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Re-entrant history force transition for stick–slip
Janus swimmers: mixed Basset and slip-induced

memory effects

A. R. Premlata1 and Hsien-Hung Wei1,†
1Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
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It is well known that a rigid non-slippery particle in unsteady motion can experience
a Basset history force with the signature 1/δ decay due to a Stokes boundary layer
of thickness δ. For a uniform slip particle with slip length λ, however, a persistent
force plateau can replace the usual Basset decay at δ below the slip–stick transition
(SST) point δ ∼ λ (Premlata & Wei, J. Fluid Mech., vol. 866, 2019, pp. 431–449).
Here we analyse the hydrodynamic force on an oscillating stick–slip Janus particle,
showing that it can display unusual history force responses that are of neither the
no-slip nor the purely slip type but mixed with both. Solving the oscillatory Stokes
flow equation together with a matched asymptotic boundary layer theory, we find
that the persistent force plateau seen for a uniform slip particle may be destroyed by
the presence of the stick portion of a stick–slip Janus particle. Instead, a 1/δ Basset
force of amplitude smaller than the no-slip counterpart will re-emerge to dominate
the high frequency viscous force response again. This re-entry Basset force, which
occurs only after making a stick patch on a slippery particle, is also found to depend
solely on the coverage of the stick face irrespective of the slip length of the slip face.
When the stick portion is small, in particular, the re-entry Basset decay will exhibit
a slip plateau on its tail, displaying a distinctive re-entrant history force transition
prior to the SST. But if changing this tiny stick face to be slippery, no matter how
small the slip length is, the re-entry Basset decay will disappear and a constant
force plateau will return to dominate the force response again. These unusual force
responses arising from mixed stick–slip or non-uniform slip effects may not only
provide unique hydrodynamic fingerprints for characterizing heterogeneous particles,
but also have potential uses in active manipulation and sorting of these particles.

Key words: low-Reynolds-number flows

1. Introduction
A Janus particle is an anisotropic colloid that has two faces with distinct materials

or properties. Because of its bifunctional properties, a Janus particle can serve
not only as an active motor or a cargo for facilitating transport, but also as a
device for promoting molecular detection and guiding colloidal assembly (Walther

† Email address for correspondence: hhwei@mail.ncku.edu.tw
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& Müller 2013). When a particle has both hydrophilic and hydrophobic faces, it
becomes a stick–slip Janus particle (SSJP). Hydrodynamically, such a particle has
an anisotropic mobility mixed with no-slip and slip influences. So the no-slip and
the slip contributions to the hydrodynamic force generally are not additive. For this
reason, an SSJP may display quite different hydrodynamic characteristics compared
to no-slip and slip particles.

Existing investigations on SSJP are mainly focused on the steady situation (Swan
& Khair 2008; Willmott 2008; Boymelgreen & Miloh 2011; Crowdy 2013; Sun et al.
2013). However, unsteady effects may be important when one wishes to manipulate
stick–slip Janus particles using acoustic forces or employs them to mimic unsteady
self-propelled swimmers like micro-organisms. Understanding the unsteady force
response for an SSJP might provide useful insights into how to engineer or steer
stick–slip Janus particles in these situations. To the best of our knowledge, there has
been no prior attempt to analyse this problem until the present work.

In this article, we will analyse the hydrodynamic force on an SSJP moving
unsteadily in a viscous fluid. Our efforts will be devoted to looking at how mixed
no-slip and slip effects influence the characteristics of the history force. Below we
briefly provide the relevant background and explain how the problem is motivated.

When a rigid spherical particle (of radius a) is moving at a time-varying speed
Up(t) under the Stokes flow condition in a viscous fluid (of density ρ and viscosity µ),
in addition to the Stokes drag, it can further experience additional viscous force and
added mass, represented by the second and third terms, respectively, in the expression
of the total hydrodynamic force on the particle (Basset 1888; Landau & Lifshitz 1987),

F=−6πµaUp(t)− 6πµa
(
ρa2

πµ

)1/2 ∫ t

−∞

U̇p(t′)
√

t− t′
dt′ −

2
3
πρa3U̇p(t). (1.1)

Compared to the added mass which is purely of potential-flow origin, the additional
viscous force, termed the Basset force, takes the form of a memory integral to account
for the history-dependent viscous drag arising from fluid acceleration/deceleration. If
the particle starts from rest and moves instantaneously with a constant speed, the
Basset force will decay as t−1/2 owing to the same decay of the memory kernel. In
fact, the Basset force is exactly the drag force resulting from the viscous stress ∼
µUp/δ across the Stokes boundary layer of thickness δ∼ (νt)1/2 (with ν =µ/ρ being
the kinematic viscosity of the fluid) (Landau & Lifshitz 1987).

Perhaps how the boundary layer influences the hydrodynamic force on a rigid
particle can be best revealed by letting the particle oscillate with Up(t) = Upe−iωt

(with ω being the oscillation frequency). The force is (Stokes 1851; Lawrence &
Weinbaum 1988)

F=−6πµUpa
(

1+
√

2
e−iπ/4

δ̂
+

2
9

e−iπ/2

δ̂2

)
e−iωt, (1.2)

where δ̂= (2ν/ωa2)1/2 measures the extent of the boundary layer δ= (2ν/ω)1/2 relative
to the particle radius. As indicated by (1.2), the Basset force has the distinctive
amplitude 1/δ̂ ∝ ω1/2 and phase π/4 ahead of the particle velocity, whereas the
inviscid added mass varies as 1/δ̂2

∝ ω with phase π/2. Because the added mass is
not dissipative, at high frequencies the particle motion will be mainly dissipated by
the Basset force. It is this reason why the Basset force has a strong influence on the
behaviour of an unsteadily swimming micro-organism (Wang & Ardekani 2012).
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FIGURE 1. (Colour online) Dynamic slip effect in the fluid motion driven by an oscillating
slippery plate. Because of slip, the fluid velocity at the plate surface is not the plate speed
U but slowed down to us ∼Uδ/(λ+ δ). The shear stress is thus reduced to τs ∼µus/δ∼
µU/(λ+ δ) and becomes a constant when the boundary layer δ is thinner than the slip
length λ.

The same dominance of the Basset force can also happen to the short-term response
in particle dynamics when a particle has a transient development in its motion. In
particular, when particle inertia is important, the Basset force has been shown crucial
to particulate transport in particle-laden flow (Maxey & Riley 1983) and particle
dispersion in turbulence (Mei, Adrian & Hanratty 1991). Similar impacts but arising
from the non-Basset-like history force can also happen to a rising bubble when it
undergoes a rapid shrinkage (Takemura & Magnaudet 2004).

Just like the situation happening to bubbles, while the idea of the history force
is rooted in the Stokes boundary layer, the Basset t−1/2 kernel is not the sole
memory kernel type. Aside from the Basset term, an additional memory term can
be introduced through particle asphericity or fluidity (Lawrence & Weinbaum 1986;
Galindo & Gerbeth 1993). Unlike the Basset kernel which is singular at t = 0, such
additional memory kernel typically takes the form of exp(t/t0)erfc((t/t0)

1/2) which
is finite at t = 0 (Lawrence & Weinbaum 1986), where t0 is the characteristic time
scale. In the case of fluid particles, in particular, these two kernels are working in a
somewhat competitive manner. For a fluid droplet, even though the whole memory
kernel contains an additional memory kernel, it is still dominated by the t−1/2 Basset
kernel as t→ 0 (Galindo & Gerbeth 1993). But for a gas bubble, the Basset kernel
vanishes, whereas the additional memory kernel disappears in the rigid sphere limit
(Yang & Leal 1991; Galindo & Gerbeth 1993).

The above features about the memory kernels for fluid particles imply that the
difference between the Basset and the non-Basset history forces seems to lie in
whether there is fluid slippage on the surface of a particle. Indeed, it has been shown
that additional surface slip can significantly modify the characteristics of the history
force (Michaelides & Feng 1995; Gatignol 2007). Apparently, surface slip tends to
reduce drag, therefore enabling one to describe the situation between the no-slip case
and the full-slip bubble case.

And yet, the effects of surface slip are not just simple drag reduction, but have
more intriguing impacts on the nature of history force. The reason is that in an
unsteady motion, the actual amount of slip a slippery particle perceives is not fixed
for a given slip length λ, but constantly changes with the boundary layer thickness δ
that also varies with time. As illustrated in figure 1, the situation can be best pictured
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by looking at the startup fluid motion driven by a moving slippery plate at speed U.
This is essentially the Stokes 1st problem with slip, whose basic features have been
demonstrated in detail by Fujioka & Wei (2018). The impacts of slip start from the
fact that slip can make the fluid velocity at the surface slow down to us∼Uδ/(λ+ δ).
This leads the corresponding shear stress to reduce to τs∼µus/δ∼µU/(λ+ δ). At the
very short time during which δ is much thinner than λ, τs remains a constant µU/λ.
This constant stress will continue until the slip–stick transition (SST) occurring at
t ∼ λ2/ν when δ ∼ (νt)1/2 grows to the size comparable to λ. After the SST point
when δ is thicker than λ, the no-slip result µU/δ reappears.

The simple picture above suggests that slip can completely alter the characteristics
of history force. Premlata & Wei (2019) recently re-examined effects of slip on the
hydrodynamic force on an oscillating spherical particle, showing that (1.2) is modified
to

F=−6πµUpa


(

1+ 2λ̂

1+ 3λ̂

) 1+
√

2e−iπ/4 1

δ̂

1+ λ̂(1+ 3λ̂)−1
×
√

2e−iπ/4 1

δ̂

+ 2
9

e−iπ/2 1

δ̂2

 e−iωt,

(1.3)
where λ̂ = λ/a is the dimensionless slip length. Note that the same result (1.3) has
been given by early investigations (Albano, Bedeaux & Mazur 1975; Michaelides &
Feng 1995) but not fully explored until Premlata & Wei (2019). What Premlata & Wei
(2019) found is that in the small δ̂ regime, the viscous part of (1.3) gives a persistent
force plateau 6πµUpa2/λ at δ̂ below the SST point ∼ λ̂, replacing the usual 1/δ̂ Basset
decay. In addition, this plateau force becomes in-phase with the particle velocity. Since
the constant force plateau can only exist in the presence of slip and get elevated as λ̂
is decreased, one can conclude that surface slip, no matter how small it is, will make
the history force jump from the no-slip 1/δ̂ Basset decay down to the constant force
plateau in the high frequency regime. The memory kernel is also found to take exactly
the same type as that in the bubble case, but is able to attain the constant force plateau
as t→ 0 and to recover the Basset kernel in the no-slip limit. This is quite distinct
from the drop case in which the Basset force still dominates in the short-term viscous
force response while an additional memory term is present (Galindo & Gerbeth 1993).

Since purely no-slip and slip particles have completely different history force
characteristics and there is no smooth transition between the two in the high frequency
or short time regime, this raises a question: how about if a particle consists of both
no-slip and slip faces like an SSJP? Specifically, the main question is whether the
no-slip Basset force or the slip-induced plateau force dominates the high-frequency or
short force response; and more importantly, how these two compete with each other?
To answer these questions, it is necessary to analyse the history force response for an
SSJP by combining both stick and slip contributions and how the response depends
on δ, λ and the partition between the stick and slip portions.

It actually turns out that the history force exerted on an SSJP is neither the no-slip
nor the purely slip type but mixed with the two. As will be demonstrated shortly,
the detailed force responses can be obtained by analysing the fluid motion around
an oscillating SSJP. What we find is that the dominance of the high frequency force
plateau seen for a uniform slip particle (Premlata & Wei 2019) will completely
disappear due to the presence of the stick part of an SSJP. Instead, a reduced Basset
force, which has a smaller amplitude than the no-slip counterpart, will resurface to
dictate the viscous force response in the high frequency regime. Since the Basset
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FIGURE 2. Sketch of a spherical stick–slip Janus particle and the coordinate system.

force for a no-slip particle ceases to exist in the δ̂ → 0 limit when the particle
becomes uniform slip, but re-emerges with a smaller amplitude when the particle is
partially covered by a no-slip surface, we call the latter force the re-entry Basset force
to distinguish it from the former. For an SSJP with a tiny stick portion, in particular,
the force response can even display a re-entry Basset decay at high frequencies
and then level off to a plateau at lower frequencies, showing a distinctive re-entrant
history force transition (RHFT) that exists only for an SSJP. Below we demonstrate
how we arrive at the above features by solving the oscillatory Stokes flow equation
in § 2 and by using the matched asymptotic boundary layer theory in § 3.

2. Hydrodynamics around an oscillating stick–slip Janus particle
Consider the motion of a spherical SSJP of radius a in an incompressible viscous

fluid of density ρ and viscosity µ. As depicted in figure 2, the slip part of the
particle has polar angle θ0 in division with the remaining stick part. The particle
undergoes an oscillatory translation at speed Upe−iωt with the peak velocity Up and
frequency ω. It is more convenient to solve the problem in the translating coordinate
system with the origin at the instantaneous centre of the particle. Having length, time,
velocity and pressure scaled by a, ω−1, Up and µUp/a, respectively, the velocity field
v′ and pressure p′ around the particle are governed by the continuity equation and
the unsteady Stokes flow equation,

∇ · v′ = 0, (2.1)
Ωv′t′ =−∇p′ +∇2v′, (2.2)

where Ω = ωa2/ν is the dimensionless frequency (with ν =µ/ρ being the kinematic
viscosity). For simplicity, we assume that the particle is moving along its bipolar
direction so that the flow field v′ = (u′, v′) can be expressed in terms of the
meridional (θ) component u′ and the radial (r) component v′. This axisymmetric
fluid motion is likely to be the case in steady oscillation because any misalignment
of the particle movement from the bipolar direction will cause the particle to rotate
until an alignment is achieved.

Because the fluid motion is oscillatory, it is more convenient to solve the problem
in the frequency domain by letting (u′, v′, p′)= (u, v, p)e−it′ . Taking curl for (2.2) to
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eliminate pressure with ∇×∇p= 0 and writing the velocity components in terms of
the stream function ψ for satisfying (2.1),

u=−
1

r sin θ
∂ψ

∂r
, v =

1
r2 sin θ

∂ψ

∂θ
, (2.3a,b)

we can transform (2.2) into

E2(E2
− α2)ψ = 0, (2.4)

where E2
= ∂rr + r−2(1 − η2)∂ηη with η = cos θ and α = (−iΩ)1/2 is the complex

Womersley number with Re{α}> 0.
Boundary conditions are the mixed stick–slip condition at r= 1, the impenetrability

condition at r= 1, and the vanishing velocity condition as r→∞,

u+ sin θ = β(θ)
[

r
∂

∂r

(u
r

)
+

1
r
∂v

∂θ

]
at r= 1, (2.5)

v = cos θ at r= 1, (2.6)
u, v→ 0 as r→∞. (2.7)

In (2.5), β(θ)= λ̂ for the slip face and 0 otherwise, where λ̂=λ/a is the dimensionless
slip length.

As in Lawrence & Weinbaum (1986), the solution of (2.4) that satisfies (2.7) takes
the form

ψ =

∞∑
n=2

[AnHn(r)+ BnRn(r)]Gn(η), (2.8)

where Hn(r) = r−n+1, Rn(r) = r1/2Kn−1/2(αr) with Kn−1/2 being modified Bessel
functions of second kind, and Gn the Gegenbauer functions of degree −1/2. The
coefficients An and Bn are determined by substituting (2.8) into (2.5) and (2.6)
and applying the orthogonality

∫ 1
−1 Gm(η)Gn(η)/(1 − η2) dη = δmnCn over these two

boundary conditions, where δmn is the Kronecker delta and Cn = 2/n(n− 1)(2n− 1).
From (2.6), we can express Bn in terms of An as Bn= δ2n − AnHn(1)/Rn(1). Applying
(2.5) and eliminating Bn, we arrive at the following infinite system of linear equations
(via m) for An:

∞∑
n=2

{δmnCnGn +Lmndn} An = 2 {C2δ2m +Lm2} −Cmjmδ2m −

∞∑
n=2

Lmnenδ2n, (2.9)

where

Gn =Hn
′(1)−

Hn(1)
Rn(1)

Rn
′(1), dn = 2Hn

′(1)−Hn
′′(1)−

Hn(1)
Rn(1)

{2Rn
′(1)− Rn

′′(1)},

Lmn =

∫ 1

−1

Gm(η)Gn(η)β(η)

1− η2
dη, en =

1
Rn(1)

{2Rn
′(1)− Rn

′′(1)}, jn =
Rn
′(1)

Rn(1)
.


(2.10)

After solving (2.9), the force on the particle can be readily determined as F= F̂e−iωt

with
F̂=µUpa(−2πA2 + Vp)α

2, (2.11)
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where Vp = 4π/3 is the dimensionless particle volume. In this work we are mainly
concerned with the viscous part of F̂ after subtracting the added mass contribution
−6πµUpa× (α2/9),

F̂vis
= 6πµUpa(−A2 + 1)× (α2/3). (2.12)

We have verified analytically that when β is constant, (2.12) is reduced to the viscous
part of (1.3). For given α, θ0 and λ̂, equation (2.9) can be solved by truncation and
matrix inversion. In the present work, convergent results can be obtained by retaining
100 terms in the solution (2.8).

Figure 3(a) plots the viscous force amplitude |F̂vis
| against δ̂= (2/Ω)1/2 for an SSJP

with a slip hemisphere (θ0= 90◦). Several features can be immediately observed. First,
for a given value of λ̂ the high frequency force plateau seen for the uniform slip case
disappears. Instead, a Basset 1/δ̂ decay emerges and dominates the force response
in the small δ̂ regime. This is the re-entry Basset force after a slippery particle is
partially covered by a stick cap. Second, all the curves with different values of λ̂
approach towards the same re-entry Basset asymptote as δ̂→ 0 (see the inset). Third,
the amplitude of such an asymptote is slightly smaller than that of the no-slip Basset
force. The corresponding phase φvis

= tan−1(Im(F̂vis)/Re(F̂vis)) also approaches the
Basset value −π/4 as δ̂→ 0, as indicated by figure 3(b). Note that there is a phase
jump between the no-slip case (φvis =−π/4) and the uniform slip case (φvis = 0). So
returning from φvis = 0 for a completely slip sphere to φvis = −π/4 for an SSJP is
also an indication of the re-entry Basset force seen in the latter.

The appearance of the re-entry Basset decay between the no-slip Basset decay
and the uniform slip force plateau seen in figure 3(a) implies that there must be a
competition between no-slip and slip memory effects, depending on the stick–slip
partition measured by θ0. Figure 4(a) plots the viscous force responses when the stick
portion is gradually reduced by increasing θ0. We find that when the stick portion is
shrunk, not only will the re-entry Basset 1/δ̂ decay reduce its amplitude, but also a
slip plateau will start to re-appear on the tail of the re-entry Basset decay. When the
stick portion becomes tiny such as that of the θ0 = 150◦ case, in particular, the force
response shows the coexistence of a re-entry Basset decay and a slip plateau. This
clearly signifies an RHFT, featured with two transition points: (i) the RHFT point
when the re-entry Basset decay starts to level off towards the slip plateau, and (ii) the
SST point δ̂ ∼ λ̂ around which the slip plateau starts to decrease towards the usual
Basset decay. We should clarify that either transition represents a gradual change from
one force response to another, so the corresponding point should be understood as a
‘crossover’ between two different force responses. Interestingly, if a Janus particle is
made of two slip surfaces, the re-entry Basset decay will disappear and the slip force
plateau will return to dominate the viscous force response in the small δ̂ regime, as
also revealed by figure 4(a). The disappearance of the re-entry Basset force in the
small δ̂ regime is accompanied by a jump of the phase φvis(δ̂→ 0) from −π/4 to
zero when the stick–slip case changes to the slip–slip case, as shown in figure 4(b).

3. Matched asymptotic boundary layer theory
To explain the results shown in figures 3 and 4 as well as to see how RHFT

occurs, we develop a matched asymptotic boundary layer theory for capturing the
force response in the small δ regime when Ω is large. Similar to previous studies
by Wang (1965) and Riley (1966), we let ε = 1/Ω1/2

= δ̂/
√

2 be the small parameter
to expand the flow fields outside and inside the boundary layer as follows.
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FIGURE 3. (Colour online) (a) Plot of the calculated viscous force amplitude
|F̂vis
|/(6πµUpa) (using (2.12)) against δ̂ for an SSJP with a slip hemisphere (θ0 = 90◦),

showing that all the curves with different values of λ̂ approach towards the same re-entry
Basset 1/δ̂ asymptote (3.27) as δ̂→ 0 (see the inset). (b) Plot of the corresponding phase
φvis as a function of δ̂, showing that φvis also approaches −π/4 as δ̂→ 0.

3.1. Outer inviscid core region
In the outer core regime, we let V = (U, V) and P stand for the velocity field and
pressure, respectively, and expand them as

V =V0 + εV1 +O(ε2), (3.1)
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FIGURE 4. (Colour online) (a) History force transition between the re-entry Basset decay
and the slip plateau can be more clearly revealed from the viscous force response when
the stick portion of an SSJP is gradually reduced. When the stick portion becomes tiny
such as that of θ0 = 150◦ case, the prevailing re-entry Basset decay can exhibit a slip
plateau on its tail in the small δ̂ regime (see pink solid line), showing two transition
points: RHFT and SST points given by (3.30) and (3.28), respectively. For a slip–slip
Janus particle, however, the re-entry Basset decay will disappear and a constant force
plateau will return to dominate the force response again (see green dashed line). (b) A
jump of the phase φvis(δ̂→ 0) from −π/4 to zero when the stick–slip case changes to
the slip–slip case.

P= ε−2P0 + ε
−1P1 +O(ε0). (3.2)

Substituting the above into (2.1) and (2.2), we find that at both O(ε0) and O(ε1) the
flows are inviscid and irrotational, governed by ∇ ·Vn= 0 and −iVn=−∇Pn. So the
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882 A7-10 A. R. Premlata and H.-H. Wei

flows can be solved using ∇2φn = 0 with Vn =∇φn, giving the velocity and pressure
distributions at each order as follows.

O(ε0):

U0 =−(A/r3) sin θ, (3.3)
V0 =−2(A/r3) cos θ, (3.4)

P0 = i(A/r2) cos θ. (3.5)

O(ε):

U1 = (A1/r3) sin θ, (3.6)
V1 =−2(A1/r3) cos θ, (3.7)

P1 = i(A1/r2) cos θ. (3.8)

Here the coefficients A and A1 will be determined through matching to the solution
in the inner boundary layer region.

3.2. Inner boundary layer region
For the inner boundary layer region where viscous effects are important, we stretch
the radial coordinate as r= 1+ εy and expand the flow variables as

u= u0 + εu1 +O(ε2), (3.9)
v = cos θ + εv0 +O(ε2), (3.10)

p= ε−2p0 + ε
−1p1 +O(ε0). (3.11)

Substituting the above into (2.1) and (2.2), at leading order the equations are

∂yv0 +
1

sin θ
∂

∂θ
(u0 sin θ)= 0, (3.12)

−iu0 =−∂θp0 + ∂yyu0, (3.13)
∂yp0 = 0. (3.14)

Because of (3.14), p0 remains constant across the boundary layer. Matching ε−2p0 to
the outer pressure ε−2P0(r→ 1+) with (3.5), we can determine p0 as

p0 = iA cos θ. (3.15)

Next, we substitute (3.15) into (3.13) to determine u0 using the mixed stick-slip
boundary condition at y= 0,

u0 + sin θ = (β(θ)/ε)∂yu0. (3.16)

In (3.16) we retain both the no-slip part (on the left-hand side) and the slip part (on
the right-hand side) in the present analysis, just like those in the Stokes 1st problem
(Fujioka & Wei 2018). The reasons are twofold. First, because the fluid is dragging
along with the particle through the driving velocity sin θ along the particle surface,
impacts of slip can only be brought by having the slip term at least balanced to the
sin θ term in the no-slip part, especially when the amount of slip λ̂ = λ/a varies.
Second, to capture the non-trivial transition from the no-slip response to the slip
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Re-entrant history force transition for stick–slip Janus swimmers 882 A7-11

response, it is more convenient to retain both parts in (3.16). Specifically, since the
effective slip coefficient β(θ)/ε can be either small or large depending on the polar
angle θ0 that divides the stick and the slip faces for an SSJP, it is necessary to keep
the no-slip part in (3.16) so that one can see how its effects compete with the slip
part’s as θ0 varies.

With (3.15) and (3.16), we solve (3.13) to determine u0 as

u0 = (A− 1) sin θ [e−kyg(θ)− 1] − sin θ, (3.17)

where k = e−iπ/4 and g(θ) = (1 + kβ(θ)/ε)−1 is a piecewise continuous function
because of β(θ) in (2.5). Strictly speaking, the present boundary layer analysis is
valid only if |dβ/dθ | � ε−1. As will be shown later in the force expression (3.25),
since we will be only concerned with the first two harmonic contributions from g(θ),
effects of the piecewise continuity, which contribute to higher harmonics, will not
matter. Substituting (3.17) into (3.12), we can solve for v0 with v0(y= 0)= 0,

v0 = k−1(A− 1)(e−ky
− 1)

1
sin θ

∂

∂θ
(g(θ) sin2 θ)+ 2Ay cos θ. (3.18)

At the next order, we only need to determine the pressure which again is a function
of θ only because ∂yp1 = 0. Similar to (3.15), matching ε−1p1 to the outer pressure
ε−2P1(r→ 1+) with (3.8) gives

p1 = iA1 cos θ. (3.19)

3.3. Matching
To determine the coefficients A and A1 we match the radial velocities of the outer
and the inner regions,

lim
r→1
(V0 + εV1 + · · ·) ⇐⇒ lim

y→∞
(cos θ + εv0 + · · ·) as ε→ 0. (3.20)

This is equivalent to the matching between the outer and the inner stream functions
(Riley 1966). Substituting (3.4) and (3.7) into the left-hand side of (3.20) and taking
an expansion in ε, we arrive at

(V0 + εV1 + · · ·)r→1 = [−2A+ ε(−2A1 + 6Ay)+ · · ·] cos θ + · · · . (3.21)

As for the right-hand side of (3.20), substituting (3.18) into it gives

(cos θ + εv0+· · ·)y→∞= cos θ − εk−1(A−1)
1

sin θ
∂

∂θ
(g(θ) sin2 θ)+2Aεy cos θ. (3.22)

Expanding g(θ) sin2 θ in terms of the Gegenbauer functions Gn(cos θ) of degree −1/2
and matching the terms in (3.21) to those in (3.22), we find

A=−1/2, A1 = (3/2k)(A− 1)
∫ 1

−1
g(η)G2(η) dη. (3.23)
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3.4. Hydrodynamic force
The amplitude of the hydrodynamic force on the particle can be evaluated according
to

F̂
µUpa

= 2π

∫ π

0
(σrr cos θ − σrθ sin θ)y=0 sin θ dθ. (3.24)

The normal stress σrr(y= 0)=−p(y= 0)+ 2(∂v/∂r)y=0 is dominated by the pressure
term until O(ε−1) because of (3.11) and (∂v/∂r)y=0 ∼ O(ε0). With (3.15) and (3.19),
it can be evaluated as σrr(y = 0) = iA cos θε−2

+ iA1 cos θε−1
+ O(ε0). With (3.17),

the tangential stress can be evaluated as σrθ(y = 0) = ε−1(∂u0/∂y)y=0 + O(ε0) =

−ε−1k sin θg(θ)(A − 1) + O(ε0). Combining the above stresses into (3.24) together
with (3.23), we obtain the force amplitude as

F̂
−6πµUpa

=
1

9ε2
e−iπ/2

+
1
ε

e−iπ/4

(
g0 −

1
5

g2

)
+O(ε0). (3.25)

Here the ε−2 term is the added mass, and the ε−1 term is the viscous force with g0=

(1/2)
∫ 1
−1 g(η)P0(η) dη and g2= (5/2)

∫ 1
−1 g(η)P2(η) dη representing the monopole and

the quadrupole contributions, respectively, where Pn are the Legendre functions.
For the slip–slip case with β(η)= λ̂1+H(η−η0)(λ̂2− λ̂1) where H is the Heaviside

step function, the viscous part of (3.25) becomes

F̂vis

−6πµUpa
=

e−iπ/4

ε∆

[
1+

k
2ε

{
(λ̂1 + λ̂2)+ η0

(
1−

1
2
(η0 − 1)(η0 + 1)

)
(λ̂2 − λ̂1)

}]
+O(ε0), (3.26)

where ∆= (1+ kλ̂1/ε)(1+ kλ̂2/ε). As ε→ 0, equation (3.26) gives a constant force
plateau having zero phase shift. In the case of η0= 0 (hemisphere), the plateau value
is 1/λ̂eff where the effective slip length λ̂eff = 2/(λ̂−1

1 + λ̂
−1
2 ) is exactly the harmonic

mean of λ̂1 and λ̂2.
For the stick–slip case with λ̂1 = 0, equation (3.26) is reduced to

F̂vis

−6πµUpa
=

1
ε

e−iπ/4 1

(1+ kλ̂2/ε)

[
1+

kλ̂2

ε
(η0 + 1)2C

]
+O(ε0), (3.27)

where C = (2 − η0)/4. The small δ̂ force responses seen in figures 3 and 4 can be
excellently captured by the asymptotic result (3.27). On the right-hand side of (3.27),
the first term is the reduced force due to slip, which yields a constant force plateau
1/λ̂2 at ε below the SST point at |k|λ̂2/ε ≈ 1,

εSST ≈ λ̂2. (3.28)

The second term arises from the stick part. This term outweighs the first as ε→ 0,
giving the re-entry Basset force,

F̂RB

−6πµUpa
= ε−1e−iπ/4(η0 + 1)2C, (3.29)
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Re-entrant history force transition for stick–slip Janus swimmers 882 A7-13

which depends solely on the coverage of the stick face but not on the slip length λ̂2.
This re-entry Basset force will start to decrease towards the slip plateau when ε is
increased to the RHFT point at |k|λ̂2(η0 + 1)2C/ε ≈ 1 in (3.27),

εRHFT ≈ λ̂2(η0 + 1)2C ≈ (η0 + 1)2CεSST. (3.30)

As indicated by (3.30), if the stick face is small (i.e. η0 is close to −1), εRHFT will
become well separated from εSST given by (3.28), as can be clearly seen from the
θ0 = 150◦ curve in figure 4(a). But if changing this small stick face to be slippery,
no matter how small λ̂1 is, RHFT will disappear and the constant force plateau will
return to dominate the force response again, as indicated by (3.26).

Re-entrant history force transition can be best revealed from (3.27) in the memory
integral form if the particle undergoes a transient movement. In this case, we can
express the particle velocity as a Fourier integral, convert (3.27) in terms of the
Laplace variable s with −iω→ s, and then carry out an inverse Laplace transform. If
the particle starts from rest, i.e. Up = 0 for t 6 0, and moves at Up = Up(t) for t> 0,
equation (3.27) can be written as the following memory integral:

Fvis(t)
−6πµa

=

∫ t

0

dUp(τ )

dτ
M(t− τ) dτ , (3.31)

with the memory kernel

M(t)=
1

λ̂2

exp
(

t
tSST

)
erfc

((
t

tSST

)1/2
)
(1− (η0+ 1)2C)+

(η0 + 1)2C
√

π

(
t
tν

)−1/2

+ · · · .

(3.32)
Here tν = a2/ν is the viscous diffusion time. The slip–stick transition time, tSST, is

tSST = λ̂
2
2tν = λ2

2/ν, (3.33)

which is shorter than tν for λ̂2 < 1. As clearly revealed by (3.32), M(t) consists of
two contributions: the slip kernel and the Basset kernel, characterized by tSST and tν ,
respectively. For η0=−1, it recovers the uniform slip result (Premlata & Wei 2019). If
Up(t)=U0 (const.), equation (3.31) with λ̂2 < 1 has the following short-term response
for t/tν� 1,

Fvis(t)
−6πµU0a

=
C(η0 + 1)2
√

π

(
t
tν

)−1/2

+
1− C(η0 + 1)2

λ̂2

(
1−

2
√

π

(
t

tSST

)1/2
)
+O(t/tν).

(3.34)
The leading contribution is the re-entry Basset t−1/2 decay. The next is the O(t0) slip
plateau with a t1/2 tail due to SST. Re-entrant history force transition occurs when
the former is decreased to the latter when the boundary layer of thickness δ∼ (νt)1/2
grows to the size at time

tRHFT ≈

(
C(η0 + 1)2

√
π(1− C(η0 + 1)2)

)2

tSST. (3.35)

So tRHFT becomes quite sensitive to the coverage of the stick face, (η0+ 1). If the stick
portion is small, RHFT will occur at time ∼ (η0+ 1)4tSST much earlier than SST upon
the start of the particle movement. If such a particle undergoes an oscillatory motion,
the RHFT frequency corresponding to (3.35) is ωRHFT ∼ (η0 + 1)−4ωSST much higher
than the SST frequency ωSST ∼ ν/λ

2
2 corresponding to (3.33).
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4. Concluding remarks
We have demonstrated that an SSJP can display unusual history force responses that

are of neither the no-slip nor the purely slip type but mixed with both. We find that
the stick portion of an SSJP, no matter how small it is, will always render a Basset
force to exhibit 1/δ̂ or t−1/2 decay in the high frequency or short time regime but
of amplitude smaller than that of a no-slip particle. This is the re-entry Basset force
because it not only replaces the constant force plateau seen for a slippery particle
(Premlata & Wei 2019) but also re-emerges when a slippery particle is patched with
a no-slip face. In the case where the stick portion is small, in particular, the re-entry
Basset decay will be further accompanied by a slip plateau at a lower frequency or
longer time, displaying an RHFT prior to the SST. These unusual force responses
only occur to stick–slip Janus particles and are very distinct from those for drops
and bubbles (Galindo & Gerbeth 1993; Magnaudet & Legendre 1998). As these force
responses are very sensitive to the frequency of the prescribed oscillatory motion, one
may be able to utilize them to characterize heterogeneous particles or to perform
hydrodynamic sorting of these particles. Alternatively, because how much the stick
face covers an SSJP and the amount of slip on the slip face can strongly influence
the behaviour of the re-entry Basset force in competition with the slip force plateau,
this may offer an advantage for controlling the motion of an SSJP via selecting a
proper stick–slip partition. This may be in particular useful to the design of an SSJP
if one would like to employ it as a self-propelled swimmer.

Experimentally, the mixed history force responses may be realized by having an
SSJP propelled by an acoustic force at frequency ω typically ranging from 100 kHz to
10 MHz (Laurell, Petersson & Nilsson 2007). Consider an SSJP of radius a∼ 10 µm
and let it undergo an oscillatory translation at the peak velocity Up ∼ 10 µm s−1 in
water (of ρ = 1 g cm−3 and µ = 10−2 g cm−1 s−1). At frequencies lower than the
viscous damping frequency ων = ν/2πa2

∼ 103 Hz (with ν=µ/ρ being the kinematic
viscosity), the particle can experience a steady Stokes drag FStokes = 6πµUpa≈ 2 pN.
Suppose the slip length is λ ∼ 1 µm, taken as 10 % of the particle radius. The
force plateau Fplateau = FStokes(a/λ) ≈ 20 pN may appear at ω higher than the SST
frequency ωSSF ∼ ν/2πλ2

∼ 105 Hz according to (3.28). The re-entry Basset force
FRB∼FStokes(ω/ων)

1/2(η0+1)2 according to (3.29). For an SSJP with a slip hemisphere
(of 2θ0 = 180◦ or η0 = 0), there is no plateau in the force response (see figure 3a).
The FRB for this case will be at least 10FStokes ≈ 20 pN at ω higher than ωSSF. But if
FRB starts to show a tail with a slower decay rate as occurring to an SSJP having a
small stick cap of angle 2× (180− θ0)= 120◦ or η0 =−1/2 (see figure 4a), FRB can
only be seen if ω is raised to the RHFT frequency ωRHFT ∼ (η0 + 1)−4ωSSF ∼ 106 Hz
or higher. The above estimates can also be used to design an acoustically powered
microswimmer made by an SSJP for controlling its motion according to a, λ, ω and
η0.
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