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ABSTRACT
We theoretically investigate the oscillatory spinning of an axisymmetric stick-slip Janus particle (SSJP) under the creeping flow condition.
Solving the unsteady Stokes equation together with a matched asymptotic boundary layer theory, we find that such a particle can display
unusual viscous torque responses in the high frequency regime depending on the Stokes boundary layer thickness δ, the slip length λ of the
slip face, and the coverage of the stick face. Our analysis reveals that an SSJP will always experience a reduced Basset torque of 1/δ decay due
to the presence of the slip face, with amplitude smaller than the no-slip counterpart irrespective of the value of λ. If the coverage of the stick
face is sufficiently small, the reduced Basset torque can turn into a constant torque plateau due to prevailing slip effects at larger values of δ,
representing a new history torque transition prior to the slip-stick transition at δ ∼ λ. All these features are markedly different from those for
no-slip and uniform slip particles, providing not only distinctive fingerprints for Janus particles but also a new means for manipulating these
particles.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5131678., s

I. INTRODUCTION

A Janus particle is a compartmentalized colloid of two faces
having distinct properties. It is commonly made of hydrophilic and
hydrophobic caps, termed stick-slip Janus particle (SSJP). Because
of its surface polarity, such a particle can work as an active cargo
for expediting transport or be used to aid in colloidal assembly.1 In
addition, because the mobility of an SSJP can be further adjusted
by the stick-slip partition, this may offer a tunable means to real-
ize more precise hydrodynamic manipulations. While there are a
few studies on the hydrodynamics of SSJP, they are mainly focused
on the steady situation.2–8 The present work will be extended to the
time-dependent scenario.

The present work is motivated by magnetically driven micro-
rotors for generating rotational flows9 or by the use of rotating
magnetic beads for biosensing applications.10 In the former, an SSJP
could be a more efficient microrotor by having its slip portion faced
down to the bottom wall to reduce drag. For the latter, a bead can be
patched with a slip cap after absorbing hydrophobic proteins. This
might affect its spinning behavior and hence the subsequent molec-
ular transport on its surface. In either case, it is necessary to know

how much torque is needed to rotate an SSJP or how fast an SSJP can
spin when it is subject to torsion. In the unsteady situation, since the
applied torsion is not balanced by the viscous torque, the resulting
rotational velocity may reveal more information about the particle.
For rotary oscillations, since there exists a phase difference between
the rotational velocity and the torque, the behavior of such phase dif-
ference for an SSJP is expected to vary with the stick-slip partition.
This might provide a distinct fingerprint for an SSJP to differentiate
from no-slip and uniform slip particles hydrodynamically.

As both no-slip and slip effects will join to influence the hydro-
dynamic responses of an SSJP, it is instructive to review basic fea-
tures for no-slip and slip spheres under rotary oscillations. For a
no-slip sphere, it is well known that it can experience a Basset his-
tory force11 varying as a/δ due to a thin boundary layer of thickness
δ = (2ν/ω)1/2, especially at the oscillation frequency ω much higher
than the viscous damping frequency ν/a2, where a is the sphere
radius and ν is the kinematic viscosity. More precisely, this a/δ Bas-
set force arises from a much larger shear stress μΩ0a/δ across the
boundary layer with the peak angular velocity Ω0 (with μ being the
fluid viscosity). The resulting torque thus also varies as a/δ in the
high ω regime.12
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For a slip sphere, on the contrary, the boundary layer can
become much thinner than the slip length λ at ω > ν/λ2 to make slip
effects much stronger. This leads to a constant shear stress μΩ0a/λ
on the sphere surface.13 As a result, the torque also becomes constant
and persists until the slip-stick transition (SST) point at δ ∼ λ when
ω ∼ ν/λ2 below which the usual Basset decay reappears.14 Such
plateau and slip-stick transition are not noticed in the previous
investigation on the unsteady rotation of a slippery sphere.15

As such, purely no-slip and slip particles have completely dif-
ferent characteristics in their torque responses. This raises a ques-
tion, what if a particle is comprised of both no-slip and slip faces like
an SSJP? In our recent study on an oscillatory translating SSJP,16 we
found that the force response can be mixed with both no-slip and
uniform slip contributions. While a similar torque response might
be expected to occur to an oscillatory spinning SSJP, the two prob-
lems have quite distinct physics, reflected by the following aspects.
First, for the translation problem the total viscous force on the par-
ticle is nonzero, whereas the spinning problem is force free. It fol-
lows that the flow field in the latter will decay at a much faster rate
than that in the former. Second, for the translation problem, the
added mass of O((a/δ)2), which is purely of the potential flow origin,
always exists in the force response.12 However, there is no counter-
part in the torque for the spinning problem since there is no net fluid
entrainment by a force couple with a constant pressure everywhere.

Because of the above distinctions, the flow characteristics of
the spinning problem are generally quite different from those of
the translation problem. Such differences, in particular, manifest
when there is a flow past a rotating sphere where a secondary flow
emerges17 or in the nonvanishing Reynolds number situation where
steady streaming often occurs.18 Prior to extending the uniform
sphere situation to SSJP, it is necessary to analyze the leading order
flow characteristics of SSJP under the Stokes flow condition. This
is another reason why we would like to pursue this yet-explored
spinning SSJP problem in this work.

II. PROBLEM FORMULATION
Motivated by the above, we consider the oscillatory spin-

ning motion of a spherical SSJP of radius a at angular velocity
Ω(t) = Ω0e−iωt in an incompressible viscous fluid of density ρ and
viscosity μ, where Ω0 is the peak angular velocity and ω is the oscil-
lation frequency. As illustrated in Fig. 1, the particle is partially cov-
ered with a slip surface of polar angle θ0, with the remaining stick
portion satisfying the no-slip boundary condition. Assume that the
spinning is around the axis of the symmetry. Described by the spher-
ical coordinates (r, θ, ϕ) with the origin at the center of the particle,
the fluid velocity only occurs in the azimuthal ϕ direction. Having
length, time, and velocity scaled by a, ω−1, and Ω0a, respectively,
the azimuthal fluid velocity w′ is governed by the unsteady Stokes
equation in the dimensionless form,

ωa2

ν
∂w′

∂t′
= 1
r2

∂

∂r
(r2 ∂w′

∂r
) +

1
r2

√
1 − η2 ∂2

∂2η
(
√

1 − η2 w′), (1)

with η = cos θ. Note that for this axisymmetric spinning, because the
total viscous force on the particle is zero, the pressure is constant
everywhere. Hence, there is no pressure term in (1).

FIG. 1. Geometry of a spherical stick-slip Janus particle and coordinate system.

Transforming the problem into the frequency domain via
w′ = we−it

′

, Eq. (1) reads as

(E2 − α2)(r
√

1 − η2 w(r,η)) = 0, (2)

where E2 = ∂rr + r−2(1 − η2)∂ηη and α2 = −iωa2/ν is the complex
Womersley number with Re{α} > 0. At the particle surface r = 1, the
nonuniform slip boundary condition is prescribed,

w −
√

1 − η2 = β(η)τrϕ. (3)

Here, β(η) is the dimensionless slip parameter that can vary with
η to account for the mixed stick-slip effects on the particle surface.
β = 0 for the stick portion, whereas it turns into λ̂ ≡ λ/a for the slip
portion with the slip length λ. τrϕ = r∂(w/r)/∂r is the dimensionless
shear stress scaled by Ω0μ.

The solution to (2) that satisfies (3) and w → 0 as r →∞ takes
the form

r
√

1 − η2 w =
∞
∑
n=2

BnRn(r)Gn(η), (4)

where Rn(r) = r1/2Kn−1/2(αr) with Kn−1/2 being the modified Bessel
functions of second kind and Gn are the Gegenbauer functions of
degree −1/2. The coefficients Bn are determined by substituting (4)
into (3) and by applying the orthogonality,

∫
1

−1

Gm(η)Gn(η)
1 − η2 dη = δmnCn, (5)

where δnm is the Kronecker delta and Cn = 2/n(n − 1)(2n − 1). This
yields the following infinite system of linear equations (via m) for Bn:

∞
∑
n=2

Bn{Rn(1)Cnδmn − Lmn(Rn
′(1) − 2Rn(1))} = 2C2δm2, (6)

where

Lmn = ∫
1

−1

Gm(η)Gn(η)β(η)
1 − η2 dη.

For a given α, θ0, and λ̂, (6) can be solved by truncation and
matrix inversion. Convergent results can be obtained by retaining

AIP Advances 9, 125113 (2019); doi: 10.1063/1.5131678 9, 125113-2

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

100 terms. After finding Bn by solving (6), the shear stress on the
particle can be determined as

τrϕ =
∞
∑
n=2

Bn(Rn
′(1) − 2Rn(1))

Gn(η)√
1 − η2

. (7)

The torque Tz = Tz(ω)e−iωt acting on the particle can then be
evaluated using

Tz = 2πa3Ω0μ∫
1

−1
τrϕ∣r=1

√
1 − η2 dη. (8)

Using ∫1−1 Gn(η)dη = 2/3 for n = 2 otherwise 0, we can determine
the torque amplitude in (8) as

Tz(ω)
8πμΩ0a3 =

1
6
(R2

′(1) − 2R2(1))B2. (9)

Hence, only n = 2 mode in (4) contributes to the torque, which
corresponds to an oscillating rotlet with G2(η) = (1 − η2)/2 and
R2(r) = (π/2α)1/2(1 + (αr)−1) exp(−αr).

III. MIXED STICK AND SLIP TORQUE RESPONSES
First of all, it can be verified analytically that for constant β, (9)

is reduced to the uniform slip result,14

Tz(ω)
−8πμΩ0a3 =

T

1 +
√

2e−iπ/4 1
δ̂

+ 3λ̂T
,

T = 1 +
√

2e−iπ/4
1
δ̂

+
2
3
e−iπ/2

1
δ̂2

. (10)

Here, δ̂ = (2ν/ωa2)1/2 measures the extent of the boundary layer rel-
ative to the particle radius a. As revealed by (10), when the particle is
no-slip with λ̂ = 0, the torque varies as 1/δ̂ as δ̂ → 0 due to the Basset
shearing with phase π/4 ahead of the particle rotational movement.
In the case of uniform slip, however, the torque amplitude becomes
a constant plateau of value 1/3λ̂ in the δ̂ → 0 limit due to the con-
stant shearing resulted from strong slip effects.14 Figure 2(a) plots
the torque amplitude against δ̂ for a half cap SSJP (θ0 = 90○). First of
all, purely no-slip and uniform slip cases give torque amplitudes of
1/δ̂ and 1/3λ̂, respectively, as given by (10). As for a half cap SSJP,
we find that all the curves with different values of λ̂ tend to approach
the same Basset-like 1/δ̂ decay as δ̂ → 0, but in a reduced amplitude
compared to the no-slip case due to drag reduction imparted by the
slip face. Since such a Basset torque disappears when no-slip changes
to uniform slip but reappears for an SSJP, it can be thought of as a
reentry Basset torque to distinct from the usual no-slip Basset torque.
In terms of the phase χ = tan−1[Im(Tz(ω))/Re(Tz(ω))], Fig. 2(b)
shows that it basically varies from the no-slip result χ = −π/4 to the
uniform slip result χ = 0 though changes can be nonmonotonic.

Figure 3(a) plots how the torque amplitude varies as gradually
decreasing the stick portion by increasing θ0. When increasing θ0 to
150○ where the stick portion becomes small, we observe a reentrant
history torque transition (RHTT) in which the torque first follows a
Basset-like 1/δ̂ decay in the small δ̂ regime and then turns into a slip
plateau at larger values of δ̂ prior to the SST point δ̂ ∼ λ̂. How the
phase χ varies with δ̂ in this case appears even more nonmonotonic,
as shown in Fig. 3(b).

FIG. 2. (a) Plot of torque amplitude against δ̂ for a half cap SSJP (θ0 = 90○).
Calculated curves for different values of λ̂ approach the same reduced Basset
torque of 1/δ̂ decay as δ̂ → 0, in excellent agreement with asymptotic results
(symbols) evaluated from (16), as shown in the inset. (b) The phase χ basically
varies from the no-slip result χ = −π/4 to the uniform slip result χ = 0 as increasing
δ̂ from small to large values.

IV. MATCHED ASYMPTOTIC BOUNDARY LAYER
THEORY

To explain the observed re-entry Basset torque and RHTT, we
further develop a matched asymptotic theory to resolve how the
flow behaves within a thin boundary layer when ωa2/ν is large. Let
ε ≡ δ̂/

√
2 = (ωa2/ν)−1/2 be the small parameter. We stretch the

radial coordinate with r = 1 + εy and expand the azimuthal velocity
as

w = w0 + εw1 + O(ε2). (11)

Substituting (11) into (2) and (3), we obtain the leading order
governing equation and boundary condition as

−iw0 =
∂2w0

∂y2 , (12)

w0 − sin θ = (β(θ)
ε
)∂w0

∂y
at y = 0. (13)
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FIG. 3. (a) Plot of torque amplitude against δ̂ for different stick-slip partitions with
λ̂ = 0.1. For an SSJP with a small stick portion such as θ0 = 150○, in partic-
ular, mixed stick-slip effects are manifested by the coexistence of a Basset-like
1/δ̂ decay and a slip-induced plateau, showing two transition points, RHTT and
SST points, evaluated using (20) and (19), respectively. (b) The phase behaviors
corresponding to (a). Compared to the other cases, the phase behavior of the
θ0 = 150○ case appears even more nonmonotonic.

In (13), because the effective slip coefficient β/ε can either vanish for
the stick face or be large for the slip face, it is necessary to retain the
driving slip velocity sin θ on the left hand side so that a transition
from slip to no slip can be captured when ε is varied.

The solution to (12) satisfying (13) is

w0 = sin θ g(θ)e−ky, (14)

where k = e−iπ/4 and g(θ) = (1 + kβ(θ)/ε)−1. The shear stress is thus

τrϕ(y = 0) = (−k/ε) sin θ g(θ). (15)

Using (8) and (15), the leading order torque amplitude can be readily
determined as

Tz(ω)
−8πμΩ0a3 =

1
3ε
e−iπ/4[g0 −

1
5
g2] + O(ε0), (16)

where g0 = (1/2)∫1−1 g(η)P0(η)dη and g2 = (5/2)∫1−1 g(η)P2(η)dη
are the monopole and quadrupole contributions, respectively, and
the functions Pn represent the Legendre functions. Writing β(η)
= λ̂H(η − η0) in terms of the Heaviside step function H, (16) can
be evaluated as

Tz(ω)
−8πμΩ0a3 =

1
3ε

e−iπ/4

(1 + kλ̂/ε)
[1 +

kλ̂
ε
(η0 + 1)2C] + O(ε0), (17)

where C = (2 − η0)/4. In the ε→ 0 limit, (17) is reduced to

Tz(ω)
−8πμΩ0a3 =

1
3ε
(η0 + 1)2Ce−iπ/4. (18)

This is exactly the reduced Basset torque shown in Figs. 2 and 3. The
amplitude of this torque is found to depend only on the stick-slip
partition. More importantly, the torque appears more sensitive to
the coverage of the stick face, η0 + 1. In the purely no-slip case, i.e.,
η0 = 1, (18) is reduced to the usual Basset torque value e−iπ/4/3ε.

However, if the particle is completely slippery, i.e., η0 =−1, then
(17) yields a constant torque plateau 1/3λ̂ for ∣k∣λ̂/ε ≫ 1 or for ε
below the SST point,

εSST ≈ λ̂. (19)

Hence, if this slip particle is covered with a tiny stick patch (i.e.,
η0 is close to −1), the slip torque plateau 1/3λ̂ will start to rise toward
the reduced Basset torque (18) when ε is decreased to the RHTT
point,

εRHTT ≈ λ̂(η0 + 1)2C. (20)
Similar to (18), εRHTT is also sensitive to the converge of the stick
face. When the stick face is small, εRHTT will be much smaller than
εSST . This will in turn make the torque exhibit a reduced Bas-
set torque followed by a slip torque plateau, which explains the
θ0 = 150○ curve shown in Fig. 3(a). However, if the stick face is not
small, εRHTT becomes comparable to εSST . The torque in the small ε
regime will be dominated by the reduced Basset torque (18) without
seeing a slip plateau, which explains Fig. 2(a).

For an arbitrary time-dependent spinning motion, we can
express the angular velocity Ω(t) as a Fourier integral followed by
its conversion to Laplace transform with −iω → s. Further with the
aid of the convolution theorem, we transform (17) into

Tz(t)
−8πμa3 =

1
3 ∫

t

−∞
dΩ(τ′)

dτ′
M(t − τ′)dτ′, (21)

with the memory kernel

M(t) = 1
λ̂

exp( t
λ̂2tν
)erfc(

√
t

λ̂2tν
)(1 − C(1 + η0)2)

+
C(1 + η0)2

√
π

1√
t/tν

+⋯. (22)

Here, tν = a2/ν is the viscous diffusion time. λ̂2tν = λ2/ν ≡ tSST is the
SST time corresponding to (19) when the boundary layer thickness
δ ∼ (νt)1/2 grows to the size of the slip length λ. tSST is typically
shorter than tν since λ < a.
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If the particle is subjected to an impulsive rotation with
Ω(t) = Ω0 (constant), for short time t/tν ≪ 1, (21) is reduced to

Tz(t)
−8πμΩ0a3 =

C
3
√
π
(η0 + 1)2( t

tν
)
−1/2

+
1

3λ̂
(1 − C(η0 + 1)2)

×(1 − 2
√
πλ̂
( t
tν
)

1/2
) + O(t/tν). (23)

As t→ 0, the torque will be dominated by the (t/tν)−1/2 term, which
is exactly the reduced Basset contribution corresponding to (18).
However, if the stick face is small (i.e., η0 is close to −1), the slip
torque plateau 1/3λ̂ can become comparable to the (t/tν)−1/2 term.
This occurs at around the RHTT time tRHTT ≈ (9/16π)(η0 + 1)4 tSST
corresponding to (20).

V. CONCLUDING REMARKS
We have demonstrated that the viscous torque responses of

an oscillatory spinning SSJP are in fact of neither no-slip nor slip
type but mixed with both. Because part of the particle surface is no-
slip, the response in the high frequency regime is always dominated
by the reduced Basset torque that varies inversely with the Stokes
boundary layer thickness δ. However, if the stick face becomes suffi-
ciently small, the reduced Basset torque can turn into a plateau due
to strong slip effects at larger values of δ prior to changing the usual
no-slip Basset torque that prevails at δ greater than the slip-stick
transition point δ ∼ λ. This reduced Basset to slip plateau transi-
tion and the slip-stick transition seems to be generic features for
SSJPs. These features may provide more robust means for better
characterizing or manipulating these heterogeneous particles.

In experimental perspectives, to our best knowledge the oscil-
latory spinning of an SSJP has not yet be performed experimentally.
Nevertheless, we can at least provide estimates of relevant physical
quantities for future realization of such an experiment. Consider an
SSJP of radius a = 100 μm undergoing rotational oscillations at the
peak angular velocity Ω0 and frequency ω in water (of density ρ = 1
g/cm3 and viscosity μ = 10−2 P). To ensure the rotational Reynolds
number Re = ρΩ0a2/μ to be much smaller than unity, Ω0 has to be
no greater than 102 s−1 in magnitude. Suppose Ω0 ≈ 10 s−1. Hence,
the steady torque is around the Stokes value TStokes = 8πμΩ0a3

≈ 0.25 pN m. The viscous damping frequency ωviscous = (2π)−1ν/a2

≈ 16 Hz with ν = μ/ρ = 10−2 cm2/s. The slip-stick transition will
occur atωSST = (2π)−1ν/λ2 =ωviscous(a/λ)2 from (19). If the slip length
λ ∼ 1 μm which is 1% of a, ωSST ≈ 1.6 × 105 Hz. If the SSJP has a
small stick cap with θ0 = 150○, a constant torque Tslip = TStokes(a/3λ)
≈ 8.33 pN m will appear at frequencies higher than ωSST . When ω
is further increased to the re-entrant history torque transition point
ωRHTT = 4(2 − cos θ0)−1(cos θ0 + 1)−2ωSST ≈ 1.2 × 107 Hz from
(20), a reduced Basset torque will start to show up. This torque has

amplitude TBasset = Tslip(ω/ωRHTT)1/2 greater than Tslip from (18)
and continues at frequencies higher than ωRHTT .
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