + 2λ̂)
], (63)

where V start = Ustart/v∞|0, V i = U i/v∞|0, and J = 1/3 + k/90 is the
strength of the impulsive inertial force combining the fluid accel-
eration and the added mass and k = a2

∇
2v∞∣0/v∞∣0 measures the

magnitude of the Faxen correction and is generally small. We remark
that a similar equation like (62) or (63) also governs the transient
particle motion driven by a force impulse, except that there will be
no Faxen terms in that situation.

Taking a Laplace transform for (63) with V(τ = 0−) = V i gives

V(s) =
J′

sM
{1 +

C1s1/2 + C0

D1(s1/2)
}, (64)

where J′ = MV start + J is the effective impulsive inertial force and the
coefficients in the numerator are found to be

C1 = (Λ + β−1Λ2
)χ −

Λ2Vi

J′β
, C0 = Λβ−1χ,

χ =
1
J′
(1 +

k
6(1 + 2λ̂)

) −
1
M

.

Similar to the way to derive (54), an analytical solution can be
obtained by taking an inverse Laplace transform for (64),

V(τ) =
J′

M
{1 +

3

∑
n=1

Bnγ−1
n [1 − exp(γ2

nτ)erfc(γn
√
τ)]}, (65)

where the coefficients B1, B2, and B3 are given as

B1 =
C0 − C1γ1

(γ1 − γ2)(γ1 − γ3)
, B2 =

C0 − C1γ2

(γ2 − γ1)(γ2 − γ3)
,

B3 =
C0 − C1γ3

(γ3 − γ1)(γ3 − γ2)
.

Using (65), we plot V against τ. Figure 5 displays typical
responses, showing that V can vary with τ in different manners, sen-
sitive to the initial particle velocity V i (before the flow is applied)
and the starting particle velocity V start (at the moment of applying
the flow). As shown in Fig. 5(a), V typically starts with a constant
value right after the flow is applied with a given V start regardless of
V i. The influences of V i enter at later times, making V vary non-
monotonically with time. In particular, V could undergo a tempo-
rary acceleration to display a peak if the flow is applied in the direc-
tion against the particle’s initial movement, V i < 0. At long times,
the impacts from V start and V i gradually vanish as V approaches
toward its steady value. Figure 5(b) plots effects of V start on V
under V i = 0. Increasing V start increases the strength of the effec-
tive impulsive force J′ and hence increases V. For the no-slip case,
the responses are also similar to those for the slip case shown above.
The differences between these two cases are mainly reflected by their
velocity correction behaviors in the short-time regime, as shown in
Fig. 6.

To explain various responses shown above, we first inspect the
short-time τ≪ 1 behavior of (64) by taking a large s expansion,

FIG. 5. Temporal responses of the translational velocity V described by (65) for a slip particle in a suddenly applied flow. Short-time asymptotic results (dotted lines) are
plotted using (66). λ̂ = 0.1. M = 1. k = 0.1. (a) Plot of V against τ at Vstart = 1. At a given particle starting velocity Vstart , V starts with a constant that is invariant of the
particle initial velocity V i . The influences of V i enter at later times, showing non-monotonic responses with τ before approaching toward the steady Stokes velocity that is
also independent of V i . (b) Effects of Vstart on the temporal response of V at V i = 0. Increasing Vstart increases the strength of the effective impulsive force J′ and hence
increases V in the beginning of particle motion. The responses for the no-slip case are also similar to those for the slip case shown above. The differences between these
two cases are mainly reflected by their velocity correction behaviors in the short-time regime, as shown in Fig. 6.
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FIG. 6. Short-time behavior of the velocity correction V − J′/M for different values
of λ̂. V i = 0. Vstart = 1. M = 1. The slip case and the no-slip case are plotted using
(65) and (D10), respectively. The corresponding short-time asymptotic results (dot-
ted lines) are plotted using (66) and (D13). It can be clearly seen that the velocity
correction for the slip case appears as O(τ), distinct from O(τ1/2) for the no-slip
case. Note that the velocity correction for a weak slip particle will gradually change
toward the no-slip result at some later time due to the slip–stick transition, as
shown in the curves for λ̂ = 0.05 and 0.5. However, for the bubble λ̂ → ∞
case, because of the lack of the slip–stick transition, the velocity correction always
varies as O(τ).

V(s) =
J′

M
{

1
s

+
1
s2 C1 +

1
s5/2
(C0 − β−1C1) + O(s−7/2

)},

which leads to

V(τ) =
J′

M
{1 + C1τ +

4
3
√
π
β−2Λ2

(−χ + J′−1Vi)τ3/2 + O(τ5/2
)}.

(66)

The leading term is V (0) = (J′/M)H(τ) driven by the impulsive iner-
tial force. This term has nothing to do with whether the particle is
slip or not. The viscous correction V (1) first enters at O(τ), mak-
ing the particle undergo a constant acceleration, as shown in Fig. 6.
This O(τ) for the slip case is very different from O(τ1/2) for the no-
slip case (whose result is supplemented in Appendix D 2). A closer
inspection of the O(τ) correction in (66) reveals that the rate of the
velocity acceleration is

(J′/M)C1 = Λ[1 +
k

6(1 + 2λ̂)
− V(0)]M−1

+β−1Λ2
[1 +

k
6(1 + 2λ̂)

− V(0) − Vi]M−1, (67)

which is caused by the instantaneous Stokes drag [the Λ term with
the Faxen correction in (63)] and by the history force [the Λ2 term
in (63)]. More precisely, (67) is the result of the small τ expansion
of (63),

M
dV(0)

dτ
= J′

dH(τ)
dτ

, (68a)

M
dV(1)

dτ
= Λ{[1 +

k
6(1 + 2λ̂)

]H(τ) − V(0)}

+ Λ2
{G≪(τ)[1 +

k
6(1 + 2λ̂)

]

− ∫

τ

0
G≪(τ − τ′)

dV(0)

dτ′
dτ′ −G≪(τ)Vi}, (68b)

wherein the memory kernel G≪ (τ) is taken as the short-time con-
stant form: G(τ ≪ 1) ≈ β−1

= 3 + λ̂−1. As indicated by (67) or
(68b), if the slip length λ̂ is small, V (1) will be dominated by the his-
tory force acceleration λ̂−1

[(1 + k/6(1 + 2λ̂)) − V(0) − Vi]/M—the

smaller the λ̂, the greater the acceleration. However, whether V (1)

will grow or decrease with time does not depend on λ̂ but on the
sign of [1 + k/6(1 + 2λ̂)] − J′/M − Vi, the competition between the
steady Stokes velocity V∞ = 1+k/6(1+2λ̂) [see (70)], and the startup
velocity V (0) = J′/M [see (68a)] together with the initial velocity V i
of the particle. In other words, for a given imposed flow condition,
whether the particle’s startup movement is promoted or opposed by
the O(τ) velocity acceleration at later times will be controlled by the
particle’s initial velocity V i. That is, there exists a critical initial par-
ticle velocity V∗i = V∞ + J′/M above (below) which V will decrease
(grow) with time at the early stage of the particle motion. In the spe-
cial scenario where V i is small, the rate of the velocity acceleration
(67) is reduced to

(J′/M)C1 ≈ (Λ + β−1Λ2
)(V∞ − V(0))/M. (69)

Hence, the fate of the particle in this case will be determined solely by
V (0) and V∞ irrespective of V start in such a way that (69) determines
the initial growth or decline in V before leveling off toward V∞ for
long times. When the particle starts its motion with V (0)

> V∞, V
will display a minimum or a maximum otherwise.

Looking at Fig. 6 more closely, we observe that the correction
velocity V − J′/M at some later time will start to depart from the O(τ)
correction and gradually change toward the no-slip result. In addi-
tion, the smaller the λ̂, the earlier the departure will take place. As
indicated by (66), such a departure is attributed to the O(τ3/2) cor-
rection. This O(τ3/2) correction is found to be proportional to β−2Λ2

and hence can be identified to come from the history term. When
the slip length λ̂ is small, in particular, this O(τ3/2) correction varies
as λ̂−2, even more sensitive to λ̂. Therefore, for this weak slip situa-
tion, both the O(τ) and the O(τ3/2) corrections are dominated by the
history term. Since the O(τ) correction varies as λ̂−1, its transition to
the O(τ3/2) correction (which varies as λ̂−2) will take place at τ ∼ λ̂2

or t ∼ λ2/ν, which again happens at around the slip–stick transition
point.

The long-time τ ≫ 1 response can be determined by taking a
small s expansion for (64),

V(s) = (1 +
k

6(1 + 2λ̂)
)

1
s
−

1
s1/2

ΛVi +⋯,
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which leads to

V(τ) = (1 +
k

6(1 + 2λ̂)
) −

1
√
πτ

ΛVi +⋯. (70)

The leading term is simply the steady Stokes velocity V∞ = 1
+ k/6(1 + 2λ̂) from 0 = −ΛV + Λ(1 + k/6(1 + 2λ̂)) in (63) as τ
→ ∞. The correction term occurs at O(τ−1/2) due to the memory
effect that propagates from the initial particle movement before the
flow is applied. Similar to the way to derive (63), the correction
velocity V(1)∞ can be readily found by balancing the Stokes drag to
the history force via

0 = −ΛV(1)∞ −Λ
2 Vi
√
πτ

. (71)

For a gas bubble, its dynamics appear similar to those of a par-
tially slip particle presented above, as the changes are nothing but
the coefficients of the equations. The differences between these two
cases can only be discerned from the detailed time evolution behav-
iors of the respective particle velocities. The differences mainly occur
in the short-time regime. We first inspect the first order velocity
correction at O(τ). As revealed from (67) for the rate of this veloc-
ity correction, in the bubble λ̂ → ∞ limit, both the Stokes Λ term
and the history β−1Λ2 term are comparable. In contrast, the rate
for a weak slip particle with λ̂ ≪ 1 is dominated by the history
term ∼ 1/λ̂.

As for the second order velocity correction V (2), (66) reveals
that it occurs at O(τ3/2). For the weak-slip case, V (2) appears as
V(2) ∼ λ̂−2τ3/2, dominated by the history term. Since V(1) ∼ λ̂−1τ
is also dominated by the history term, a transition from V (1) to V (2)

will take place at τ ∼ λ̂2, which indicates a slip–stick transition. How-
ever, for the bubble case, V (2)

∼ τ3/2 and V (1)
∼ τ because of the lack

of the slip–stick transition. Hence, it will take an even longer time
than the weak-slip case to see a transition from V (1) to V (2).

Putting all together, while both slip and bubble cases show O(τ)
velocity corrections in the very beginning of their movements, they
can behave differently at later times. For a weak slip particle, its
velocity response will gradually change toward the no-slip result at
later times, whereas a full slip bubble remains nearly unchanged in
its short-time velocity behavior, as shown in Fig. 6. This distinction
in the particle dynamics is mainly due to the fact that there is an
inherent slip–stick transition for a weak slip particle but not for a
full slip bubble.

C. Angular response to a torque impulse
To demonstrate non-Basset dynamics due to slip, we exam-

ine the angular response of a slip sphere when it is subjected to a
torque impulse Tex = Lδ(t). Assume that the sphere is initially at
rest, i.e., Ω(t = 0−) = 0. The angular Eq. (47) with the torque (43) in
the absence of flows reads

Ip
dΩ
dt
= Lδ(t) −

8πμa3

(1 + 3λ̂)
Ω(t) −

8πμa3

(1 + 3λ̂) ∫
t

0
Q(t − t′)

dΩ
dt′

dt′,

(72)

with the non-Basset memory kernel Q given by (40). In this case,
the impulse accelerates the sphere to start at the angular velocity Ω(t
= 0) = L/Ip. Re-scaling the angular velocity as Γ = Ω/Ω(t = 0) and
time as τ = t/tν, we can write (72) in the dimensionless form as

dΓ
dτ
= δ(τ) −

K
(1 + 3λ̂)

Γ −
K

(1 + 3λ̂) ∫
τ

0
Q(τ − τ′)

dΓ
dτ′

dτ′, (73)

where K = 8πρa5/Ip = 15ρ/ρp reflects the fluid-to-particle rotational
inertia ratio and K/(1 + 3λ̂) measures the magnitude of the viscous
torque relative to the impulse. The particle Reynolds number here
can be defined as Rep = Ω(t = 0)a2/ν. Hence, to ensure the validity of
(73) under Rep≪ 1, Ω(t = 0) cannot exceed the inverse of the viscous
relaxation time a2/ν. For a micrometer-sized particle in an aqueous
solution (of ν ≈ 10−2 cm2/s), (73) is applicable at Ω(t = 0)≪ 106 s−1.

To solve for Γ(τ), we take a Laplace transform for (73) with
Γ(τ = 0−) = 0. Together with (38) for the Laplace transform of Q,
we write Γ(s) in terms of the response function f,

Γ(s) =
1

s + Kβ(1 + s Q(s))/λ̂
=

s + β−1s1/2 + β−1

D2(s1/2)
≡ f , (74)

with the characteristic equation

D2(z) = z4 + β−1z3 + (K(3λ̂)−1 + β−1
)z2 + Kλ̂−1z + Kλ̂−1. (75)

To invert f in (74), we recast it into following form:

f (s) =
A1

(s1/2 + γ1)
+

A2

(s1/2 + γ2)
+

A3

(s1/2 + γ3)
+

A4

(s1/2 + γ4)
, (76)

where γ1, γ2, γ3, and γ4 are the roots of D2(−z) = 0 in (75), and the
coefficients A1, A2, A3, and A4 are found to be

A1 =
γ2

1(γ2γ3 + γ2γ4 + γ3γ4 − 1)
(γ1 − γ2)(γ1 − γ3)(γ1 − γ4)

,

A2 =
γ2

2(γ1γ3 + γ1γ4 + γ3γ4 − 1)
(γ2 − γ1)(γ2 − γ3)(γ2 − γ4)

,

A3 =
γ2

3(γ1γ2 + γ1γ4 + γ2γ4 − 1)
(γ3 − γ1)(γ3 − γ2)(γ3 − γ4)

,

A4 =
γ2

4(γ1γ2 + γ1γ3 + γ2γ3 − 1)
(γ4 − γ1)(γ4 − γ2)(γ4 − γ3)

.

(77)

Having (76) inverted using (39), Γ(τ) can be readily determined as

Γ(τ) =
4

∑
n=1

An[
1

√
π
√
τ
− γn exp(γ2τ) erfc(γn

√
τ)]. (78)

For the no-slip case, the solution can be obtained in a similar fashion,
as given by (D21) in Appendix D 3.

Figure 7(a) plots the time evolutions of the angular velocity Γ
under ρp = ρ for both slip and no-slip cases using (78) and (D21).
This figure reveals that slip effects can influence the angular dynam-
ics of a particle in both short-time and long-time regimes. At short
times, slip tends to delay the onset of viscous relaxation—the larger
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FIG. 7. (a) Temporal responses of the angular velocity Γ under ρp = ρ for slip and
no-slip spheres when subjected to a torque impulse, described by (78) and (D21),
respectively. Slip tends to delay the onset of viscous relaxation at short times but
makes Γ decay faster afterward. (b) plots the corresponding short-time evolutions
of the angular velocity relaxation Γ′ = |1 − Γ|. Dotted lines represent the short-time
asymptotes (80) found for the slip case and (D23) for the no-slip case, showing
that the former varies as O(τ), very different from O(τ1/2) for the latter. (c) plots the
corresponding long-time responses, showing an O(τ−5/2) attenuation irrespective
of the slip length λ̂. This is in accordance with the long-time asymptote (dotted line)
given by (82).

the slip length λ̂, the longer the time to initiate the decay from
Γ = 1. However, after Γ starts off its decay, slip will make Γ decay
faster afterward, and this trend will continue to the long-time
regime.

Recall that the characteristic distinctions between the slip non-
Basset kernel Q [see (40)] and the no-slip Basset kernel QB [see (44)]
manifest mostly in the short-time regime [see Fig. 3(a)]. Figure 7(b)
plots the short-time evolutions of the angular velocity relaxation
Γ′ = |1 − Γ| for both slip and no-slip cases calculated from (78) and
(D23), respectively. The results clearly show that Γ′ for the slip case
behaves as O(τ), very different from O(τ1/2) for the no-slip case. In
addition, the larger the slip length λ̂, the longer the time required for
the O(τ) response to begin its slowdown. Such dynamic distinctions
also resemble those shown in Fig. 6 for the force impulse situation—
they all are attributed to the characteristic differences between the
slip non-Basset and the no-slip Basset kernels, as displayed in Figs. 2
and 3.

To explain the observed short-time responses for the slip case,
we again carry out a large s expansion for (5.27),

Γ(s) =
1
s
−

K
3λ̂

1
s2 +

K
3λ̂2

1
s5/2

+ O(s−3
), (79)

which leads to

Γ(τ) = 1 −
K
3λ̂

τ +
4K

9
√
πλ̂2

τ3/2 + O(τ5/2
). (80)

Equation (80) reveals the following features that are shown in
Figs. 7(a) and 7(b). First, the first correction Γ(1) due to viscous relax-
ation enters at O(τ). In the dimensional form, Γ attenuates linearly
with time as −5(μ/ρpλa)t. Hence, not only will it take time t ∼ ρpλa/μ
proportional to the slip length λ to see a linear decay from the start-
up constant angular velocity but also the amplitude of this linear
attenuation will be increased as λ is decreased. Second, the second
correction Γ(2) goes as ∼ (K/λ̂2

)τ3/2. Because Γ(1) ∼ (K/λ̂)τ, the
transition from Γ(1) to Γ(2) will take place at τ ∼ λ̂2 or t ∼ λ2/ν
corresponding to the slip–stick transition time. This explains why
a slowdown of the O(τ) response seen in Fig. 7(b) takes place at a
longer time for larger λ̂.

The O(τ) attenuation at short times can be understood more
physically by looking at a small τ expansion of (73) for finding the
angular velocity correction Γ(1) to the leading contribution Γ(0) due
to a torque impulse,

dΓ(0)

dτ
= δ(τ), (81a)

dΓ(1)

dτ
= −

K
1 + 3λ̂

[Γ(0) + ∫
τ

0
Q≪(τ − τ′)

dΓ(0)

dτ′
dτ′]. (81b)

Here, the memory kernel Q≪ in (81b) is taken as the short-time
constant form due to (4.13): Q(τ → 0) = 1/3λ̂. As can be clearly
revealed from (81b), Γ(1) = −(K/3λ̂)τ is essentially a result of the
memory torque (1 + 3λ̂)−1K/3λ̂, which dominates over the Stokes
torque (1 + 3λ̂)−1K when λ̂ ≪ 1. It also suggests that for ρp = ρ, it
will take time τ ∼ 3λ̂/K ∼ λ̂/5 to see an onset of viscous relaxation,
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explaining why the larger λ̂ the longer time to start off the decay of
Γ in the short-time regime shown in Fig. 7(a). For the no-slip case,
Γ(1)
∼ O(τ1/2) can be explained by using the same equations (81a)

and (81b) with the Basset kernel (44) in the short-time form: QB(τ
→ 0) = 1/3(1/

√
πτ − 1 + 2

√
τ/
√
π) + O(τ).

Figure 7(c) plots the long-time response for both slip and no-
slip cases calculated from (82) and (D24), respectively. The results
clearly show that Γ decays as O(τ−5/2), irrespective of the amount of
slip. To explain this, we determine the long-time τ ≫ 1 response by
taking a large τ expansion for (78),

Γ(τ) =
4

∑
n=1

An[
1

γ2
n
√
π
(

1
τ
)

3/2
−

3
4γ4

n
√
π
(

1
τ
)

5/2
] + O(τ−7/2

). (82)

It can be shown that the O(τ−3/2) term is identically zero, so the
first contribution appears at O(τ−5/2). It can also be shown that the
O(τ−5/2) term is independent of the slip length λ̂, in accordance with
the result found by Ref. 56. As in the following, the coefficients of
these terms can be evaluated analytically by taking derivatives with
respect to z = s1/2 for the response function f given by (76):

4

∑
n=1

An

γ2
n
= f ′(0) = 0, (83a)

4

∑
n=1

An

γ4
n
=
−1
6

f ′′′(0) =
−1
3K

. (83b)

The long-time response for the no-slip case can also be obtained in a
similar manner. It has exactly the same O(τ−5/2) attenuation as (82)
because of (83), as shown in (D24) and (D3) in Appendix D 3.

D. Asynchronous particle spinning in an oscillatory
vortical flow

A particle in a non-uniform flow often exhibits spinning due
to the transverse flow gradient. In the last case study, we would like
to explore the impacts of the additional slip-induced Faxen torque
brought by an unsteady imposed flow. This can be revealed by exam-
ining the rotational response of a slip particle when it is subject to
an oscillatory vortical flow: u∞(x)e−iωt = Ω∞ × xe−iωt . Restricting
the particle Reynolds number Rep = Ω∞a2/ν to be small and letting
Γ = Ω/Ω∞ by rescaling the particle’s angular velocity Ω with respect
to Ω∞ evaluated at the particle center, the angular Eq. (47) for the
particle in the frequency domain with the torque expression (37)
takes the following dimensionless form:

α2 ĨpΓ = α2 Ĩf − (1 + 3λ̂)−1
(

1 + α + α2
/3

1 + α + βα2 )[Γ − 1 +
λ̂
5
α2
], (84)

where Ĩp = Ĩf (ρp/ρ) and Ĩf = 1/15 represent the dimensionless rota-
tional inertias for the particle and the fluid, respectively. With (84),
Γ is therefore determined as

Γ =
(1 + 3λ̂)α2 Ĩf + (

1 + α + α2
/3

1 + α + βα2 )[1 −
λ̂
5
α2
]

(1 + 3λ̂)α2 Ĩp + (
1 + α + α2

/3
1 + α + βα2 )

. (85)

If there is no slip, a particle having Ĩp = Ĩf always rotates at Γ = 1
regardless of the value of α. This is because in this case, the fluid’s
rotational momentum is fully transferred to the particle, making the
particle spin like a rigid body along with the fluid. Either λ̂ ≠ 0 or
Ĩp ≠ Ĩf will make a particle spin at an unequal rate. To gain more
insight into how the particle spinning responds, we inspect both low
frequency and high frequency situations below.

At low frequencies |α|≪ 1, (85) becomes

Γ = 1 + [−(1 + 3λ̂)(
ρp

ρ
− 1)Ĩf −

λ̂
5
]α2 + O(α3

). (86)

In the steady limit |α|→ 0, the particle again rotates with the flow at
Γ = 1 because of the precise transmission of the Stokes torque
from the fluid to the particle. When the flow is oscillating at
a small frequency, the particle’s rotational velocity correction
Γ′ = (Ω −Ω∞)/Ω∞ = Γ − 1 is found at O(α2), as indicated by (86).
This O(α2) correction can be interpreted as a result by balancing the
instantaneous Stokes torque to the fluid’s and the particle’s inertial
rotations at O(α2) in (84),

α2 ĨpΓ′ = α2 Ĩf − (1 + 3λ̂)−1
[Γ′ +

λ̂
5
α2
]. (87)

In the case of no slip λ̂ = 0, Γ′ will be determined purely by the mis-
match in rotational inertia between the particle’s Ĩp and the fluid’s Ĩf .
This will make the particle spinning slow down if ρp > ρ or speed up
otherwise. If it happens to Ĩp = Ĩf when ρ = ρp, Γ′ will occur at O(α3)
when λ̂ = 0. Interestingly, if there is slip under this equal rotational
inertia situation, not only will Γ′ be changed back to O(α2) but also
the particle spinning will be slowed down by slip through the λ̂α2

term.
At high frequencies |α|≫ 1, (85) behaves as

Γ =
Ĩf

Ĩpλ̂
(

1
α
) + O(α−2

). (88)

In this regime, both the fluid’s and the particle’s inertia torques in
(84) dominate at O(α2). A closer inspection of (84) reveals that when
|α| is large, the fluid’s inertial torque α2 Ĩf is nearly canceled out by
the slip-induced torque (1 + 3λ̂)−1λ̂α2

/5, making Γ→ 0 as |α|→∞.
Note that such zero spinning as |α|→∞ is absent in the no-slip case
whose Γ → Ĩf /Ĩp is finite as |α| → ∞. (88) indicates that Γ at large
|α| behaves as Γ≫ = (Ĩf /Ĩp)λ̂−1α−1 due to viscous torque. Increasing
slip reduces Γ≫ because of less viscous shearing on the particle. In
the bubble limit as λ̂ → ∞, Γ≫ → 0 because the particle will not
feel viscous shearing from the fluid at all. In fact, such zero spinning
response as λ̂→∞ is not limited to large |α| but actually happens to
an arbitrary value of |α|, as can be seen from (84).

Having gleaned the features for both |α| ≪ 1 and |α| ≫ 1
shown above, we now inspect how |Γ| varies with |α| in more detail.
As shown in Fig. 8(a), for ρp > ρ, the particle spins slower than
the flow and its spinning is always slowed down by increasing |α|.
For a given value of |α|, slip always diminishes the particle rota-
tion. The responses for ρp = ρ are also similar to those for ρp > ρ,
as shown in Fig. 8(b). Recall in this case that a no-slip particle
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FIG. 8. Behavior of the angular velocity amplitude |Γ| = |Ω|/|Ω∞| described by
(85) for the spinning of a slip particle in an oscillatory vortical flow. Plots show how
|Γ| varies with the dimensionless frequency ∣α∣ = (ωa2/ν)1/2 and the slip length
λ̂. (a) illustrates the heavy particle ρp > ρ case with Ip = 1.2 × If , showing that the
particle spins slower than the flow with |Γ| < 1 and that |Γ| decreases monotonically
with |α|. (b) plots the equal density ρp = ρ case, showing similar responses to (a).
Note that a no-slip particle in this special situation has Γ = 1 irrespective of the
value of |α|. (c) illustrates the light particle ρp < ρ case with Ip = 0.2 × If . In this
case, the particle can spin faster than the flow at small |α| and become slower
at large |α|. In all cases, |Γ| with slip is always smaller than that without slip and
increasing λ̂ lowers |Γ|. Also note that in the |α|→∞ limit, the slip case reduces
to the bubble case with |Γ| = 0 in contrast to |Γ| ≠ 0 for the no-slip case.

always spins at the same rate as the flow. For ρp < ρ, on the con-
trary, the results are very different. As shown in Figs. 8(c) and 8(a),
the particle can spin faster or slower than the flow, depending on
|α|. For small |α|, |Γ| > 1 and increases with |α|. |Γ| then reaches a
peak at some value of |α| after which it declines with |α|. Further
increasing |α| will eventually make |Γ| < 1. Note that such a non-
monotonic spinning response exists only when slip is present. In
any case, if slip effects are sufficiently strong, a particle will hardly
rotate because of the lack of the viscous shearing by the surrounding
fluid.

VI. CONCLUSIONS AND PERSPECTIVES
We have demonstrated the non-Basset particle dynamics aris-

ing from slip effects. We find that even a tiny amount of slip can
cause dramatic impacts on particle motion. Impacts of slip are
mainly reflected by the atypical non-Basset memory kernels when
the slip length is small. This makes a slip particle in unsteady motion
behave very different from a no-slip particle, as well as from a fluid
particle.

Compared to a no-slip particle and a full slip bubble, the
dynamic distinctions of a slip particle, in particular, manifest in the
short time or high frequency regime. In transient particle sedimen-
tation, the short-time correction to constant acceleration for a slip
particle is found to occur at O(t2), in contrast to O(t3/2) for a no-
slip particle. A similar result can also be found in the translational
response of a slip particle to a suddenly applied stream, showing an
O(t) viscous relaxation instead of O(t1/2) for a no-slip particle. In
these transient translational problems, while a full slip bubble basi-
cally behaves like a partial slip particle in their velocity responses at
very short times, their later time responses differ qualitatively, dis-
tinguished by the existence of the inherent slip–stick transition for
a partial slip particle but not for a bubble. This highlights the fact
that even though both slip and bubble cases have the same type
of non-Basset memory kernels, they do not necessarily imply the
same physics. For transient rotation, the same dynamic change from
O(t1/2) for a no-slip particle to O(t) for a slip particle can also be
observed in the angular response of the latter to a torque impulse.
However, for a bubble, it will not undergo any rotation at all because
of the lack of viscous shearing on its surface. This is another char-
acteristic distinction between a partial slip particle and a full slip
bubble.

Perhaps the most pronounced effects can be realized by having
a slip particle undergo periodic spinning in an oscillatory vortical
flow. We find that slip can introduce an additional inertia torque
to slow down the particle spinning in the high frequency regime.
It is also this torque responsible for the non-monotonic spinning
response of a slip particle when it is lighter than the surrounding
fluid. We emphasize that without this torque, it is not possible to
guarantee that a strongly slip particle will not rotate at all in the
bubble limit.

As these non-Basset motion responses of slip particles are very
sensitive to the amount of slip, they may serve as alternative means
to quantify the extent of fluid slippage on colloidal particles such
as those made by polymers or with hydrophobic coating. They may
also have potential in realizing more efficient hydrodynamic sorting
of slip particles from no-slip or fluid particles.
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From a dynamical perspective, it has been shown that no-slip
particles are less inclined to accumulate locally or tend to dimin-
ish the formation of attractors,57,58 largely due to the memory effects
brought by the Basset history force that is singular at t = 0 and always
varies as t−1/2 in the time scale of the typical viscous relaxation time
tν = a2/ν. For slip particles, in contrast, the history force is of non-
Basset type. Such a force behaves very differently than the Basset
force in that it will not only start with a finite value at t = 0 but also
vary non-uniformly with time, depending not only on tν but also on
the slip–stick transition time tλ = λ2/ν. Together with the fact that the
finite size effects and additional inertial torque from an imposed flow
could make a slip particle deviated and dis-aligned from the flow,
it is likely that a slip particle in the presence of flows may display
completely different dynamics than a no-slip particle. Along this
line, many other aspects such as particle mixing/dispersion, iner-
tial trapping, and routes to chaos will likely be altered by slip effects
as opposed to those described by the classical Maxey–Riley equa-
tion. These dynamical aspects will demand more in-depth investi-
gations, and the present work will provide the framework for such
tasks.

The present work will also provide a consistent formalism capa-
ble of describing a variety of particle-laden flows. This is particularly
appealing to those involving aerosols or hydrophobic particles to
which the Maxey–Riley equation may no longer be applicable due to
considerable fluid slippage on the surfaces of such particles. Overall,
we have demonstrated that effects of slip can strongly influence the
fate of a particle in unsteady motion. This may change the current
understanding of inertial particle dynamics as occurring to aerosol
suspensions, turbulent particle flows, and unsteady swimming of
self-propelled microorganisms.
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APPENDIX A: DERIVATION OF RT (20)
Following Ref. 52, the flow field produced by an oscillating

sphere can be expressed as a linear combination of oscillatory
Stokeslet S and dipole D,

û = [
g

8π
S +

d
4π

D] ⋅U , (A1)

with g and d being the corresponding strengths. Let r̃ = αr/a. The
Stokeslet S is given by

S = A(r̃)(I/r) + B(r̃)(x x/r3
), (A2)

with

A = 2e−r̃
(1 +

1
r̃

+
1
r̃2 ) −

2
r̃2 , B = −2e−r̃

(1 +
3
r̃

+
3
r̃2 ) +

6
r̃2 .

The dipole D is

D = −C(r̃)(I/r3
) + 3H(r̃)(x x/r5

), (A3)

with

C = e−r̃
(1 + r̃ + r̃2

), H = e−r̃
(1 + r̃ +

r̃2

3
).

The coefficients g and d in (A1) can be determined using bound-
ary conditions on the sphere surface at r = a, (û −U) ⋅ (I − nn) =
λ[∇û + (∇û)T

] ⋅ n ⋅ (I − nn) and (û −U) ⋅ n = 0,

g =
3a
4
[(

1 + 2λ̂
1 + 3λ̂

)(
α + 1

1 + βα
) +

α2

3
], (A4)

d =
a3

2

⎡
⎢
⎢
⎢
⎢
⎣

1 +
3(α + 1 − eα)(1 + 2λ̂)
α2((α + 3)λ̂ + 1)

⎤
⎥
⎥
⎥
⎥
⎦

, (A5)

where λ̂ = λ/a is the dimensionless slip length.
The stress associated with Stokeslet (A2) takes the form of

tS = μg[
I
r2 K(r̃) +

x x
r4 L(r̃)] ⋅U , (A6)

with K(r̃) = 2[B(r̃)−e−r̃
(r̃+1)] and L(r̃) = 2[e−r̃

(r̃+1)−1−3B(r̃)].
Evaluating (A6) at r = a together with (A4) gives the surface stress
on the sphere,

tS =
−3μU

2a
[
(α + 1)
(α + 3)λ̂ + 1

] ⋅ I. (A7)

The part associated with dipole (A3) is

tD = μd[
I
r4 M(r̃) +

x x
r4 N(r̃)] ⋅U , (A8)

with M(r̃) = e−r̃
(6 + 6r̃ + 3r̃2 + r̃3

) and N(r̃) = −e−r̃ (18 + 18r̃ + 7r̃2

+ r̃3). The corresponding surface stress on the sphere can be deter-
mined using (A8) at r = a and (A5),

tD =
−μU

2a
[

18(r̃ + 1)λ̂
(r̃ + 3)λ̂ + 1

+ r̃2
] ⋅ nn. (A9)

Adding (A7) and (A9) yields the translation resistance density
matrix RT given by (20).

APPENDIX B: DERIVATION OF RR (33)
As in Ref. 52, the flow field around a sphere undergoing rotary

oscillations can be thought of as the fluid motion set up by an
oscillatory rotlet,

û =
b

8πμ
Ω ×

x
r3 e−r̃

(1 + r̃). (B1)

The strength b can be determined using the slip boundary condition
(û −Ω × x) ⋅ (I − nn) = λ[∇û + (∇û)T

] ⋅ n ⋅ (I − nn) at r = a,

b =
8πμa3eα

(1 + α)(1 + 3λ̂) + λ̂α2
. (B2)
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With σ̂R
= μ(∇û + (∇û)T

) because of pressure p̂ = 0, the surface
stress corresponding to (B1) can be evaluated as

σ̂R
⋅ n =

−b
8πa4 (Ω × x)(3(1 + α) + α2

)e−α. (B3)

With (B2), (B3) leads to the rotation resistance density matrix RR

given by (33).

APPENDIX C: DERIVATION OF THE ADDITIONAL
UNSTEADY FAXEN TORQUE (35) BROUGHT BY SLIP

The purpose of this appendix is to evaluate the following
integral that leads to (35):

∫
Sp

x × [
λ
μ
(I-nn) ⋅ (σ∞ ⋅ n) ⋅RR

]dS. (C1)

With (33), (C1) can be evaluated as

Ip = −3λ̂[
1 + α + α2

/3
(1 + α)(1 + 3λ̂) + λ̂α2

](T1p − T2p), (C2)

which consists of two contributions,

T1p = ∫
Sp

εjpqxq(σ∞jm ⋅ nm)dS, (C3)

T2p = ∫
Sp

εjpqxqnjnk(σ
∞

km ⋅ nm)dS. (C4)

The evaluation of (C3) can be done after substitution of (22) together
with Iqm = ∫Sp nqnmdS = (4/3)πa2δqm and Iqmst = ∫Sp nqnmnsntdS
= (4/15)πa2

(δqmδst + δqsδmt + δqtδms),

T1p = a∫
Sp

εjpqnqnmσ∞jm (0)dS +
a3

2 ∫Sp

εjpqnqnmnlnt
∂2σ∞jm
∂xl∂xt

RRRRRRRRRRR0

dS

=
4
3
πa3εjpqσ∞jq (0) +

4
30

πa5
(εjpmδlt + εjplδmt + εjptδml)

∂2σ∞jm
∂xl∂xt

RRRRRRRRRRR0

=
4

15
πa5εjpl

∂2σ∞jm
∂xm∂xl

RRRRRRRRRRR0

=
4

15
πa5
∇× (∇ ⋅ σ∞). (C5)

The σ∞jm (0) term vanishes because εjpqσ∞jq = 0.
Similarly, (C4) can be evaluated as

T2p = a∫
Sp

εjpqnqnjnknmσ∞km(0)dS

+
a3

2 ∫Sp

εjpqnqnjnknmnlnt
∂2σ∞jm
∂xm∂xl

RRRRRRRRRRR0

dS

=
4

15
πa3εjpq(δqjδkm + δqkδjm + δqmδkj)σ

∞

km(0)

+
a3

2
εjpq

∂2σ∞jm
∂xm∂xl

RRRRRRRRRRR0
∫

Sp

nqnjnknmnlntdS. (C6)

The σ∞km(0) term is zero because it involves εjpqIqjkm. The∇×∇⋅σ∞jm ∣0
term involves the integration of the sixth order isotropic tensor,

∫
Sp

nqnjnknmnlntdS =
4πa2

105
[δkmAqjlt + δkjAqmlt

+ δkqAjmlt + δklAqjmt + δktAqjml],

(C7)

where Aijkl = δijδkl + δikδjl + δilδjk. Using (C7), we find that the∇×∇
⋅σ∞jm ∣0 term is identically zero. Combining (C5) and (C6) gives (35).

APPENDIX D: TRANSIENT RESPONSES OF NO-SLIP
SPHERES

To compare our new results due to slip in Secs. V A–V C, we
also analyze the corresponding motions of no-slip spheres by solving
the equations of motion (31) and (43) with λ̂ = 0.

1. Transient sedimentation
The dimensionless equation of the particle motion (49) is

reduced to

M
dV
dτ
= 1 − V − ∫

τ

0
GB(τ − τ′)

dV
dτ′

dτ′, (D1)

with GB(τ) = 1/
√
πτ being the Basset kernel. Taking a Laplace

transform for (D1) gives

V(s) =
1

Ms
[

1
s + M−1s1/2 + M−1

]

=
1

Ms
1

γ2 − γ1
(

1
s1/2 + γ1

−
1

s1/2 + γ2
), (D2)

where

γ1 =
1 +
√

1 − 4M
2M

, γ2 =
1 −
√

1 − 4M
2M

. (D3)

An analytical solution for V(τ) can be obtained after taking an
inversion using (53),

V(τ) = 1 +
1

M(γ2 − γ1)
[−

1
γ1

exp(γ2
1τ)erfc(γ1

√
τ)

+
1
γ2

exp(γ2
2τ)erfc(γ2

√
τ)]. (D4)

At short times τ ≪ 1, (D4) has the following asymptotic
behavior:

V(τ) =
τ
M
−

4
3
√
π
τ3/2

M2 + O(τ2
), (D5)

which can also be obtained by inverting the large s expansion of
(D2),

V(s) =
1
M
[

1
s2 −

1
Ms5/2

] + O(s−3
).
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The leading contribution is constant acceleration V (0)(τ) = τ/M, giv-
ing the velocity UM(t) = tFg/(mp + mf /2) in the dimensional form.
The viscous correction is found to occur at O(τ3/2). This O(τ3/2)
correction can be interpreted as the velocity acceleration by the
Basset force FB(t) ∼ σB(t)a2

∝ t1/2 setup by the shear stress σB(t)
∼ μUM(t)/δ(t) across the viscous boundary layer of thickness δ(t)
∼ (νt)1/2. This can be seen more clearly from the following equation
for finding the correction velocity V (1):

M
dV(1)

dτ
= −

dV(0)

dτ ∫

τ

0
GB(τ − τ′)dτ′. (D6)

Note that in (D6), the Stokes drag −V (0) (τ) contributes to O(τ) and
thus is of a higher order contribution.

As for long times τ≫ 1, (D4) behaves as

V(τ) = 1 −
1

√
π
√
τ

+⋯, (D7)

which can also be inferred from the small s expansion of (D2):
V(s) = 1/s − 1/

√
s +⋯.

2. Translational response to a suddenly applied
stream

The dimensionless Eq. (63) with λ̂ = 0 is reduced to

M
dV
dτ
=M(Vstart − Vi)

dH
dτ

+ J
dH
dτ
− V − ∫

τ

0
GB(τ − τ′)

dV
dτ′

dτ′

−GB(τ)Vi + [H(τ) + GB(τ)][1 +
k
6
]. (D8)

The Laplace transform of (D8) with V(τ = 0−) = V i is

V(s) =
J′

Ms
[1 +

a1s1/2 + a0

s + M−1s1/2 + M−1
], (D9)

where J′ = MV start + J, a0 = (1 + k/6)/J′ −M−1, and a1 = a0 − V i/J′.
We recast (D9) in the following form:

V(s) =
J′

Ms
[1 +

B1

s1/2 + γ1
+

B2

s1/2 + γ2
], (D10)

where γ1 and γ2 are given in (D3) and

B1 =
γ1a1 − a0

γ1 − γ2
, B2 =

γ2a1 − a0

γ2 − γ1
.

Using (53), we can invert (D10) as

V(τ) =
J′

M
{1 +

2

∑
n=1

Bnγ−1
n [1 − exp(γ2

nτ)erfc(γn
√
τ)]}. (D11)

For short times τ≪ 1, taking large s expansion for (D9) gives

V(s) =
J′

Ms
(1 + s−1/2a1) + O(s−2

), (D12)

and hence, its inversion

V(τ) =
J′

M
[1 +

2a1
√
π
√
τ] + O(τ). (D13)

For long times τ≫ 1, (D9) in a small s expansion is

V(s) =
1
s
(1 +

k
6
) + (

a1

a0
− 1)

J′

s1/2
+⋯, (D14)

which leads to

V(τ) = (1 +
k
6
) + (

a1

a0
− 1)

J′
√
πτ

+⋯. (D15)

3. Angular response to a torque impulse
For λ̂ = 0, the angular dynamics are governed by the following

dimensionless equation reduced from (73):

dΓ
dτ
= δ(τ) − KΓ − K ∫

τ

0
QB

dΓ
dτ′

dτ′, (D16)

with the rotational Basset memory kernel QB given by (44) and
K = 8πρa5/Ip = 15ρ/ρp. The Laplace transform of (D16) with
Γ(τ = 0−) = 0 is

Γ(s) =
s1/2 + 1

D3(s1/2)
≡ h, (D17)

with the characteristic equation

D3(z) = z3 + (1 +
K
3
)z2 + Kz + K. (D18)

The response function h given by (D17) can be rewritten in the
following form:

h(s) =
A1

s1/2 + γ1
+

A2

s1/2 + γ2
+

A3

s1/2 + γ3
, (D19)

where γ1, γ2, and γ3 are the roots of D3(−z) = 0 in (D18) with the
coefficients A1, A2, and A3 given by

A1 =
1 − γ1

(γ1 − γ2)(γ1 − γ3)
, A2 =

1 − γ2

(γ2 − γ1)(γ2 − γ3)
,

A3 =
1 − γ3

(γ3 − γ1)(γ3 − γ2)
. (D20)

Γ(τ) can be obtained by inverting (D19) using (39), yielding

Γ(τ) =
3

∑
n=1

An[
1

√
π
√
τ
− γn exp(γ2

nτ) erfc(γn
√
τ)]. (D21)

For short times τ≪ 1, taking a large s expansion for (D17) gives

Γ(s) =
1
s
−

K
3

1
s3/2

+ O(s−2
), (D22)
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and hence,

Γ(τ) = 1 −
2K

3
√
π
√
τ + O(τ). (D23)

The long-time τ ≫ 1 behavior can be determined as follows by
taking a large τ expansion for (D21):

Γ(τ) =
3

∑
n=1

An[
1

γ2
n
√
π
(

1
τ
)

3/2
−

3
4γ4

n
√
π
(

1
τ
)

5/2
] + O(τ−7/2

). (D24)

Using (D17) and (D19), both the O(τ−3/2) and the O(τ−5/2) terms
can be readily evaluated according to

3

∑
n=1

An

γ2
n
= h′(0) = 0, (D25a)

3

∑
n=1

An

γ4
n
=
−1
6

h′′′(0) =
−1
3K

. (D25b)

Here, the primes mean the derivatives with respect to z = s1/2.
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