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In the context of dynamic wetting, wall slip is often treated as a microscopic effect for
removing viscous stress singularity at a moving contact line. In most drop spreading
experiments, however, a considerable amount of slip may occur due to the use of
polymer liquids such as silicone oils, which may cause significant deviations from
the classical Tanner–de Gennes theory. Here we show that many classical results for
complete wetting fluids may no longer hold due to wall slip, depending crucially on
the extent of de Gennes’s slipping ‘foot’ to the relevant length scales at both the
macroscopic and microscopic levels. At the macroscopic level, we find that for given
liquid height h and slip length λ, the apparent dynamic contact angle θd can change
from Tanner’s law θd ∼ Ca1/3 for h � λ to the strong-slip law θd ∼ Ca1/2 (L/λ)1/2

for h� λ, where Ca is the capillary number and L is the macroscopic length scale.
Such a no-slip-to-slip transition occurs at the critical capillary number Ca∗ ∼ (λ/L)3,
accompanied by the switch of the ‘foot’ of size `F ∼ λCa−1/3 from the inner scale
to the outer scale with respect to L. A more generalized dynamic contact angle
relationship is also derived, capable of unifying Tanner’s law and the strong-slip
law under λ � L/θd. We not only confirm the two distinct wetting laws using
many-body dissipative particle dynamics simulations, but also provide a rational
account for anomalous departures from Tanner’s law seen in experiments (Chen, J.
Colloid Interface Sci., vol. 122, 1988, pp. 60–72; Albrecht et al., Phys. Rev. Lett.,
vol. 68, 1992, pp. 3192–3195). We also show that even for a common spreading
drop with small macroscopic slip, slip effects can still be microscopically strong
enough to change the microstructure of the contact line. The structure is identified
to consist of a strongly slipping precursor film of length ` ∼ (aλ)1/2Ca−1/2 followed
by a mesoscopic ‘foot’ of width `F ∼ λCa−1/3 ahead of the macroscopic wedge,
where a is the molecular length. It thus turns out that it is the ‘foot’, rather than
the film, contributing to the microscopic length in Tanner’s law, in accordance with
the experimental data reported by Kavehpour et al. (Phys. Rev. Lett., vol. 91, 2003,
196104) and Ueno et al. (Trans. ASME J. Heat Transfer, vol. 134, 2012, 051008).
The advancement of the microscopic contact line is still led by the film whose length
can grow as the 1/3 power of time due to `, as supported by the experiments of
Ueno et al. and Mate (Langmuir, vol. 28, 2012, pp. 16821–16827). The present work
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Slipping moving contact lines 111

demonstrates that the behaviour of a moving contact line can be strongly influenced
by wall slip. Such slip-mediated dynamic wetting might also provide an alternative
means for probing slippery surfaces.

Key words: capillary flows, contact lines

1. Introduction
Since Tanner (1979) reported his famous laws describing how the dynamic contact

angle varies with the wetting speed and how the radius of a spreading drop grows with
time, this surface-tension-driven dynamic wetting phenomenon not only is a central
topic in interfacial fluid dynamics (de Gennes 1985; Bonn et al. 2009; Snoeijer &
Andreotti 2013), but also plays a vital role in many applications such as coating,
printing and antifouling.

The reason why dynamic wetting continues to draw attention in research is that
all the physics, at both macroscopic and microscopic levels, will meet in the vicinity
of the contact line. However, when looking into the hydrodynamics, one will find
that the viscous stress would grow without bound when approaching the three-phase
contact line at which the moving fluid–fluid interface and the non-moving solid surface
meet (Huh & Scriven 1971). This in turn leads to a logarithmic divergence of the
corresponding drag force. All these troubles come from the no-slip boundary condition
imposed on the solid surface, which gives rise to a jump in the fluid velocity at the
contact line and hence to force singularity.

One way to remove the contact line stress singularity is allowing a fraction of wall
slip by introducing a slip length to the solid surface (Hocking 1977; Huh & Mason
1977; Hocking & Rivers 1982; Hocking 1983; Cox 1986; Hocking 1992; Eggers
2004). Wall slip can render the fluid velocity to be continuous at the contact line,
thereby making the viscous stress there finite. Because the slip length is typically
small, this not only preserves the macroscopic wetting characteristics away from the
contact line, but also furnishes a consistent way for deriving Tanner’s law θd ∝ U1/3

without singularity (de Gennes 1985; Hocking 1983, 1992), where θd is the dynamic
contact angle and U is the wetting speed. This microscopic slip model is so robust
that it has been widely used in studying a variety of drop spreading problems (Haley
& Miksis 1991; Anderson & Davis 1995; Benintendi & Smith 1999; Chan & Borhan
2006; Savva & Kalliadasis 2009; Karapetsas, Sahu & Matar 2013).

Another way to prevent the indefinite growth of the viscous stress at the contact line
is having the liquid height terminated at the microscopic precursor film ahead of the
contact line by taking into account van der Waals disjoining pressure (Hervet & de
Gennes 1984; Kalliadasis & Chang 1996; Eggers & Stone 2004; Eggers 2005a). Either
slip or precursor film is considered as a separate mechanism to remove the contact
line stress singularity, constituting an essential ingredient in the classical Tanner–de
Gennes framework for modelling dynamic wetting and spreading (de Gennes 1985;
Bonn et al. 2009).

In this work we will re-investigate how wall slip impacts the motion of a moving
contact line. Most of the existing studies mainly focus on the weak-slip scenario where
the slip length λ is restricted to be much smaller than the liquid height (Hocking
1977; Hocking & Rivers 1982; Lacey 1982; Hocking 1983; Cox 1986; Hocking 1992;
Eggers 2004; Eggers & Stone 2004). These studies basically show that λ only enters
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the logarithmic factor in the description of the contact line motion. The resulting
dynamic contact angle still obeys Tanner’s wetting law θd ∝ U1/3 that merely has a
weak dependence on λ (Hocking 1983, 1992; Eggers 2004; Eggers & Stone 2004).
The corresponding spreading law R ∝ t1/10 virtually does not vary with λ (Hocking
1992), where R is the radius of a spreading drop and t is time. These two laws also
have been confirmed by many experiments (Hoffman 1975; Tanner 1979; Ausserré,
Picard & Léger 1986; Levinson et al. 1988; Ström et al. 1990). As such, as long as
λ is macroscopically small, both wetting and spreading laws are not sensitive to the
amount of wall slip.

Yet, what actually happens in experiments might not be as simple as normally
thought. In most drop spreading experiments, silicone oils are often employed to
monitor contact line movements or spreading dynamics. Such fluids are in fact
polymer liquids that can exhibit a considerable amount of apparent slip due to thin
depletion layers near the walls (de Gennes 1979, 1985; Brochard & de Gennes 1984).
Since the apparent slip length of a polymer liquid can be as large as micrometres
(Brochard-Wyart et al. 1994; Léger et al. 1998), a possible breakdown of Tanner’s
wetting/spreading law might occur. Some experiments using polymer liquids do
exhibit noticeable departures from Tanner’s laws. For instance, in the experiment by
Chen (1988), the measured dynamic contact angles in the very small capillary number
regime appear to deviate from Tanner’s 1/3 wetting law. Albrecht, Otto & Leiderer
(1992) found in their picolitre drop spreading experiment that the spreading exponent
is 1/8, slightly greater than Tanner’s 1/10. These experiments imply that large slip
brought by polymer liquids might be responsible for such departures. This calls for
a revision of the classical Tanner–de Gennes theory, which motivates this work.

A possible change in macroscopic wetting characteristics due to wall slip has been
suggested by Liao, Li & Wei (2013) who investigated general impacts of wall slip on
thin-film interfacial flows. The main result of their study is that slip can cause flow
characteristic changes when the liquid thickness h is smaller than the slip length λ.
Because the characteristic transverse length scale now switches from h to λ, a variety
of thin-film flows have to be remodelled to account for much stronger dependence of
h on λ (Li et al. 2014; Liao et al. 2014; Halpern, Li & Wei 2015; Halpern & Wei
2017). Similarly, for the spreading of a polymer liquid drop in which slip effects can
be strong, we foresee that it might undergo the following characteristic change. At
the early stage of the spreading, the drop is thick compared to λ. So the drop will
spread according to Tanner’s laws. However, as the drop keeps thinning, it will reach a
point where its height is comparable to or smaller than λ. In this strong-slip regime,
Tanner’s laws will break down and new laws must emerge to govern the spreading
dynamics. In other words, there is a no-slip-to-slip transition when wall slip occurs.
While basic features for this transition have been given by Liao et al. (2013) and Li
et al. (2014), they were merely sketched in a scaling sense without actual calculations.
To provide a more quantitative account of how the dynamic contact angle behaves
in response to slip effects, it is not only necessary to derive a new wetting law for
the strong-slip regime, but also requires a more generalized theory to unify distinct
weak-slip and strong-slip wetting characteristics.

It is worth mentioning that some studies have already demonstrated apparent
influences of slip on dewettting processes. Münch, Wagner & Witelski (2005)
developed lubrication models to investigate how slip length impacts the dynamics
of a dewetting film. They found that the film can exhibit various temporal transition
behaviours accompanied by profile changes, sensitive to the amount of slip. A recent
study of the motion of a dewetting drop on a slippery surface also revealed that
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Slipping moving contact lines 113

the drop can undergo apparent morphology changes due to slip effects (Chan et al.
2017).

Building on the study of Liao et al. (2013), in this work we will look at possible
characteristic changes in advancing contact lines due to slip effects. Aside from the
macroscopic level, we also look at the microscopic level where impacts of wall slip
could become more pronounced. It is well established that the microscopic contact
line motion is controlled by the precursor film ahead of the contact line due to
van der Waals disjoining pressure. The features of the precursor film are commonly
described by the theory developed by Hervet & de Gennes (1984) under the no-slip
condition. However, if there is wall slip as occurring in polymer liquids, even though
the amount of slip is small, the precursor film could be so thin that it might still
perceive considerable slip effects to alter its behaviour. The experimental study by
Léger et al. (1998) seems to imply that this is the case, showing that the measured
precursor film profiles cannot be portrayed by the well-known result given by de
Gennes (1985). Recent experimental and simulation studies (Mate 2012; Ueno et al.
2012; Noble, Mate & Raeymaekers 2017) also show that the spreading dynamics
of polymer liquid films do not follow the classical theory of Hervet & de Gennes
(1984).

Motivated by the above, to explain a variety of departures from the Tanner–de
Gennes theory seen in experiments, in this paper we will give a renewed account
for how wall slip plays roles in both macroscopic and microscopic characteristics of
an advancing contact line. Throughout this work we focus on the complete wetting
situation. This will allow the liquid to keep wetting, making it always be able to
enter the strong-slip regime into which we want to look. The rest of the paper is
organized as follows. In § 2 we begin with simple scalings to see how Tanner’s
wetting law breaks down due to wall slip and how a new wetting law must emerge
when slip effects become strong. In § 3 we derive the lubrication equation for the
local fluid motion in the vicinity of a moving contact line when wall slip is present.
The equation is then used to derive the dynamic contact angle relationship in § 4.
How the dynamic contact angle behaves is presented and discussed in § 5. Section 6
is devoted to the microstructure of the contact line, examining how it is influenced by
joint effects of disjoining pressure and wall slip. In § 7 we compare our findings to
experiments, showing a number of cases that violate the predictions of the Tanner–de
Gennes theory but can be explained by slip effects. We summarize the paper and
provide overall perspectives in § 8.

2. Breakdown of Tanner’s law and no-slip-to-slip transition

First of all, we provide simple scaling pictures about how the dynamic contact angle
is determined by balance between surface tension and viscous forces in the vicinity of
a moving contact line with and without slip. This will reveal how the Tanner wetting
law breaks down and how it is modified due to wall slip.

Consider a fluid wedge driven by a moving contact line at speed U relative to
the wall (see figure 1). The fluid viscosity is η. The wedge opening angle is θd,
representing the apparent dynamic contact angle. Here we focus on the complete
wetting situation. So θd is assumed small throughout this work.

We first review the no-slip case (figure 1a). The contact line is driven by the
surface tension force (per unit width) γ θ 2

d with γ being the air–liquid interfacial
tension. Tanner’s wetting law can be obtained by balancing this force to the viscous
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FIGURE 1. (Colour online) Local flow behaviours near advancing contact lines. (a) The
no-slip case. (b) The strong-slip case.

force (per unit width) ηU/h× L over length L with the corresponding height h= Lθd:

θd ∼Ca1/3, (2.1)

where Ca=ηU/γ is the capillary number and typically small. Relating the drop radius
R with U ∼ R/t and further applying the constant drop volume constraint R3θd =Ω ,
this yields the well-known 1/10 spreading law due to Tanner (1979):

R∼
(
Ω3γ t
η

)1/10

. (2.2)

When wall slip is present with slip length λ (figure 1b), (2.1) is still a good
approximation if λ is much smaller than the liquid height h = Lθd. As the contact
line advances, θd is gradually decreased and so is Ca. When θd is decreased to the
point where h is comparable to λ, slip effects will start to become important. The
contact angle at this point is θd ∼ λ/L, giving the critical capillary number below
which Tanner’s wetting law (2.1) ceases to hold:

Ca∗ ∼ (λ/L)3. (2.3)

Expression (2.3) also marks the no-slip-to-slip transition point. During this transition,
the viscous stress scales as ηU/(h+λ) across h+λ, the distance of the interface to the
extrapolated no-slip plane outside the wall. But as the contact line continues slowing
down at Ca below this point, we enter the strong-slip regime h� λ and the viscous
stress is reduced to ηU/λ. Balancing the corresponding viscous force ηU/λ×L to the
surface tension force γ θ 2

d , the wetting law is changed to

θd ∼Ca1/2(L/λ)1/2. (2.4)

Compared to (2.1) for the no-slip case, not only does θd vary as Ca1/2 but also the
additional length scale ratio L/λ is involved. The latter, from a dimensional point of
view, must be the case because λ now enters to influence the macroscopic wetting
characteristics.

It is worth mentioning that a relationship similar to (2.4) can be equally applied to
describe how the microscopic contact angle θm varies with the associated length `m
(see figure 2) for the situation where λ is macroscopically small but microscopically
large. In this case, θd and L can be replaced respectively by θm and `m in (2.4):

θm ∼Ca1/2(`m/λ)
1/2. (2.5)
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FIGURE 2. (Colour online) A wedge-like free-surface flow near an advancing contact line.
The figure is drawn in the frame moving with the contact line at speed U.

Its crossover to the macroscopic case (2.1), θd ∼ Ca1/3 (by setting θm ∼ θd), provides
an estimate for `m:

`m ∼ λCa−1/3. (2.6)

This is essentially the characteristic length found previously using the slip model
(Eggers & Stone 2004). It is also the width of the ‘foot’ of a spreading polymer
drop postulated by Brochard & de Gennes (1984). On the contrary, for the no-slip
case, `m is found to be ∼ aCa−2/3 due to precursor film (Hervet & de Gennes 1984;
Eggers & Stone 2004), where a is the molecular length. As will be shown in § 6.5,
for a spreading polymer drop in which both slip and disjoining pressure coexist, the
microscopic length is actually the ‘foot’ scale (2.6) rather than that of the precursor
film.

The spreading law corresponding to (2.4) can be readily found by taking L∼R and
U ∼ R/t under the constant-volume constraint R3θ0 =Ω:

R∼
(
Ω2λγ t
η

)1/8

. (2.7)

The same 1/8 power law has been briefly mentioned by Brochard & de Gennes (1984).
The main result of their work is that wall slip can lead to the existence of a ‘foot’ of
thickness λ bridging between the central spherical cap and the precursor film. When
h< λ, the foot will merge with the cap. In this case they merely gave the 1/8 power
law for the spreading kinetics without mentioning how the dynamic contact angle
changes its behaviour. The present work is to fill this gap.

3. Hydrodynamics of a slipping contact line
To derive the actual relationship of the apparent dynamic contact angle θd with the

wetting speed U, we consider the local fluid motion around an advancing contact
line in the frame moving with −U, as shown in figure 2. The fluid motion takes
place within a horizontal scale L at which the interface can be kept roughly as a
straight wedge under Ca� 1 (Snoeijer 2006). So θd can be deemed as the slope of
the interface that varies slowly with respect to the wedge (Snoeijer 2006). In the case
of a spreading drop, L can be roughly taken as cR in proportion to the drop radius R
with c< 1. So L is essentially chosen as the length scale that bridges the macroscopic
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region far away from the contact line. In practice, L can be taken at the inflection
point of the interface that changes from concave to convex shape (Kavehpour, Ovryn
& McKinley 2003; Pahlavan et al. 2015). Another reason why we want to choose L
in this way is that, as suggested from (2.4), this will allow us to capture the size-
dependent θd for a strongly slipping drop, which will be shown in § 4.2.

Since θd is small and hence the liquid height h(x), this allows us to use the
lubrication theory to formulate the problem. The horizontal velocity u satisfies the
momentum equation

px = ηuyy. (3.1)

Here the pressure p is given by the Laplace pressure

p=−γ hxx, (3.2)

where γ is the surface tension. The system is subject to the following boundary
conditions. On the solid surface, the Navier slip condition is assumed (Navier 1823):

at y= 0, u−U = λuy, (3.3)

where λ is the slip length. At the air–liquid interface, it is basically stress-free:

at y= h(x), uy = 0. (3.4)

The solution satisfying (3.1), (3.3) and (3.4) is

u=
px

2η
(y2
− 2hy− 2λh)+U. (3.5)

The above flow field must fulfil the requirement that there is no net flow rate across
the wedge, i.e.

∫ h
0 u dy = 0. This together with (3.2) leads to the following equation

governing the interface profile in the vicinity of the contact line:

h′′′ =−
3Ca

h2 + 3λh
, (3.6)

where primes mean spatial derivatives.
We should point out that the slip length λ here cannot be arbitrarily large.

The reason is that in deriving (3.6), we have employed the standard lubrication
approximation (3.1) in which the lateral viscous term ηuxx is neglected. However, if
λ gets too large, one would end up with a plug flow across the wedge, which might
lose lubrication. Specifically, drag reduction introduced by λ makes the fluid move as
if it had a reduced effective viscosity ηeff ∼ η/(1 + 3λ/h) across the liquid height h
(Liao et al. 2013; Li et al. 2014). The corresponding transverse viscous contribution
ηeff uyy thus scales as ηeff U/h2

∼ ηU/h2
× (1+ 3λ/h)−1. For large λ, ηeff uyy is reduced

to ∼ηU/(λh) which could be outweighed by the lateral contribution without slip
ηuxx ∼ ηU/L2. In this case, the driving surface tension force will not be balanced by
the viscous force through the velocity gradient across λ. Hence, to prevent the above
from happening, it is necessary to assume ηeff uyy� ηuxx. This yields

λh/L2
� 1 or λ/L� 1/θd, (3.7)

which restricts the size of λ below which the present lubrication analysis holds. In
most situations, λ/L� 1, so (3.7) is always satisfied. For much larger slip lengths
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Slipping moving contact lines 117

beyond (3.7), possible inertial effects may arise from much faster slipping flows
(Münch et al. 2005).

For λ = 0, equation (3.6) is reduced to the well-known Tanner equation (Tanner
1979). For this no-slip case, it has been shown by Duffy & Wilson (1997) that an
analytical solution can exist in terms of Airy functions, showing the possibility of a
non-zero curvature in the far field. Equation (3.6) can also describe the motion of
a receding contact line (Eggers 2005b) with Ca replaced by −Ca. In this case, there
exists a critical Ca above which the contact line vanishes to give rise to the formation
of a continuous thin film over the surface (Eggers 2005b).

Eggers (2004) solved (3.6) for partial wetting fluids under Ca� θ 3
e with θe being

the equilibrium contact angle. He obtained the following dynamic contact angle
relationship:

h′3(x)= θ 3
e + 9Ca ln

(
xeθe

3λ

)
. (3.8)

A similar expression was also obtained by Hocking (1992). Equation (3.8) is
essentially the Tanner–Cox–Voinov law (see (4.10b)) (Voinov 1976; Tanner 1979; Cox
1986) and the slip length λ merely contributes in the logarithmic factor. However,
because (3.8) is derived under Ca � θ 3

e , it can only describe the dynamic contact
angle h′(x)= θd slightly greater than θe. So the dynamic contact angle in his work is
located in the regime θ 3

d �Ca.
In contrast to Eggers (2004), we will look at the complete wetting scenario where

θ 3
d ∼ Ca or smaller. In this case, Hocking (1992) considered the case of a weakly

slipping drop and obtained a wetting law slightly different from (3.8). In this work
we will extend to the case of a strongly slipping drop whose height is smaller than
the slip length λ. Below we use (3.6) to derive a generalized dynamic contact angle
relationship for an arbitrary value of λ under (3.7). As will be shown next, we will
not only recover the well-known Tanner–Cox–Voinov law corresponding to (2.1), but
also obtain a precise form of the strong-slip wetting law corresponding to (2.4).

4. Generalized dynamic contact angle relationship: bridging Tanner’s law and the
strong-slip law
We first non-dimensionalize (3.6) with

H = h/3λ and z= x/L. (4.1a,b)

Recall that L here is chosen as the length scale at which the interface can be kept
roughly as a straight wedge under Ca � 1. We are interested in the contact line
characteristics on this length scale because λ can be comparable to or larger than
the wedge height h(x = L) = Lθd. Also for this reason, we scale h by 3λ so that
1/H = 3λ/h can reflect the extent of wall slip.

With (4.1), (3.6) is transformed to

H′′′(z)=−
3δ

H2 +H
, (4.2)

where δ is the rescaled capillary number and defined as

δ =Ca(L/3λ)3. (4.3)

Here δ1/3
= Ca1/3L/3λ can be understood as the ratio of the no-slip liquid thickness

h∼ Lθd ∼ LCa1/3 to the slip length λ. Alternatively, it can also be interpreted as the
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ratio of L to the ‘foot’ scale λCa−1/3. So 1/δ can be used to measure the extent of
wall slip at the macroscopic level. Ratio δ� 1 means weak slip with h� λ (H� 1),
whereas δ� 1 represents strong slip with h� λ (H� 1). When δ ∼ O(1), it is the
no-slip-to-slip transition point (2.3) at which h∼ λ(H ∼O(1)).

To solve (4.2), we will use the ‘slowly varying slope’ approach due originally
to Voinov (1976). This approach has been rigorously justified by Snoeijer (2006)
who developed a long-wavelength theory beyond the lubrication theory to solve for
free-surface wedge-like flows with large slopes. He pointed out that the validity of
this approach lies in Ca� 1 under which surface tension dominates over viscosity.
This condition ensures that the interface is merely slightly deformed from a straight
wedge due to viscosity, making its curvature κ ≈ ∂xθ vary slowly with respect to the
relevant length scales, where θ(x)≡ h′(x) is the local slope and not necessarily small.
Specifically, small variations of κ can produce an error to the solution at an order of
Lκ ∼ L∂xθ = (L/h)× h∂xθ . Thus, the measure of κ with respect to h, h∂xθ , has to be
sufficiently small to ensure a valid asymptotic expansion (in small ε≡ L∂xθ ), as also
shown in Snoeijer’s analysis. Further establishing that the problem at leading order
can be reduced to that of a straight wedge, he was able to show that in the small Ca
limit the dynamic contact angle relationship exactly recovers the well-known result
reported by Voinov (1976) and Cox (1986). If θ is already small as in the complete
wetting scenario considered here, the error L∂xθ will be even smaller, making this
longwave approach even more suitable to such small-slope situation. The robustness
of this approach has also been recently demonstrated in analysing the unusual wetting
dynamics due to surfactant superspreaders (Wei 2018).

Now consider the application of Snoeijer’s longwave approach to our problem in
which complete wetting is assumed. In the case of no slip, the error due to curvature
variations is L∂xθ ∼ θd ∼Ca1/3 according to (2.1). When wall slip is present, because
it tends to promote wetting, the liquid would become even flatter, making the error
even smaller. For the strong-slip case where h � λ, the measure of the interface
curvature κ ∼ ∂xθ has to be small with respect to λ, giving λ∂xθ � 1 under which a
valid asymptotic expansion can be made. It also restricts the size of λ to ensure that
the surface tension force can be balanced by the viscous force through the velocity
gradient across λ. Indeed, in terms of scaling, λ∂xθ ∼ λθd/L� 1, which is exactly
(3.7). The corresponding error is L∂xθ ∼ θd ∼ Ca1/2(L/λ)1/2 according to (2.4). Also
because such a strong-slip scenario occurs at Ca<Ca∗∼ (λ/L)3 from (2.3), the error
will be no larger than O(Ca1/3). Together with the fact that the error for the no-slip
case is also O(Ca1/3), we conclude that the largest error with and without slip is
ε=O(Ca1/3), consistent with the formal small slope theory given by Snoeijer (2006).
In appendix A we extend Snoeijer’s theory to provide a formal asymptotic theory for
the case with slip, showing that self-consistent asymptotic expansions for weak slip
and strong slip can be constructed respectively with ε=Ca1/3 and ε=Ca1/3 (h∗/λ)1/3

(with h∗ being the characteristic transverse length scale). The error Ca1/3 (h∗/λ)1/3

for the strong-slip case with h∗/λ� 1 is indeed smaller than Ca1/3 for the weak-slip
case.

In what follows, we use a slightly different approach but in the same spirit as
Snoeijer’s to derive a generalized dynamic contact angle relationship to bridge both
weak-slip and strong-slip cases. Specifically, instead of solving the equation in term of
z, we solve it in terms of H by changing variable. As can be seen below, this approach
will not only provide a more straightforward way to recover the Tanner–Cox–Voinov
law (4.10b), but also allow us to derive the new strong-slip wetting law (4.11b).
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Slipping moving contact lines 119

We first integrate both sides of (4.2). This yields

H′′ =−3δ
∫ z

z∞

dz
H2 +H

, (4.4)

wherein we have used H′′(z∞) = 0 with z∞ = x∞/L� 1. On the right-hand side of
(4.4), we can use dz=dH/H′ to transform the integral with respect to H. As discussed
earlier, since Ca�1 here, the wedge is merely slightly deformed with small variations
of its curvature:

Lhxx = (3λ/L)H′′ =Ca1/3δ−1/3H′dH′/dH� 1. (4.5)

In the last expression, we have rewritten (3λ/L) and H′′ in terms of δ and H′ using
(4.3) and H′′ =H′dH′/dH. As will be justified a posteriori, either dH′/dz� 1 (when
H′ is small for δ� 1) or dH′/dH� 1 (when H′ is large for δ� 1) guarantees (4.5).
This allows us to treat H′ as a slowly varying function, which will also be confirmed
a posteriori. So the integral in (4.4) can be approximated as∫ z

z∞

dz
H2 +H

≈
1
H′

∫ H

H∞

dH
H2 +H

, (4.6)

where H∞ ≡H(z∞)= h∞/3λ= x∞θd/3λ (with x∞� L).
Evaluating the above integral, substituting it into (4.4) and replacing H′′ =

H′dH′/dH, (4.4) becomes

H′2
dH′

dH
=−3δ ln

(
1+H−1

∞

1+H−1

)
. (4.7)

Integrating both sides of (4.7) with respect to H, we can obtain the following dynamic
contact angle relationship valid for an arbitrary value of λ (under the constraint (3.7)):

H′3(z)=H′31 + 9δ[F(H1,H∞)− F(H,H∞)], (4.8a)

or its dimensional form

h′3(x)= h′31 + 9Ca[F(h1/3λ, h∞/3λ)− F(h/3λ, h∞/3λ)]. (4.8b)

Here the function F(H,H∞) is given by

F(H,H∞)=H ln[H(1+ 1/H∞)] − (H + 1) ln(H + 1). (4.9)

In (4.8b), the apparent dynamic contact angle θd = h′(x) is evaluated at x much larger
than the microscopic scale x1 that is taken O(λ/L) or smaller. But macroscopically,
x also has to be much smaller than x∞ that is chosen to be much greater than the
bridging length L.

Next we inspect two limiting cases: (i) weak slip: δ� 1 that will recover the well-
known Tanner–Cox–Voinov law and (ii) strong slip: δ� 1 for which a new wetting
law will be derived. This will also clearly reveal how one limit changes to the other.
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4.1. Weak slip
First of all, we notice that F(H) given by (4.9) will scale as ln(H) for large H but turn
into H ln(H) when H is small. So for δ� 1, H′3 ∼ δ · F from (4.8a) demands that
H = h/3λ has to be large, meaning that the contact line motion will be mainly
described by Tanner’s weak-slip characteristics. In fact, why δ � 1 must lead to
H � 1 and vice versa can be immediately seen from the alternative form of (4.2):
H2H′′′ = −3δ/(1 + H−1). When H � 1, the above form is reduced to H2H′′′ = −3δ
whose scaling form (H/z)3 ∼ δ is essentially (2.1). To show this exactly, because
F(H,H∞)− F(H1,H∞)≈− ln(H/H1) for H� 1, (4.8a) is reduced to

H′3(z)=H′31 + 9δ ln(H/H1). (4.10a)

Equation (4.10a) indicates that dH′/dH = (1/3)(9δ)1/3H−1
[ln(H/H1)]

−2/3. Since H ∼
[δ ln(δ1/3)]1/3 according to (4.10a) (with z∼O(1) and H1 ∼O(1) because of h1 ∼ λ),
dH′/dH∼[ln(δ1/3)]−1

� 1 with δ� 1 here. So H′ indeed varies slowly with respect to
H, justifying (4.6) for deriving (4.10a). In terms of the curvature, (4.5) indicates that
Lhxx=Ca1/3δ−1/3H′dH′/dH∼Ca1/3

[ln(δ1/3)]−2/3
� 1. The actual slope hx= (3λ/L)H′∼

Ca1/3
[ln(δ1/3)]1/3 can be deemed nearly constant (with error of O(Lhxx)). Also for

this reason, ln(H/H1) in (4.10a) can be reasonably approximated as ln(x/x1), as also
employed by previous studies (Voinov 1976; de Gennes 1986; Eggers 2004).

Writing (4.10a) back to the dimensional form together with the approximation
ln(h/h1) ≈ ln(x/x1) (with x1 � x � x∞), we recover the well-known Tanner–Cox–
Voinov law (Voinov 1976; Tanner 1979; Cox 1986):

h′3(x)= h′31 + 9Ca ln(x/x1). (4.10b)

Note that λ here is not zero but small compared to h. So it will provide a natural
microscopic length x1 to prevent the stress singularity at the contact line. This length
can be taken as x1 ≈ h1/θd with h1 ≈ λ, giving x1 ∼ λ/θd (de Gennes 1985). Taking
θd∼Ca1/3, the length becomes x1∼ λCa−1/3 given by (2.6) (Eggers & Stone 2004). In
fact, λCa−1/3 is the size of the ‘foot’ (Brochard & de Gennes 1984) and represents the
characteristic wetting length arising from slip. As can be seen throughout this work,
the ‘foot’ will play vital roles in the characteristics of a slipping contact line.

4.2. Strong slip

For δ � 1, since H′3 ∼ δ · F from (4.8a) requires H = h/3λ to be small, slip
effects will strongly influence the contact line dynamics. The rewritten form of
(4.2), H2H′′′ = −3δ/(1 + H−1), now reduces to HH′′′ = −3δ when H � 1. The
scaling form of the latter, H2/z3

∼ δ, re-conforms the strong-slip scaling (2.4). The
precise solution form for H′ can be obtained using (4.8a) with H � H∞ � 1. In
this case, because F(H, H∞) ≈ H ln(H/H∞) from (4.9), it dominates (4.8a) and
F(H1,H∞)≈H1 ln(H1/H∞) is negligible. So (4.8a) is reduced to

H′2(z)=H′31 /H
′
+ 9δ(H/H′) ln(H∞/H). (4.11a)

Equation (4.11a) reveals that H∼ δ1/2
[ln(δ−1/2)]1/2� 1 (with z∼O(1) and H∞∼O(1)

because of h∞ λ). Since H′′ = dH′/dz ∼ O(H) is also small, H′ varies slowly with
respect to z. This not only justifies (4.6) for deriving (4.11a), but also allows us to
use the approximation H≈H′z on the right-hand side of (4.11a). As the actual slope
hx= (3λ/L)H′ becomes even smaller, this guarantees (4.5). Because most situations are
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Slipping moving contact lines 121

not far from either δ� 1 or δ� 1 and also given that these two limits are shown to
satisfy the small-curvature condition (4.5), the general result (4.8b) obtained by this
‘slowly varying slope’ approach should fairly capture the behaviour of the dynamic
contact angle for an arbitrary value of λ under (3.7).

Writing (4.11a) in the dimensional form with (h∞, h)≈ h′(x∞, x) (with x� x∞), we
arrive at

h′2(x)= h′31 /h
′
+ 3Ca(x/λ) ln(x∞/x), (4.11b)

which gives the complete form for (2.4). Note here that the logarithmic term vanishes
as x → 0 – there is no microscopic length x1 needed for regularizing that term
because the viscous stress has already been regularized by slip. But in terms of the
microstructure of the contact line, the inner region of width x1� L may enter to be
part of the description. This is true when a precursor film exists due to disjoining
pressure (see § 6).

As revealed by (4.11b), the slope h′ ≈ (3Ca x/λ)1/2[ln(x∞/x)]1/2 near the contact
line, owing to its involving the additional slip length λ, is not constant but varies as
x1/2. The resulting interface profile is h≈ (2/

√
3)λCa1/2(x/λ)3/2[ln(x∞/x)]1/2. Note that

although this profile deviates from the linear wedge, since h′ is small here, the amount
of the deviation is small in the scale of L, which is a consequence of the present
‘slowly varying slope’ approach. Now because h� λ, this requires x� λCa−1/3 in
(4.11b). So (4.11b) has to be evaluated at a position much smaller than the ‘foot’ of
size given by Brochard & de Gennes (1984):

`F ∼ λCa−1/3. (4.12)

In fact, δ� 1 for this strong-slip case based on (4.3) means that the ‘foot’ has grown
to a size much greater than L, i.e. `F � L. So from the perspective of the ‘foot’,
the interface profile described by (4.11b) is essentially the ‘inner’ portion of the
much larger ‘foot’. So the apparent contact angle (4.11b) for a slipping drop can be
thought of as the ‘microscopic’ contact angle of the ‘foot’. Thus it can be reasonably
represented by h′(x = L � `F) and hence has the scaling form (2.4). The specific
value of L = c1R can in principle be determined by solving the drop problem from
which the constant c1 can be found to measure the size of L relative to the drop
radius R. As such, the apparent dynamic contact angle for this strong-slip situation
is still well defined albeit its behaviour is coupled to that of the drop.

Moreover, given that the drop now becomes the ‘inner’ portion of the much larger
‘foot’, the interface profile described by (4.11b) should also asymptotically approach
the ‘foot’ as x→∞, giving x∞∼ `F in the logarithmic term in (4.11b). Combining the
features anticipated above, for a strongly slipping thin drop with h� λ, its apparent
dynamic contact angle evaluated from (4.11b) (by neglecting h′31 ) should take the form

θ 2
d = 3Ca

(
c1R
λ

)
ln
(

c2λ

Ca1/3R

)
. (4.13)

We emphasize that (4.13) is not limited to a strongly slipping thin drop. Since (4.13) is
also the contact angle of the much larger ‘foot’, as we will show in § 6.5, it is equally
applicable to the inner region of a weakly slipping thick drop within which the slip
length can be microscopically large to affect the much thinner precursor film ahead
of the ‘foot’. In this case, θd and R in (4.13) should be replaced by the microscopic
contact angle θm and the associated local length scale.

It is worth mentioning that Hocking (1992) has solved essentially the same equation
(4.2) for a weakly slipping drop and obtained the apparent dynamic contact angle
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L
L

(a) (b)

¶F
¶F

FIGURE 3. (Colour online) A schematic illustration of how the extent of slip is determined
by the slipping ‘foot’ of width `F ∼ λCa−1/3 relative to the macroscopic length L:
(a) `F�L indicates weak slip, whereas (b) `F� L signifies strong slip.

relationship like (4.10b) at Ca � Ca∗. In contrast to his study, (4.13) derived for
Ca � Ca∗ can describe not only the behaviour of a strongly slipping contact line,
but also the ‘inner’ behaviour of a weakly slipping contact line, which complements
Hocking’s result. In § 6.5, we solve the microscopic equation numerically, confirming
that (4.13) is indeed the law for a contact line experiencing strong slip effects.

Note also that for a strongly slipping drop with R� `F or R∼ `F, because of the
lack of separation between ‘foot’ and the central cap, the drop may display a bell
shape with a concave rim (Brochard & de Gennes 1984). This causes an asphericity
to the drop shape. Similar impacts of wall slip on the interface profile can also be
seen in a dewetting drop on a slippery surface (Chan et al. 2017).

4.3. Role of the ‘foot’ in dynamic contact angle with slip
To summarize the features in both §§ 4.1 and 4.2, it is actually the ‘foot’ length
`F ∼ λCa−1/3 that separates weak slip and strong slip according to its ratio to the
macroscopic length L, i.e. L/`F ∼ δ

−1/3, which is essentially (4.3).
For weak slip with δ� 1, at Ca higher than Ca∗ we have `F � L. So `F can be

thought of as the ‘inner’ scale x1 in (4.10b). For strong slip with δ� 1, on the other
hand, decreasing Ca below Ca∗ leads to `F� L. So `F becomes an ‘outer’ scale with
respect to L.

As such, in both δ� 1 and δ� 1 limits, L and `F are disparate length scales. For
δ� 1, the apparent contact angle θd = h′(x= L) given by (4.10b) varies weakly with
the larger scale L as [ln(L/`F)]

1/3 with the smaller `F entering as the inner scale. In
contrast, in the case of δ � 1, θd given by (4.13) varies strongly with the smaller
‘inner’ scale L as [L ln(`F/L)]1/2 with respect to the much larger `F that enters as the
outer scale. Figure 3 provides schematics for illustrating how `F becomes an inner or
outer scale with respect to L in the determination of θd.

Finally, we add a remark on the logarithmic terms seen in (4.10) and (4.11). These
terms appear at leading order in the dynamic contact angle expressions and diverge as
x→0. They basically come from an integration of the viscous stress over a wedge-like
geometry near the contact line (Voinov 1976; Snoeijer 2006). It is worth mentioning
that in the works by Lacey (1982) and Hocking (1983), a similar logarithmic term was
also found but not at leading order. Specifically, this result was obtained by taking a
small slip expansion with respect to the quasi-static drop profile that was taken as
leading order – it is an outer asymptotic analysis for the motion of a slightly slipping
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drop. But if taking an inner expansion for this outer problem at the edge of the drop,
the diverging terms would be of the same order within the overlap region where inner
and outer solutions match (Sibley, Nold & Kalliadasis 2015). Similar appearances of
logarithmic terms in the outer and inner regions can also occur when solving the
problem in small Ca expansion (Cox 1986; Hocking 1992; Eggers 2005b; Bonn et al.
2009).

5. Impacts of wall slip on dynamic contact angle: model and simulation
5.1. Results of the local lubrication model

Using (4.8b) (by neglecting h′31 ) together with the approximation (h, h1, h∞) ≈ θd ×

(x, x1, x∞) in the two F terms, the dynamic contact angle θd can be evaluated in an
iterative manner with the initial value (9Ca)1/3 until its value converges. Note that
while the apparent contact angle is defined in a scale of L, we do not need to specify
a value for L in (4.8b) because h/3λ, h1/3λ and h∞/3λ in the F terms appear in
a purely dimensionless manner. This is consistent with the fact that θd cannot be
a function of the relevant length scales separately but of their ratios. So the fact
that the result does not depend on the value of L is simply because L serves as the
reference scale for measuring x, x1, x∞ and λ with respect to L, i.e. (z, z1, z∞, β)=
(x, x1, x∞, λ)/L. In the actual evaluation we take (z, z1, z∞)= (1, β, 10). We have also
verified that the calculated θd does not vary significantly with the choice of z as long
as z is kept much larger than z1 (which is taken O(β) or smaller) but much smaller
than z∞.

Figure 4(a) plots θd against Ca for different values of λ/L. For a given λ/L,
θd exhibits two distinct behaviours. At λ/L = 0.01 or smaller, θd basically follows
Tanner’s scaling (2.1): θd ∼Ca1/3. Increasing λ not only reduces θd but also gradually
changes the dependence of θd on Ca. When increasing λ/L to 0.1 or larger, in
particular, the trend shifts to θd ∝Ca1/2 according to the strong-slip scaling (2.4). To
better see this transition, figure 4(b) redraws the data by plotting θ 3

d /Ca against Ca.
Two distinct trends can be clearly revealed. One appears in the relatively high Ca
regime (but still �1), approaching towards the no-slip limit θ 3

d /Ca= const. according
to (2.1). The other occurs in the very low Ca regime, closely following the strong-slip
θ 3

d /Ca∝Ca1/2 according to (2.4).
Further guided by the two limiting results (4.10b) and (4.11b), we find that (4.8b)

can be well approximated by

θ 3
d ≈ 9Ca[F(kx1/3λ, kx∞/3λ)− F(kx/3λ, kx∞/3λ)], (5.1a)

where k is the crude value of the asymptotic contact angle taken from (4.10b) and
(4.11b) separated at Ca=Ca∗ due to (4.3):

k=
{
(9Ca)1/3 for Ca> (L/3λ)3
(3Ca)1/2(L/λ)1/2 for Ca< (L/3λ)3. (5.1b)

As shown in figure 4(b), (5.1) can fairly capture the results calculated from (4.8b).
In fact, there is a much simpler way to express θd(Ca, λ/L) by lumping both weak-

slip and strong-slip results together. Because wall slip tends to reduce viscous drag by
a factor h/(h+ 3λ) (where the factor 3 accounts for pressure-driven flow), the effects
are equivalent to treating the fluid having an effective viscosity (Liao et al. 2013; Li
et al. 2014)

ηeff ≡ η

(
1

3λ/h+ 1

)
∼ η

(
1

3λ/Lθd + 1

)
. (5.2)
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FIGURE 4. (Colour online) (a) Plot of apparent contact angle θd against Ca for various
values of λ/L. For a small λ/L like 0.001, the result follows Tanner’s law θd ∼ Ca1/3.
Increasing λ/L tends to shift towards the strong-slip law θd ∝ Ca1/2, as indicated by the
result of λ/L= 0.5. (b) The two distinct trends can be clearly seen by redrawing the data
by plotting θ 3

d /Ca against Ca. The solid lines are the approximate results given by (5.1).

With ηeff defined by (5.2), the contact line would move as if there were no slip,
allowing θd to be described by the effective Tanner law in terms of the effective
capillary number Caeff = ηeff U/γ :

θ 3
d ∼Caeff ≡Ca

(
1

3λ/Lθd + 1

)
. (5.3)
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1
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100
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FIGURE 5. (Colour online) Replot of the data in figure 4(a) by plotting θd against the
effective capillary number Caeff = ηeff U/γ defined by (5.3). The data with different values
of slip length can be collapsed according to the effective Tanner law: θd ∼Ca1/3

eff .

With (5.3), it can be seen quite clearly that small and large λ/Lθd recover the weak-
slip scaling (2.1), θd ∼ Ca1/3, and the strong-slip scaling (2.4), θd ∼ Ca1/2(L/λ)1/2,
respectively. The crossover (2.3), Ca∗∼ (λ/L)3, can also be readily obtained by setting
λ/Lθd∼O(1) and θd∼Ca1/3 in (5.3). As shown in figure 5, all the data with different
values of λ/L seen in figure 4(a) can be successfully collapsed according to (5.3),
confirming the notions of the effective viscosity (5.2) discussed above.

5.2. Issues involved in resolving the motion of a slipping contact line
The results presented above are based on the approximate solution (4.8) to the local
equation (4.2). It may be tempting to verify the former by solving the latter directly.
However, this is not a self-contained procedure because the yet-to-be-determined
dynamic contact angle itself has to be specified as part of the boundary conditions
needed for solving the equation. In fact, there are more reasons why a complete
dynamic contact angle relationship generally cannot be fully resolved by doing such.

First of all, (4.8) is a local solution that requires to match the outer macroscopic
region away from the contact line. How the influence of macroscopic features enters
the contact line dynamics manifests by the fact that the apparent dynamic contact
angle θd ≡ h′(x= L) is often evaluated at the inflection point at which the wedge-like
interface starts to decrease its slope in the direction towards the central cap of a
spreading droplet (Kavehpour et al. 2003; Pahlavan et al. 2015). Because of the cap,
L= cR has to be connected to the spreading radius R through a constant c that will
be determined by matching the solution to the outer cap region. In other words, the
actual dynamic contact angle relationship generally involves R.

Second, whether the physics of a moving contact line can be well decoupled from
the outer drop depends on whether the relevant length scales are well separated.
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For no-slip or weak-slip case where λ � h, h2h′′′ = −3Ca reduced from (3.6) has
a solution form h = LCa1/3H(x/L) which is invariant of L (Bonn et al. 2009). This
scale invariance allows L to be taken to be any value below R without changing
θd. In other words, the form of (4.10b) is universal (Bonn et al. 2009), determined
mainly by the local hydrodynamics near the contact line. In this case, the impact
from the outer drop through x→ cR only enters the logarithmic factor and hence does
not affect the contact line characteristics qualitatively. If λ becomes comparable to
or greater than h, however, the requirement of λ in the solution to (3.6) necessitates
L to enter the solution in the form of h = λH(x/L, Ca(L/λ)3). The need to fix the
solution by specifying L through matching to the outer drop means that the local
solution is no longer separated from that of the drop. So the dynamic contact angle
has to be determined by all the length scales involved, as also indicated by (4.8b) or
(4.11b).

In addition, (4.8b) also involves the microscopic length x1, which needs to be
sought from the inner region of the contact line. Therefore, a complete description
of the dynamic contact angle requires matching to both the inner and outer regions
by specifying x1 and L (or x∞). In the case of λ � h, (4.10b) can be tested by
solving the local equation (4.2) with x1 that can be found by the inner solution of
(4.2) (Eggers 2005b) or by including the additional disjoining pressure term (Hervet
& de Gennes 1984; Eggers & Stone 2004; see also § 6.5) without having to specify
L. In the latter case, (4.11b) dominates the inner region but still requires x∞ to be
determined by matching to (4.10b) (see § 6.5). But if λ is comparable to or greater
than h, because there will be no clear cut between the ‘foot’ and the central cap (see
§§ 4.2 and 4.3), to find L or x∞ it is necessary to solve the outer drop. In one way
or another, one has to either match or couple to the outer drop. So if one wishes
to fully test how wall slip affects the dynamic contact angle, one might still have to
resort to solving the entire drop spreading problem.

5.3. Many-body dissipative particle dynamics simulations
Numerically simulating a drop spreading problem is commonly realized by solving
a time-dependent hydrodynamic equation. Similar to the situation in solving (4.2),
solving such an equation still requires boundary conditions at the contact line, and one
of which has to specify the dynamic contact angle that is actually part of the solution
needed to be determined. It is possible to determine the apparent dynamic contact
angle through the inflection point by setting a vanishing slope or interfacial tension at
the edge of a spreading drop (Pahlavan et al. 2015). But it has to be implemented
at the expense of the inclusion of microscopic intermolecular forces for advancing
the contact line. As a result, the problem will involve many disparate length scales,
making its numerical computation prohibitively expensive (Pahlavan et al. 2015).

To avoid the issues mentioned above, an alternative approach is needed. Here
we choose the many-body dissipative particle dynamics (MDPD) to test our theory.
The main advantage of MDPD is that it does not require the imposition of boundary
conditions at the contact line. Moreover, this approach allows us to simulate spreading
of nanodroplets to which impacts of wall slip can be made more pronounced. The
simulation method basically follows Weng et al. (2017) with slight modifications
by allowing fluid slippage on the solid surface. The simulations are performed in a
box with a size of 80 × 80 × 80 in units of the bead radius rbead. The total bead
number of the liquid is 30 000. In each simulation, a drop begins with a perfect
sphere having contact angle θd = 180◦. Changes in θd can be observed when the base
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No-slip 100 200 300

Slip 100 200 300

t/tstep = 

FIGURE 6. (Colour online) Some snapshots using MDPD simulations for nanodrop
spreading with and without slip. The results clearly show that slip can make a drop spread
faster. In the case of slip, the slip length is taken as λ= 3.14rbead greater than the liquid
height h, where rbead is the bead radius. In either case, the drop begins with a perfect
sphere of identical radius and contact angle θd = 180◦. Changes in θd can be observed
when the base radius R reaches 10rbead or greater. Time t is expressed as the number of
time steps tstep = 0.01tbead, where tbead = rbead/vrms is the characteristic time based on the
root-mean-square velocity vrms = (3kBT/m)1/2 with kBT being the thermal energy and m
the bead mass.

radius R reaches 10rbead or greater. Time t is measured in terms of the number of
time steps tstep = 0.01tbead, where tbead = rbead/vrms is based on the root-mean-square
velocity vrms= (3kBT/m)1/2 in terms of the thermal energy kBT and the bead mass m.

Figure 6 displays snapshots of nanodrop spreading with and without slip, showing
that the drop with slip spreads faster than that without slip. Figure 7 plots the rescaled
dynamic contact angle θ 2

d /Ca against Ca for the slip case. It clearly shows θ 2
d /Ca=

const., which successfully captures the strong-slip law (2.4). The inset also shows
θ 3

d /Ca= const. for the no-slip case, confirming Tanner’s law (2.1) as well.
Chan et al. (2017) found in their simulations that a dewetting drop on a slippery

surface can display a non-spherical shape due to slip effects. In contrast to their study,
we do not observe significant departures from spherical drop shape for the slip case.
The reasons are: (i) the drop is very small and (ii) we look at the complete wetting
scenario where the contact angle is small and constantly decreasing during spreading.
Although in our case the ‘foot’ may come into play to make the interface deviate
from spherical shape, the changes of the interface curvature are actually not noticeable
because of the above reasons. This is also consistent with the consequence of the
small-slope theory we use in our analysis.

We notice that there are two important differences between our work and that of
Chan et al.: (i) our focus is wetting whereas that of Chan et al. is dewetting and (ii)
our contact angle is of advancing type and constantly decreasing, whereas theirs is of
receding type but kept fixed at the equilibrium value. Because their drop is getting
thicker as it retracts, the asphericity in their drop shape might be a result of the
necessary adjustment of the interface for matching the constant contact angle set at the
drop edge. In contrast, in our case the drop is getting thinner as it spreads, making the
interface curvature gradually diminish. Obviously, their interface adjustment is much
more pronounced than ours, explaining why apparent asphericity in the drop shape can
be observed in their work but not in the present study. It is also worth mentioning that
apparent changes in interface profiles can arise purely from very large slip beyond
(3.7), as shown by Münch et al. (2005) in their study on dewetting films without
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FIGURE 7. (Colour online) Plot of the rescaled apparent dynamic contact angle θ 2
d /Ca

against Ca for the slip case seen in figure 6. The result clearly reveals θ 2
d /Ca = const.,

successfully capturing the strong-slip scaling (2.4). The inset plots θ 3
d /Ca against Ca,

showing that θ 3
d /Ca= const. for the no-slip case, which also confirms Tanner’s law (2.1)

as well. The dashed lines in these plots represent best fits.

contact lines. Such changes come from the strong coupling between slip and inertial
effects (Münch et al. 2005), which is beyond the scope of the present work.

To capture the interface adjustment due to wall slip, which manifests most near the
contact line, we will further include the van der Waals disjoining pressure in § 6 to
numerically resolve the interface profile in the vicinity of the contact line. As will
be shown in § 6.5, for a weakly slipping drop whose contact line structure involves
both Tanner’s law (4.10b) and the strong-slip law (4.11b), the interface profile can be
precisely portrayed by these two laws by solving (6.2) numerically. More importantly,
we will reveal that a ‘foot’ will naturally form from a strongly slipping precursor film.

6. Decoding the microstructure of a slipping contact line
6.1. Motivation and problem set-up

As for the microscopic characteristics of a moving contact line, they are usually
determined by either wall slip or disjoining pressure (Eggers & Stone 2004), and
each is considered as a separate microscopic mechanism for removing the contact line
stress singularity. In the case of a polymer liquid in which slip effects may be strong,
both slip and disjoining pressure effects might have to be considered jointly. This
might lead the precursor film to behave differently from that without slip described
by Hervet & de Gennes (1984).

In fact, even though the slip length is macroscopically small, it could still be
microscopically large to cause substantial impacts on the microscopic behaviour of a
moving contact line. This case actually occurs to a thick polymer drop in which the
slip length is much smaller than the drop height but much greater than the precursor
film. It has been reported that the simple slip model (3.6) can give a microscopic
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Slipping moving contact lines 129

‘foot’ length (2.5) in the logarithmic factor of the Tanner–Cox–Voinov law (4.10b)
(Hocking 1983, 1992; Eggers & Stone 2004). In contrast, if disjoining pressure is
taken into account without slip, the width of the precursor film will become the
microscopic length (Hervet & de Gennes 1984; Eggers & Stone 2004). If both
slip and disjoining pressure coexist as occurring for polymer liquids, it is not clear
whether the microscopic length is still dictated by the precursor film.

It is worth mentioning that Brochard & de Gennes (1984) have analysed the
spreading of a polymer drop by including both wall slip and disjoining pressure.
They mainly focused on the formation of the mesoscopic ‘foot’ behind the precursor
film. They also considered effects of wall slip on the interface profile of the precursor
film, and merely obtained the ‘maximal’ film profile by balancing viscous force to
disjoining pressure force. However, how this maximal film develops into the ‘foot’,
which has to further take into account surface tension force, was not addressed in
their study.

In view of the above, while most existing studies have used either wall slip or
disjoining pressure in resolving the microscopic behaviour of a moving contact line
(Hervet & de Gennes 1984; Kalliadasis & Chang 1996; Eggers 2004; Eggers & Stone
2004; Eggers 2005a; Savva & Kalliadasis 2011), there has been no systematic attempt
to examine the combined influence of these two effects. While this issue has been
briefly discussed by Brochard & de Gennes (1984) and Liao et al. (2013), below we
develop a new theory to provide a more in-depth analysis for the microstructure of a
slipping contact line.

We begin with the van der Waals disjoining pressure:

∏
= γ

a2

h3
, (6.1)

where a= (AH/6πγ )1/2 is the molecular length which is typically of the order of 1 Å
and AH is the Hamaker constant. The equation governing the precursor film motion
can be derived by simply adding −

∏
from (6.1) to the Laplace pressure (3.2), which

modifies (3.6) to

h′′′ =−
3Ca

h2 + 3λh
+

3a2h′

h4
. (6.2a)

The corresponding dimensionless form under (4.1) is

H′′′ =−
3δ

H2 +H
+

3χH′

H4
, (6.2b)

where χ measures the strength of the microscopic disjoining pressure relative to the
macroscopic Laplace pressure according to

χ =
( a

3λ

)2
(

L
3λ

)2

. (6.3)

Note that (6.2b) is derived for length scale z=O(1) or x=O(L). Since we are looking
at the inner contact line region characterized by the precursor film of thickness hf and
length `, H and z should scale as H = hf /3λ and L = `/L, respectively. The actual
scales for H and L will be determined by balancing the terms in (6.2b), and hence
those for hf and `.
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We first balance the surface tension term H′′′ ∼ H/L3 to the disjoining pressure
term 3χH′/H4

∼ χ/H3L. This yields the scale for the precursor film thickness, H∼
(χL2)1/4, or its dimensional form

hf ∼ (a`)1/2. (6.4)

Here the length ` we are looking at is the length of the transition portion of the film
bridging towards the macroscopic wedge (de Gennes 1985), rather than the length of
a fully extended film (or called ‘truncated’ film) that is determined by the spreading
coefficient (de Gennes 1985; Colinet & Rednikov 2011). If the drop is not very small
and if its spreading merely takes place for a relatively short period after its deposition,
the film might not fully thin down to the equilibrium ‘pancake’ state whose thickness
is often of molecular size (Beaglehole 1989). In this case, ` may represent the
majority part of such a gradually developing film whose spreading power is not yet
burned at the molecular level. We are in particular interested in ` since it can enter
as the microscopic length x1 in the logarithmic factor of the Tanner–Cox–Voinov law
(4.10b) (de Gennes 1985; Eggers & Stone 2004). In addition, it can also impact the
spreading kinetics of the film (see § 7.2).

As such, hf given by (6.4) should represent the crossover thickness to the ‘maximal’
film (de Gennes 1985). Because hf is typically small and also because λ can vary in a
wide range, the actual behaviour of the precursor film must lie between two limiting
situations: (i) thick film with hf�λ and (ii) thin film with hf�λ, which are examined
below.

6.2. Thick film with small microscopic slip

For the thick-film case with hf � λ, it is the situation where λ is extremely small.
Now because H� 1, the viscous term in (6.2b) scales as δ/H2

∼ δ/H2. Balancing
the viscous term to the surface tension term, δ/H2

∼H/L3, together with (6.4), we
arrive at L ∼ χ 1/2δ−2/3, which recovers the no-slip precursor film scaling (Hervet &
de Gennes 1984; Eggers & Stone 2004):

`∼ aCa−2/3. (6.5)

Substitution of (6.5) into (6.4) gives the corresponding film thickness scale:

hf ∼ aCa−1/3. (6.6)

This thick film situation requires hf � λ, yielding

λ

a
�Ca−1/3, (6.7)

under which (6.5) and (6.6) characterize the film dimensions. In terms of the spreading
kinetics, (6.5) suggests that the film will extend its length with time according to

`∼ a(γ t/ηa)2/5. (6.8)
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6.3. Thin film with large microscopic slip
When the film is thin such that hf � λ, the film will experience a large microscopic
slip, which is likely the case for polymer liquids. Since H� 1, the viscous term in
(6.2b), −3δ/(H2

+ H), scales as δ/H ∼ δ/H dominated by the slip term. Balancing
δ/H to the surface tension term H′′′ ∼H/L3 and using (6.4), we find L∼ (χ/δ2)1/4

whose dimensional form reads

`∼ a(λ/a)1/2Ca−1/2. (6.9)

Expression (6.9) indicates that the larger the value of λ the longer the film because its
advancement is promoted by slip. The corresponding film thickness can be obtained
by substituting (6.9) into (6.4):

hf ∼ a(λ/a)1/4Ca−1/4. (6.10)

Because hf � λ here, this together with (6.10) gives

λ

a
�Ca−1/3, (6.11)

under which both (6.9) and (6.10) hold for this thin-film situation.
The film thickness scale (6.10) indicates that wall slip tends to thicken the film.

This can be seen by comparing the strong-slip case to the weak-slip case. Because of
(6.11), the film thickness (6.10) for the former is a factor [(λ/a)Ca1/3

]
1/4(� 1) thicker

than (6.6) for the latter.
Finally, in terms of the film spreading kinetics, the spreading law corresponding to

(6.9) is
`∼ a(λ/a)1/3(γ t/ηa)1/3. (6.12)

The resulting spreading exponent is 1/3, smaller than the 2/5 of the weak-slip case
(6.8).

6.4. Classification of contact line structures
As shown above, the precursor film can display either the thin-film scales (6.9)–(6.10)
or the thick-film scales (6.5)–(6.6), depending on (λ/a)Ca1/3 according to (6.7) or
(6.11). Recall that the extent of slip at the macroscopic level is determined by
the ‘foot’ size λCa−1/3 relative to L according to (4.3). Even though slip may be
microscopically strong with (λ/a)Ca1/3 > 1, its amount is not necessarily large at the
macroscopic level because (λ/L)Ca−1/3 could be small.

To better identify the parameter regimes in which slip effects are important at the
macroscopic or/and microscopic levels, the situation can be categorized in terms of
‘thick/thin drop’ and ‘thick/thin film’. The former represents ‘weak/strong macroscopic
slip’ using δ defined by (4.3), whereas the latter signifies ‘small/large microscopic slip’
according to (6.7)/(6.11). As illustrated in figure 8, there exist three types of contact
line structures: (i) thick drop with thin film, (ii) thick drop with thick film and (iii)
thin drop with thick film, depending on the value of Ca with respect to (λ/L)3 and
(λ/a)−3.

Figure 8 clearly reveals that even though slip effects are macroscopically weak
for ‘thick drop’ under λ/L � Ca1/3, the microscopic contact line can still be well
characterized by ‘thin film’ having large microscopic slip under λ/a� Ca−1/3. The
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Ca(¬/a)3

Ca(L/¬)3

hf <¬
h h

h

¬ ¬

¬

hf 
hf 

hf 

1

Thin film

hf >¬

h < ¬

Thick film

Thin drop
h > ¬

Thick drop1

FIGURE 8. (Colour online) A diagram that illustrates possible macroscopic and
microscopic structures of a moving contact line in terms of Ca and the strength of
wall slip. The situation can be categorized in terms of ‘thick/thin drop’ representing
‘weak/strong macroscopic slip’ as well as ‘thin/thick film’ signifying ‘large/small
microscopic slip’, depending on the value of Ca with respect to (λ/L)3 and (λ/a)−3. Even
though slip effects are macroscopically weak in ‘thick drop’ under Ca (L/λ)3 > 1, the
microscopic contact line structure can still be well characterized by ‘thin film’ having large
microscopic slip under Ca (λ/a)3 > 1, as illustrated on the top-right corner.

two conditions above give the range of the slip length λ for such thick-drop and
thin-film situation:

1� (λ/a)Ca1/3
� (L/a)Ca2/3. (6.13)

Recall (6.7) or (6.11) that (λ/a)Ca1/3 measures the extent of microscopic slip. With
a ∼ 0.1 nm and Ca typically >10−6, slip will start to become microscopically large
for λ> 10 nm. For polymer liquids, in particular, λ is of the order of micrometres or
larger. So (λ/a)Ca1/3 is at least O(102). In this case, to ensure that slip can be made
macroscopically small using a sufficiently thick drop under λ/L<Ca1/3, the drop size
∼L has to be at least 102 µm or larger.

In fact, (6.13) is automatically satisfied if Ca1/3
� (λ/a)−1

� λ/L. The inequality
between the latter two yields

λ2/aL� 1. (6.14)

Expression (6.14) is essentially χ � 1 in (6.2b), meaning that the microscopic
disjoining pressure has to outweigh the macroscopic Laplace pressure. Note that for
the thick film case with (λ/a)−1

�Ca1/3
� λ/L, (6.14) also holds. But this case may

not show up in the microstructure of the contact line unless λ is extremely small
such that λ2/aL� (λ/a)Ca1/3

� 1. For polymer drops with L∼ 1 mm, λ∼ 1 µm and
a ∼ 0.1 nm, (6.14) is always satisfied. Also given that Ca is typically >10−6 much
greater than (λ/a)−3

∼ 10−12 according to (6.11), the thin-film scalings (6.9)–(6.10)
should enter the microstructure of the contact line for a polymer drop. Hence, the
no-slip precursor film model developed by Hervet & de Gennes (1984) might not be
an adequate description for the precursor film of a polymer drop. There are a few
experimental studies that support this view, as will be shown in § 7.2.
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Slipping moving contact lines 133

6.5. Bridging thin film to thick drop
As discussed above, a thick drop having small macroscopic slip may perceive a large
microscopic slip in the vicinity of the contact line. While the wetting dynamics of the
drop can be described by the Tanner–Cox–Voinov law (4.10b), the description cannot
be said to be complete without specifying the inner length x1, which is determined
by the specific features of the microscopic contact line. This not only requires one to
solve (6.2a) for resolving the inner interface profile, but also necessitates matching of
the solution to (4.10b) away from the contact line.

To solve (6.2a), we rescale the variables as (φ, ξ)= (h/hf , x/`) using the thin-film
scales (6.9)–(6.10) under Λ≡ (λ/a)Ca1/3

� 1. This transforms (6.2a) to

φ′′′ =−
1

δ1φ2 + φ
+

3φ′

φ4
, (6.15)

where the dimensionless parameter δ1 is

δ1 ≡
hf

3λ
=

1
3
Λ−3/4

=
1
3

(
λ

a
Ca1/3

)−3/4

. (6.16)

So the extent of microscopic slip can be reflected by 1/δ1. Here we are more
interested in the large microscopic slip case δ1� 1 (but restrict its value to be much
larger than [(L/a)Ca2/3

]
−3/4 according to (6.13) to ensure weak macroscopic slip).

To solve (6.15) numerically, we follow the approach of Hervet & de Gennes (1984)
or of Eggers & Stone (2004). We first construct an approximate profile φ< for φ(ξ <
0) ahead of the macroscopic contact line at ξ = 0, and then use it to integrate (6.15)
towards ξ > 0 with a vanishing curvature as ξ→∞. An appropriate form of φ<, first
of all, has to follow the asymptote φ(ξ→−∞)≡φ0, called the ‘maximal film’. Here
φ0 can be determined by considering only the slip part −1/φ of the viscous term
(since φ� δ1φ

2 as φ(ξ→−∞)→0) and the disjoining pressure term 3φ′/φ4 in (6.15):

φ0 = (3/2)1/2/(−ξ)1/2. (6.17)

Before continuing our analysis, several features from (6.17) are worth mentioning.
Equation (6.17) describes the actual profile of the ‘maximal’ film for a strongly
slipping precursor film:

h(x)= (3/2)1/2aλ1/2Ca−1/2/(−x)1/2. (6.18a)

If such a slipping film eventually develops into a static ‘tongue’ having the equilibrium
thickness he= (γ /S)1/2a that depends on the spreading coefficient S (de Gennes 1985),
it will extend to the following length according to (6.18a) with h∼ he:

`p ∼ a2λCa−1/h2
e ∼ λ(S/γ )Ca−1. (6.18b)

For a no-slip or weak-slip precursor film, its profile takes the hyperbolic form (de
Gennes 1985; Colinet & Rednikov 2011)

h(x)= a2Ca−1/(−x), (6.19a)

with the length obtained by setting h∼ he in (6.19a) (de Gennes 1985):

`p ∼ a2Ca−1/he ∼ a(S/γ )1/2Ca−1. (6.19b)
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Compared to the weak-slip case, a strongly slipping precursor film not only has the
profile (6.19a) quite distinct from (6.18a), but also displays a length (6.19b) much
longer than (6.18b).

To have a better interface profile for shooting the solution towards ξ > 0, a small
deviation ∆ is needed to add into φ0: φ< = φ0 + A · ∆, with A being an adjustable
parameter. Substituting the above into (6.15) and linearizing the equation, we find
that at leading order ∆ satisfies φ4

0∆
′′′
= 3∆′, which is simply the balance between

the capillary term and the disjoining pressure term. Deviation ∆ can then be readily
found by solving the above equation using the Wentzel–Kramers–Brillouin (WKB)
approximation: ∆= exp(

√
3
∫
φ−2

0 dξ). As such, φ< can be constructed as

φ< =

(
3

2(−ξ)

)1/2

+ A exp
(
−
ξ 2

√
3

)
for ξ < 0. (6.20)

Using (6.20) with a given A, we specify the values of φ, φ′ and φ′′ at ξ = ξ0 < 0
and use them as the initial conditions to integrate (6.15) numerically towards ξ > 0.
We select the values of A and ξ0 such that the solution satisfies φ′′(ξ →∞)→ 0.
For δ1 = 10−4, 10−3 and 10−2, we find (A, ξ0) = (2.499, −0.58), (2.505, −0.59) and
(2.548,−0.621), respectively.

Figure 9 shows the interface profiles for the above values of δ1. The results are
displayed in terms of ĥ = h/a and x̂ = x/a in the scale of molecular length a. This
essentially rescales φ and ξ respectively as ĥ = φλ̂1/4Ca−1/4 and x̂ = ξ λ̂1/2Ca−1/2

according to (6.10) and (6.9), where λ̂ = λ/a is the slip length relative to a. The
parameter defined by (6.15) can also be rewritten as δ1 = λ̂

−3/4Ca−1/4/3, allowing λ̂
to control the amount of wall slip by varying δ1 while keeping Ca fixed.

As shown in figure 9, two features can be immediately observed. First, with
increasing λ̂ by decreasing δ1, the precursor film in the x̂ < 0 region gets thicker.
Second, the film also becomes more extended. These two observations are consistent
with the strong-slip, thin-film scales (6.9) and (6.10) – both are shown to increase
as λ̂ is increased. The reason why the precursor film behaves in this way is that
its formation is a result of liquid filling near the contact line, driven by disjoining
pressure that tends to drain the fluid from the drop towards the contact line. Since
such draining gets enhanced by wall slip, this thickens and prolongs the liquid ahead
of the contact line. That is, the wetting is simply promoted by increasing λ̂. As a
result, the liquid becomes flattened, thereby reducing the apparent contact angle. This
can also be clearly seen in figure 9.

Since the film here still feels strong microscopic slip with h� λ, there must exist
an intermediate region in transition to the linear wedge region h� λ in which slip is
macroscopically weak. To capture this transition, we rescale the variables as H = ĥ/λ̂
and s = (x̂ − x̂(ξ0))/λ̂ to look at how h varies with x in the scale of λ. Figure 10
replots figure 9 by plotting H against s, showing that all the curves of different
values of δ1 are virtually collapsed. This means that the rescaled interface profile has a
universal structure H = f (Cans) regardless of the value of λ̂, i.e. h= λf (Canx/λ). We
identify the exponent n= 1/3, exactly corresponding to the ‘foot’ scale `F ∼ λCa−1/3.
As also shown in figure 10, the interface profiles near and far away from the contact
line precisely match de Gennes’s ‘foot’ from (4.11b) and the weak-slip Voinov wedge
from (4.10b), respectively. More importantly, they all are characterized by `F, as can
be seen below.
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FIGURE 9. Plot of the calculated film thickness ĥ= h/a versus the distance to the contact
line x̂ = x/a for small values of δ1 = (1/3)((λ/a)Ca1/3)−3/4 in the strong-slip, thin-film
regime. With increasing the extent of slip by decreasing δ1, the film becomes thicker and
more extended.

0

5

10H

∂1 = 10-4

∂1 = 10-3

∂1 = 10-2

Strong-slip de Gennes ‘foot’
Weak-slip Voinov wedge

15

20

20 40 60
s

80 100

FIGURE 10. (Colour online) Replot of the results in figure 9 in terms of the rescaled film
thickness H = h/λ and distance s= (x− x(ξ0))/λ with respect to the slip length λ. All
the curves of different values of δ1 are virtually collapsed. The film in the small s regime
is described by the strong-slip de Gennes ‘foot’ profile ∝ s3/2 whereas that in the large s
regime follows the weak-slip Voinov wedge ∝ s.
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In the small and moderate s region where a considerable amount of slip can still
be seen, we find that the calculated interface profile in this ‘inner’ region can be well
captured by the strong-slip result (4.11b) (by neglecting h′31 ):

H ≈ (2/
√

3)(Ca1/3s)3/2[ln(s∞/s)]1/2. (6.21)

Here s≈20Ca−1/3 (i.e. x∞≈20λCa−1/3) is found to match the interface profile at large
s, meaning that the ‘foot’ is necessary to bridge the outer wedge.

In the large s region where slip effects can be negligible, we find that the interface
shape in this ‘outer’ region precisely matches the Voinov wedge according to (4.10b)
(by neglecting h′31 ):

H ≈ 91/3(Ca1/3s)[ln(s/s1)]
1/3, (6.22)

in which s1 ≈ 0.1Ca−1/3 (i.e. x1 ≈ 0.1λCa−1/3) is the inner length due to the ‘foot’.
In fact, there is a heuristic reason why the interface profile in the outer region

must take the form (6.22) with the ‘foot’ scale s1 ∼ Ca−1/3 as the inner length.
In the outer region, the interface shape is governed by (6.15) in which the disjoining
pressure term φ′ can be negligible: φ′′′ = −1/(δ1φ

2
+ φ). Also because the slip

term is unimportant compared to the no-slip term in the outer region, φ � δ1φ
2

yields φ � 1/δ1 corresponding to h � λ. The above equation is then reduced to
φ′′′ =−1/δ1φ

2 which admits the weak-slip Voinov solution as that given by (4.10):

φ(ξ)≈

(
3
δ1

)1/3

ξ

[
ln
(
ξ

ξ1

)]1/3

, (6.23)

with ξ1 being the inner length. Because φ � 1/δ1 here, to have a valid asymptotic
behaviour given by (6.23), one requires ξ � δ

−2/3
1 or x� λCa−1/3. Having φ and ξ

rescaled respectively by 1/δ1 and δ−2/3
1 , one recovers (6.22). As (6.23) will break down

when φ ∼ 1/δ1 at ξ ∼ δ−2/3
1 or x∼ λCa−1/3, this provides the size of ξ1 in (6.23) and

therefore s1 in (6.22).
As such, ahead of the macroscopic wedge, the contact line microstructure consists

of two parts: (i) a strongly slipping precursor film of length ` ∼ a(λ/a)1/2Ca−1/2

and (ii) a mesoscopic ‘foot’ of `F ∼ λCa−1/3, as illustrated in figure 11. Because
the ratio of the former to the latter is (λ/a)−1/2Ca−1/6

� 1 under (6.11), the latter is
much longer than the former. This means that the majority of the microstructure is
made of the ‘foot’ whose leading edge is the precursor film. This could be crucial in
experiments because the rim ahead of the macroscopic contact line can display like
a ‘foot’ but advance according to the precursor film scaling.

Based on the above, we conclude that the entire contact line structure involves three
length scales: (i) the length of a developing precursor film `, (ii) the width of a
mesoscopic foot `F and (iii) the size of the macroscopic wedge L, as illustrated in
figure 11. At the macroscopic level, the amount of wall slip can be reflected by δ−1

=

(3`F/L)3 in terms of `F/L – the larger the value of `F/L, the stronger the macroscopic
slip. So a thick drop with weak macroscopic slip corresponds to a drop with L� `F.
At the microscopic level, whether slip effects are important is measured by δ−1

1 =

3(`F/`)
3/2 in terms of `F/` – the larger the value of `F/`, the more pronounced the

microscopic slip effects. So a thin film with strong microscopic slip corresponds to a
precursor film having `� `F.

Table 1 summarizes all the scaling results for both weak-slip and strong-slip cases.
It highlights the fact that slip can change the scaling law in every aspect: wetting law,
drop spreading law, microscopic length, length of static precursor film (‘tongue’) and
length of developing precursor film and its spreading kinetics.
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Microscopic precursor film

Macroscopic wedgeMesoscopic
foot

 ¶ ¡ a (¬/a)1/2 Ca-1/2

 ¶F ¡ ¬Ca-1/3 L

œd

FIGURE 11. (Colour online) Schematic illustration of the contact line microstructure ahead
of the macroscopic wedge of size L. The structure consists of a strongly slipping precursor
film of length ` and the mesoscopic slipping foot of width `F. The behaviour of a slipping
contact line can be characterized by three length scales: `, `F and L.

Weak slip Strong slip

Wetting law θd ∼Ca1/3 θd ∼ (L/λ)1/2Ca1/2

Drop spreading law R∝ t1/10 R∝ t1/8

Microscopic length aCa−2/3 λCa−1/3

Length of static precursor film (‘tongue’) a (S/γ )1/2Ca−1 λ (S/γ )Ca−1

Length of developing precursor film aCa−2/3 (aλ)1/2Ca−1/2

Spreading kinetics of developing precursor film `∝ t2/5 `∝ t1/3

TABLE 1. Comparison between weak-slip and strong-slip results. Slip can change the
scaling law in every aspect: wetting law, drop spreading law, microscopic length, length of
static precursor film (‘tongue’) and length of a developing precursor film as well as film
spreading kinetics.

7. Comparison with experiments

In this section we further make connections of our findings to experiments. Our
theory basically predicts that both macroscopic and microscopic wetting characteristics
can undergo qualitative changes due to wall slip. This is reflected by several power-
law changes in Ca. Specifically, at the macroscopic level, the dynamic contact angle
θd may obey the strong-slip law θd ∝Ca1/2 instead of Tanner’s law θd ∼Ca1/3. As for
the microscopic contact line structure, it may involve the thin-film scale ` ∝ Ca−1/2

and the foot scale `F ∝ Ca−1/3, distinct from the weak-slip case that is characterized
by the thick-film scale ` ∝ Ca−2/3 alone. Below we compare these predictions with
experiments.

7.1. Macroscopic drop spreading experiments
Most drop spreading experiments are performed using silicone oil. It is a polymer
liquid that can display a large apparent slip. de Gennes (1979) proposed that the
apparent slip length can be estimated as

λ≈ b(η/η0)≈ bN3/N2
e , (7.1)
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where b ∼ 0.1 nm is the molecular size and η0 is the viscosity of a liquid of
monomers. Very large λ comes from the fact that η/η0 ≈ N3/N2

e is typically large,
strongly depending on the number of polymerization N of a polymer chain and the
degree of chain entanglement Ne. For N ∼ 103 and Ne ∼ 102, (7.1) gives λ∼ 10 µm.

We first inspect the drop spreading experiment of Chen (1988). He used a
polydimethylsiloxane (PDMS) liquid, a typical polymer liquid, to measure how the
apparent dynamic angle θd varies with Ca. As shown in figure 12(a), for Ca>2×10−5

his data basically obey Tanner’s law θd ∝ Ca1/3. But for Ca < 2 × 10−5, the data
exhibit an apparent departure from Tanner’s law, showing a stronger dependence on
Ca: θd ∝Ca1/2.

We also compare Chen’s data with our theory’s predictions. As shown in
figure 12(b), the deviations of his data from Tanner’s law can be fairly captured
by our generalized dynamic contact angle relationship (4.8b) with λ/L ranging from
10−4 to 10−2. Note that the result of λ/L = 10−4 is already indistinguishable from
Tanner’s law and agrees well with the uppermost portion of the data for Ca>2×10−5.
It may appear that most of the data here roughly follow θd ∝Ca1/3. Nevertheless, the
reduction of θd due to wall slip is evident. The largest reduction roughly corresponds
to λ/L= 10−2, which gives an estimate of the slip length λ∼ 10 µm for the drop size
L∼ 1 mm used in Chen’s experiment. For the PDMS liquid used by Chen, N ∼ 103

can be estimated by fitting the liquid’s viscosity η≈ 2000 cP using the correlation of
viscosity with molecular weight reported by Barry (1946). Using (7.1) with Ne∼ 102,
the estimated slip length is λ∼ 10 µm. So the largest slip length obtained by fitting
the data with (4.8b) agrees with that estimated from (7.1), suggesting that wall slip
is likely the main source responsible for the apparent departure from Tanner’s law
seen in Chen’s experiment.

A closer inspection reveals that θd∝Ca1/2 seen for Ca=5×10−6–2×10−5 occurs at
a slightly larger Ca range compared to that of λ/L= 10−2 (which occurs at Ca< 10−6

according to figure 4a). Such a discrepancy is likely attributed to surface roughness.
Zhou & Sheng (1990) reported in their numerical study that a nonlinear frictional
force on a moving contact line can result from rapid jumps of the contact line on an
undulated surface. McHale et al. (2004) showed in their drop spreading experiment on
a pillared substrate that the apparent contact angle can decrease with time as θd∝ t−3/4

much more rapidly than Tanner’s θd ∝ t−3/10. Their result can also be interpreted as a
consequence of θd ∝ Ca due to very strong slip beyond (3.7) (Liao et al. 2013). So
the fact that Chen’s data cannot be fully captured by our theory might be a result of
combined effects of slip and surface roughness. Nevertheless, the strong-slip signature
θd ∝Ca1/2 strongly suggests that wall slip must play a role in Chen’s experiment.

The immediate consequence that follows the strong-slip wetting law θd ∝ Ca1/2 is
that the spreading law will change to R∝ t1/8 according to (2.7). In the experiment of
Albrecht et al. (1992), they used small picolitre PDMS droplets and found R∝ tα with
α= 0.12–0.14 (see their figure 3). This result clearly favours the strong-slip spreading
law R∝ t1/8 more than Tanner’s spreading law R∝ t1/10, suggesting strong-slip effects
in their experiment. Indeed, although the PDMS liquid they used has a smaller slip
length λ∼100 nm (estimated from (7.1) with N∼102 and Ne∼102), their droplets are
in fact monolayer-like of thickness ∼1 nm, much smaller than the slip length, which
explains the slightly greater spreading exponent observed in their experiment.

Having seen the much faster spreading in Albrecht et al.’s experiment, a few words
are worth mentioning about Chen’s experiment. In Chen’s experiment, while θd∝Ca1/2

is observed in the very small Ca regime instead of Tanner’s law θd ∼ Ca1/3 (see
figure 12a), the spreading kinetics still largely follows Tanner’s spreading law R ∝
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FIGURE 12. (Colour online) Plot of the measured dynamic contact angle θd against Ca
reported by Chen (1988). (a) For Ca> 2× 10−5 the data roughly obey the no-slip Tanner
law with the best fit θd = 1674.3Ca0.33 (blue dashed line). For Ca < 2 × 10−5, however,
the data appear to exhibit an apparent departure from the Tanner law, which can be best
described by θd = 201.3Ca0.54 (pink solid line). (b) The deviations of the data from the
Tanner law can be fairly captured by the generalized dynamic contact angle relationship
(4.8b) with λ/L ranging from 10−4 to 10−2. There is still a discrepancy between
experiment and theory, which might be attributed to surface roughness. Nevertheless, the
largest slip length λ∼ 10 µm estimated from the theory’s curve λ/L= 10−2 agrees with
that estimated from (7.1).

t1/10. Note that the droplets in his experiment start with ∼102 µm in thickness, much
thicker than the slip length λ∼ 10 µm. So the observed wetting law θd∝Ca1/2 should
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correspond to the late stage of the spreading where the droplet thickness becomes
comparable to λ. The late-time spreading should slow down to R ∝ t1/8. In the case
of complete wetting, such spreading should never stop.

Since Tanner’s 1/10 spreading law still prevails throughout the spreading process,
it is likely that the 1/8 law at the late stage is contaminated by the 1/10 law at the
early stage. In contrast to Chen’s experiment, the droplets used in Albrecht et al.’s
experiment are much smaller. This makes the spreading already start in the strong-
slip regime, thereby allowing the entire spreading process to be exposed to much
intensified slip effects. This explains why the spreading exponent in Albrecht et al.’s
experiment is significantly greater than 1/10.

The above discussion on the differences between Chen’s and Albrecht et al.’s
experiments implies that whether a departure from Tanner’s laws can be observed
experimentally critically depends on the initial drop size. The greater the drop size,
the longer the time needed to see the departure. This time scale can be estimated
using the crossover between (2.2) and (2.7):

t∗ ∼ (Ω2/λ5)(γ /η)−1, (7.2)

after which slip effects start to kick in to influence the spreading. As indicated by
(7.2), because t∗ ∝ λ−5, if the slip length λ is small, the time required to see a
deviation from Tanner’s laws could become prohibitively long. This explains why
most of the drop spreading experiments using silicone oils still obey Tanner’s laws.
To reduce the time, it is necessary to use smaller drops as those in the experiment
of Albrecht et al. (1992).

7.2. Microscopic film wetting experiments
In terms of microscopic wetting characteristics, Marsh, Garoff & Dussan (1993)
conducted a cylinder plunging experiment using a PDMS liquid to measure how the
microscopic length `m varies with the contact line speed U. In their experiment, `m

was extracted by fitting θd with the Tanner–Cox–Voinov law (4.10b) and obtained
from the microscopic length x1 = `m in the logarithmic factor. Figure 13(a) shows
Marsh et al.’s data by replotting `m as a function of Ca. Eggers & Stone (2004)
compared their model curves with Marsh et al.’s data and suggested that the data
seem to favour the no-slip scaling `∝Ca−2/3 more than the ‘foot’ scaling `F ∝Ca−1/3.
Having best fitted Marsh et al.’s data, we find `m (in cm) = 6 × 10−7Ca−0.557 which
seems to fit better with the strong-slip thin-film scaling (6.9), `∝Ca−1/2, contrary to
Eggers & Stone (2004).

And yet, a closer inspection reveals that the ‘foot’ scaling `F ∝ Ca−1/3 might not
be completely ruled out in Marsh et al.’s experiment. If the plunging angle α is
small, because the film ahead of the macroscopic contact line would have more
portions in close contact to the cylinder surface, it may perceive more influence
from wall slip. This may make the power in 1/Ca even smaller. For this reason,
in figure 13(b) we only select the data for α = 60◦ and 120◦ (which essentially
represent the same situation since they are supplementary angles to each other, taken
from both sides of the immersed cylinder). The best fit of these data is found to be
`m (in cm)= 8× 10−7Ca−0.434, which seems to shift in the direction toward the ‘foot’
scaling `F ∝ Ca−1/3. If fitting these data using `m ≈ 0.1λCa−1/3 based on (6.22), the
line `m (in cm) = 1 × 10−6Ca−1/3 gives an estimate for the slip length: λ ∼ 100 nm.
Given the large scatter in their data, the above value is not unreasonable compared

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

35
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

at
io

na
l C

he
ng

 K
un

g 
U

ni
ve

rs
ity

, o
n 

21
 Ju

l 2
02

0 
at

 0
4:

38
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.352
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Slipping moving contact lines 141

10-2 10-1 100

10-2 10-1

Ca
100

10-3(a)

(b)

å = 60°

å = 70°

å = 80°

å = 90°

å = 100°

å = 110°

å = 120°

å = 60°

å = 120°

6 ÷ 10-7 Ca-0.557

1.0 ÷ 10-6 Ca-1/3

8 ÷ 10-7 Ca-0.434

10-4

10-5

¶ m
 (c

m
)

¶ m
 (c

m
)

10-6

10-7

10-3

10-4

10-5

10-6

10-7

FIGURE 13. (Colour online) Dependence of the microscopic length `m on Ca extracted by
Marsh et al. (1993). (a) The best fit 6× 10−7Ca−0.557 seems to favour the strong-slip film
scaling `∝Ca−1/2 more than the no-slip film scaling `∝Ca−2/3. (b) If we select the data
for the plunging angle α= 60◦ and 120◦ under which the liquid portion near the contact
might perceive more influence from slip, the best fit 8× 10−7Ca−0.434 brings the data even
closer to the ‘foot’ scaling `F ∝Ca−1/3. If fitting these data using `m ≈ 0.1λCa−1/3 based
on (6.20), the result `m (in cm) = 1 × 10−6Ca−1/3 gives an estimate for the slip length:
λ ∼ 100 nm. Due to the large scatter in the data, the above value is not unreasonable
compared to λ∼ 10 µm estimated from (7.1).

to λ ∼ 10 µm estimated from (7.1) for the PDMS liquid (of η = 1030 cP) used in
their experiment.
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FIGURE 14. (Colour online) Plot of θ 3
d /Ca versus log(Ca) taken from the experimental

data of Kavehpour et al. (2003). The solid line is the best fit θ 3
d /Ca= 2.6225 log(Ca)+

17.912 and is used to fit the Tanner–Cox–Voinov law: θ 3
d = k2Ca ln(k4Can). With k2 =

3.4 taken from their best fit θd = 3.4Ca0.39 for Tanner’s law, we find n ≈ 0.33, strongly
implying that it is the ‘foot’ scaling `F ∝Ca−1/3 contributing to the microscopic length x1
in the logarithmic factor of the Tanner–Cox–Voinov law (4.10b).

Other evidence that may support the existence of ‘foot’ can be found in the
experiment of Kavehpour et al. (2003). They were able to simultaneously measure
the interface profiles for spreading silicone oil drops, allowing them to inspect how
apparent dynamic contact angles and precursor film scales vary with Ca. Having
confirmed Tanner’s law θd ∼ Ca1/3, they plotted θ 3

d /Ca versus log(Ca) (see the inset
of their figure 3b) to determine the parameters in the more accurate Cox–Voinov form,
θ 3

d = k2Ca ln(k4Can), as displayed in figure 14. Their treatment was basically based
on n = 2/3 according to the no-slip microscopic wetting theory given by Eggers &
Stone (2004). In contrast, we use a different procedure to determine these parameters
without appealing to any microscopic wetting theory. We first take k2= 3.4 from their
better fit θd = 3.4Ca0.39 that confirms Tanner’s law, and then determine the values of
k4 and n using the linear regression line obtained from figure 14. The slope of the line
yields n≈ 0.33, strongly implying that it is the ‘foot’ scaling `F ∝Ca−1/3 contributing
to the microscopic length x1= `m in the logarithmic factor of the Tanner–Cox–Voinov
law (4.10b). That k4 ≈ 194.07 can be obtained from the intercept of the line. With
k4 ≈ 10L/λ according to (6.22), we get L/λ≈ 19.4. Taking L to be at least 10 % of
the drop radius which is of the order of 103 µm, the slip length λ is at least 5 µm.
Using (7.1), we find that the above slip length value can be generated by a polymer
liquid of viscosity at least η ∼ 1000 cP, which is within the range of η = 1–104 cP
for the PDMS liquids used in Kavehpour et al.’s experiment.

As for the precursor film scales, what Kavehpour et al. (2003) measured are
essentially those of the fully developed non-diffusive ‘tongue’ (see their figure 4).
The film thickness was found to be a constant he ≈ 98 nm in the range of Ca. The
measured film length was fitted to be `p (in m) ≈ 6 × 10−10 Ca−1 according to the
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theory of Hervet & de Gennes (1984). Note that `p of a slipping precursor film is
also proportional to Ca−1 according to (6.18b). With `p ∼ a2λCa−1/h2

e from (6.18b)
and a ≈ 0.6 nm used in Kavehpour et al.’s work, we can use their fitted curve to
get an estimate for the slip length: λ ≈ 16.7 µm. It is around the average value of
λ∼ 10 µm of the PDMS liquids used in their experiment according to (7.1). Further
using `m ≈ 0.1λCa−1/3 from (6.22), we find `m ≈ 18.8 µm at Ca = 7 × 10−4. This
value of `m is very close to the foot scale 13 µm at the same Ca observed by
Kavehpour et al.

Perhaps the most compelling evidence that supports our strong-slip scalings can be
seen in the experiment of Ueno et al. (2012) who directly measured the length of the
precursor film of a spreading silicone oil drop. As shown in figure 15(a), their data
basically follow the −1/3 power of Ca, suggesting that it is the ‘foot’ dominating the
microstructure ahead of the macroscopic contact line. In terms of spreading kinetics,
on the other hand, Ueno et al. found that the measured length grows as the 1/3 power
of time, as shown in figure 15(b). This is a strong indication that it is the precursor
film leading the spreading.

Additional experimental evidence that supports the strong-slip film scaling
`∝Ca−1/2 can also be found in Mate (2012) in his study of the spreading dynamics
of ultrathin polymer drops. He measured how the edge radius R of a spreading
precursor film grows with time t and found R∝ tν with ν = 0.31–0.42, depending on
the molecular weight of the polymer liquid used. In particular, ν= 0.31 was observed
mainly for a high-molecular-weight polymer liquid of η= 100 cP. According to (7.1),
such a polymer liquid has a slip length of the order of micrometres, much larger
than the nanometre-sized drop thickness. Compared to our theory, ν = 0.31 is fairly
close to ν = 1/3 associated with ` ∝ Ca−1/2. This 1/3 spreading law for precursor
film has also been confirmed by molecular dynamic simulations (Noble et al. 2017).
On the other hand, ν = 0.42 was observed for polymer liquids with much lower
molecular weights having much smaller slip lengths, in good agreement with ν = 2/5
corresponding to the no-slip scaling `∝Ca−2/3.

8. Summary and outlook

We have demonstrated that wall slip can substantially modify both macroscopic and
microscopic characteristics of the advancing contact line of a complete wetting fluid,
as summarized in table 1. This can happen when the characteristic liquid height h
is comparable to or smaller than the slip length λ. Alternatively, whether slip effects
are important depends crucially on the extent of de Gennes’s slipping ‘foot’ of size
`F ∼ λCa−1/3 relative to the relevant length scales at both the macroscopic and
microscopic levels.

At the macroscopic level, we find that the apparent dynamic contact angle
θd can change from Tanner’s law θd ∼ Ca1/3 for h � λ to the strong-slip law
θd ∼ Ca1/2(L/λ)1/2 for h � λ. In the former, the ‘foot’ is the inner scale with
respect to the macroscopic length L, whereas it turns into the outer scale in the latter
when Ca is below the critical value Ca∗ ∼ (λ/L)3. A generalized dynamic contact
angle relationship is also derived for an arbitrary value of λ under (3.7), enabling
unification of both Tanner’s law and the strong-slip law. These two laws have also
been confirmed using MDPD simulations.

A similar characteristic change can also occur at the microscopic level. We show
that even for a common spreading drop with the amount of slip being macroscopically
small, slip effects can still be microscopically strong in the vicinity of the contact
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FIGURE 15. (Colour online) (a) Plot of the measured precursor film length against Ca in
the experiment of Ueno et al. (2012). It shows that the length varies as Ca−1/3 in support
of the ‘foot’ scaling `F ∝ Ca−1/3, suggesting that the ‘foot’ dominates the microstructure
ahead of the macroscopic contact line. (b) However, the film is found to grow as the 1/3
power of time according to the strong-slip film scaling `∝ Ca−1/2. This indicates that it
is the film leading the spreading.

line. As a result, the microstructure of the contact line will consist of two parts:
(i) a strongly slipping precursor film and (ii) a mesoscopic ‘foot’. The former can
become much extended with length `∼ (aλ)1/2Ca−1/2 next to the latter of size `F ∼

λCa−1/3 ahead of the macroscopic contact line. Because of this film-foot structure, the
microscopic length in the logarithmic factor of the Tanner–Cox–Voinov law should be
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`F, rather than aCa−2/3 predicted by the classical theory (Hervet & de Gennes 1984;
Eggers & Stone 2004).

In connection to experiments, our work is most relevant to dynamic wetting of
a polymer liquid such as silicone oil, as commonly seen in most drop spreading
experiments. Such liquid is typically more viscous than water and hence able to
render slow contact line motion convenient for observing drop spreading processes.
On the other hand, it can exhibit a very large apparent slip length of micrometres
or even larger size – the more viscous the greater the slip length (due to the higher
molecular weight according to (7.1)). While a more viscous fluid of such liquid is
advantageous in conducting drop spreading experiments, it may inevitably produce
considerable slip effects, which may cause significant deviations from the predictions
of the classical Tanner–de Gennes theory.

Some experimental studies do support the above view, showing that anomalous
departures from Tanner’s laws are likely due to apparent slip brought by polymer
liquids (Chen 1988; Albrecht et al. 1992). In the experiment of Chen (1988), the
drops are 100 µm thick and the slip length λ ∼ 10 µm. The measured dynamic
contact angles in the very small Ca regime are found to follow the strong-slip
law θd ∝ Ca1/2. In the experiment of Albrecht et al. (1992), on the other hand,
λ∼ 100 nm is much smaller but the drops are ultrathin at 1 nm. Their study reveals
that the spreading radius R can grow with time t as R ∝ t0.13, fairly close to R
∝ t1/8 associated with θd ∝ Ca1/2. Because these experiments use different polymer
liquids and drop sizes, whether slip effects are important seems to be controlled by
the viscosity η of a polymer liquid and the volume Ω of a drop. Since the no-slip
condition will break down unless λ/h ∼ λ/Rθd � 1, writing λ in terms of η using
(7.1) together with Ω ∼ R3θd yields the following criterion under which wall slip has
little/no impact on the macroscopic wetting behaviour:(

η

η0

)(
b

Ω1/3

)
θ
−2/3
d � 1. (8.1)

So if one were to use a more viscous polymer liquid to conduct drop spreading
experiments, slip effects can be prevented by choosing a sufficiently large drop
volume. However, if the drop volume is too large, gravity effects may come into play
to alter the wetting characteristics. Hence, to ensure that gravity (reflected by the
hydrostatic pressure ρgh) does not exceed surface tension (reflected by the Laplace
pressure γ /(R/θd)), we also require ρgh� γ /(R/θd), which yields

ρg
γ

(
Ω

θd

)2/3

� 1, (8.2)

where ρ is the density of the liquid and g (∼103 cm s−2) is the gravitational
acceleration. Combining (8.1) and (8.2) provides the range of Ω within which
the wetting characteristics can be described by Tanner’s laws. With typical values
b∼ 0.1 nm, η/η0 ∼ 103, ρ ∼ 1 g cm−3, γ ≈ 20 dyn cm−1 and θd ∼ 10−1, the desired
drop volume has to fall into the range of 10−7

�Ω� 102 in nanolitres.
We should emphasize that (8.1) is the condition under which slip effects are

unimportant macroscopically. It does not necessarily guarantee that slip effects can
be neglected microscopically in the vicinity of the contact line. Several experiments
indicate that this is the case. The microscopic lengths extracted by Marsh et al.
(1993) seem to favour the strong-slip film scaling ` ∝ Ca−1/2 or the ‘foot’ scaling
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`F ∝ Ca−1/3, in contrast to the no-slip film scaling ` ∝ Ca−2/3 (Hervet & de Gennes
1984; Eggers & Stone 2004). The experiment of Kavehpour et al. (2003) actually
strongly suggests that it is the ‘foot’, rather than the precursor film, contributing to the
microscopic length in the logarithmic factor of the Tanner–Cox–Voinov law. In fact,
such −1/3 scaling due to the ‘foot’ has been ambiguously shown in the experiment
of Ueno et al. (2012). But in terms of spreading kinetics, since the advancement of
the microscopic contact line is led by the precursor film according to `∝Ca−1/2, the
film will extend with time as ` ∝ t1/3. Such 1/3 spreading law for precursor film
not only well captures the data measured by Ueno et al., but also agrees with the
observations made by Mate (2012) in his ultrathin drop spreading experiment.

Various findings of all the experiments mentioned above basically signify that slip
effects can be brought by the wetting fluids. The inconsistencies of the data with the
Tanner–de Gennes theory can also be rationalized by our theory, strongly suggesting
that wall slip can no longer be treated as an artificial microscopic device to relieve
the contact line stress singularity as normally assumed. In drop spreading problems,
in particular, the extent of wall slip can be controlled by the fluid used and hence
become tunable, depending on the drop size. So the present work will offer useful
guidance for achieving a more precise control of dynamic wetting processes. Such
slip-mediated dynamic wetting might also provide an alternative means for probing
slippery boundaries through no-slip-to-slip transitions in the wetting and spreading
laws.
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Appendix A. Formal asymptotic theory for wedge-like slipping interfacial flow

In appendix A we extend the longwave theory of Snoeijer (2006) or follow Eggers
& Fontelos (2015) to construct a formal asymptotic theory for the local flow near a
moving contact line with slip.

Consider a wedge-like free-surface flow having a characteristic height h∗ in y. The
wedge advances at speed U. For Ca� 1, the interface is slightly deformed with a
profile h(x) varying slowly with x over a length scale h∗/ε, i.e. ∂xh∼O(ε). Because
the interface slope θ ≡ ∂xh now displays small deviations from a straight wedge of
opening angle θd = h∗/L, the small parameter ε measures the curvature variations
L∂xθ ∼ Lε2/h∗ ∼ ε2/θd with respect to the wedge. The purpose here is to find a
relationship between ε and Ca.

Let u and υ denote the velocity components in x and y, respectively. In the frame
moving with the wedge, the equations governing such a fluid motion are

∂u
∂x
+
∂υ

∂y
= 0, (A 1)

∂p
∂x
= η

(
∂2u
∂y2
+
∂2u
∂x2

)
, (A 2)

∂p
∂y
= η

(
∂2υ

∂y2
+
∂2υ

∂x2

)
. (A 3)
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In (A 2) and (A 3), we neglect inertial terms because the flow is typically at a low
Reynolds number. Boundary conditions are

at y= 0, u−U = λ
∂u
∂y
, (A 4)

at y= h,
1

1+ h′2

[
(1− h′2)

(
∂u
∂y
+
∂υ

∂x

)
− 4h′

∂u
∂x

]
= 0, (A 5)

at y= h, −p− 2η
1− h′2

1+ h′2
∂u
∂x
= γ

h′′

(1+ h′2)3/2
. (A 6)

Next, we rescale the variables and take expansions as follows:

x= ε−1h∗x̃, y= h∗ỹ, h= h∗h̃, λ= λ̃h∗, (A 7a−d)
u=U(ũ0 + εũ1 + · · ·), (A 8)
υ = εU(υ̃0 + ευ̃1 + · · ·), (A 9)

p=
ηU
εh∗

(p̃0 + εp̃1 + · · ·). (A 10)

Substitution of the above into (A 1)–(A 6) yields the leading-order equations and
boundary conditions as follows:

∂ ũ0

∂ x̃
+
∂υ̃0

∂ ỹ
= 0, (A 11)

∂ p̃0

∂ x̃
=
∂2ũ0

∂ ỹ2
, (A 12)

∂ p̃0

∂ ỹ
= 0, (A 13)

at ỹ= 0, ũ0 − 1= λ̃
∂ ũ0

∂ ỹ
, (A 14)

at ỹ= h̃,
∂ ũ0

∂ ỹ
= 0, (A 15)

at ỹ= h̃, p̃0 =−
ε3

Ca
∂2h̃
∂ x̃2

. (A 16)

Condition (A 16) indicates that ∂2h̃/∂ x̃2
→ 0 as Ca→ 0 or p̃0→ 0 as ε→ 0, meaning

a straight wedge in either limit. It follows that any departure of the interface profile
from a straight wedge must come from Ca and it is small when Ca is small. With
p̃0= p̃0(x̃) from (A 13), we can obtain ũ0 from a straightforward integration of (A 12)
satisfying (A 14) and (A 15):

ũ0 =
1
2
∂ p̃0

∂ x̃

(
ỹ2
− 2ỹh̃− 2λ̃h̃

)
+ 1. (A 17)

Applying the zero-flow-rate condition
∫ h̃

0 ũ0 dỹ=0 and making use of (A 16), we arrive
at

− ε3 ∂
3h̃
∂ x̃3
=

3Ca

h̃2

(
1+ 3

λ̃

h̃

) . (A 18)
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For weak slip λ̃� 1 or moderate slip λ̃∼ O(1), one needs ε = Ca1/3 to capture the
interface deformations governed by (A 18), consistent with Tanner’s scaling (2.1). On
the other hand, if slip is strong such that λ̃ � 1, (A 18) reveals that the interface
deformations will become smaller at an order of ε = (Ca/λ̃)1/3. Written in terms of
L= h∗/θd ∼ h∗/ε, ε= (Ca L/λ)1/2 in accordance with the strong-slip scaling (2.4).
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