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In a laminar boundary layer flow, the extent of slip is not fixed but varies with the slip length λ
relative to the boundary layer thickness δ. Here, we report that distinct boundary layer structures
can arise from slip effects when λ exceeds δ. This is demonstrated by revisiting two closely related
problems in the presence of wall slip: (i) the Stokes 1st problem and (ii) a steady high Reynolds
number boundary layer flow driven by a moving plate (of length L). In (i), the wall stress is found to
be constant for δ � λ for short times and persists until time t reaches the slip-stick transition (SST)
point tλ ∼ λ2/ν (with ν being the kinematic viscosity) after which the usual no-slip result t−1/2 takes
over. A similar transition can also occur spatially to (ii). We show that the boundary layer can turn
from the thicker one δ ∼ LRe−1/2 � λ in the weak-slip regime to the thinner one δ ∼ L(λ/L)1/3 Re−1/3

� λ in the strong-slip regime. This boundary layer structure change is also accompanied by a shift
from the well-known no-slip friction law Cf ∼ Re−1/2 to the strong-slip law Cf ∼ (L/λ)Re−1 when
increasing the Reynolds number Re = UL/ν beyond the SST point Rec ∼ (L/λ)2. Generalization to
the Falkner-Skan wedge flow is also made, suggesting that similar friction law and boundary layer
structure changes might occur in a wide class of wall-bounded boundary layer flows. Published by
AIP Publishing. https://doi.org/10.1063/1.5078664

When solving fluid mechanics problems, the no-slip
boundary condition is often imposed on solid boundaries.
However, in situations involving hydrophobic/textured sur-
faces,1–5 porous substrates,6 polymeric liquids,7 and rarified
gases,8 the breakdown of this commonly used condition
has become rather evident. While such slippage is nor-
mally thought of as a microscopic effect, in high Reynolds
number flows which typically occur at large length scales,
its influence might hardly be considered strong enough to
change flow characteristics qualitatively. For this reason, it
might not seem unreasonable to assume that the behavior
of a boundary layer flow with slip does not deviate signif-
icantly from its no-slip counterpart. In fact, many existing
studies on slipping boundary layer flows have adopted this
view by treating the slip merely as minor corrections to
the no-slip flow solutions without altering boundary layer
structures.8–11

However, the impacts of a slip might be not as simple as
normally thought because of the following differences between
no-slip and slipping boundary layer flows. First, the veloc-
ity field of the former, due to the lack of the characteristic
length scale, is usually self-similar (except for the situation
where the free stream velocity varies with position12), whereas
the latter generally does not possess a self-similar structure
because of the additional slip length λ, where λ is defined
as the ratio of the fluid velocity (relative to the wall) to the
shear rate on the wall. Second, the extent of slip in a bound-
ary layer flow is not fixed but varies with λ relative to the
boundary layer thickness δ that also varies with the flow speed.

a)Author to whom correspondence should be addressed: hhwei@mail.
ncku.edu.tw

These differences imply not only that the standard solution for
a no-slip boundary layer flow might not be always adequate
to describing a slipping boundary layer flow but also that the
additional slip length might alter the boundary layer structure.
The latter, in particular, manifests in the strong-slip situation
where λ exceeds δ. In this letter, we demonstrate that new
boundary layer structures can emerge for such a strong-slip
situation.

How wall slip impacts a boundary layer flow starts with the
fact that a slipping flow with the driving velocity U actually
varies transversely over δ + λ (see Fig. 1), leading the wall
stress to τw ∼ µU/(δ + λ) (with µ being the fluid viscosity),
namely,

τw ∼ (µU/δ) S, (1)

where S = δ/(δ + λ) can be deemed as the drag reduction factor.
For δ � λ where slip effects are weak, S ∼ O(1) and Eq. (1)
recovers the no-slip result τw ∼ µU/δ. On the other hand, if λ
is so large that δ � λ, the velocity gradient will virtually be
across λ, giving S ∼ δ/λ and hence τw ∼ µU/λ. If the flow is
driven by a moving boundary, because not all the momentum
from the wall can be transmitted into the fluid, the fluid will
move at a speed u slower than U. Balancing the corresponding
stress µu/δ to (1), we find

u ∼ S · U, (2)

which yields u ∼ Uδ/λ for δ � λ and u ∼ U for δ � λ.
As indicated by Eqs. (1) and (2), both τw and u change

their scales when δ � λ (no-slip limit) switches to δ � λ
(strong-slip limit), implying distinct boundary layer structures
between these two. In the following, we use this idea to analyze
two closely related problems in the presence of slip: (i) the
Stokes 1st problem and (ii) a steady high Reynolds number
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FIG. 1. Schematic picture for a slipping boundary layer flow driven by a
moving plate.

boundary layer flow driven by a moving plate, showing that
both temporal and spatial structures of boundary layers can
undergo qualitative changes due to slip effects.

Consider a transient fluid motion driven by a slip-
pery plate moving at a constant speed U. How the
fluid velocity u varies with the distance to the plate y
and time t is governed by the diffusion-like momentum
equation

ut = vuyy, (3)

which is subject to the slip condition at the wall (y = 0)

u − U = λuy (4)

plus u (t = 0) = 0 and u (y→∞)→ 0. As the viscous bound-
ary layer grows as δ ∼ (νt)1/2 [via balancing the terms in
Eq. (3)], the solution with λ = 0 takes the well-known form
u/U = erfc(η/2) in terms of the self-similar variable
η = y/(νt)1/2.13

For λ , 0, the situation becomes rather different. For very
short times, because δ � λ, the plate looks very slippery and
not much flow can be developed in the fluid, i.e., u�U. Hence,
Eq. (4) can be approximated as −U ≈ λuy, making the flow
look as if it were driven by a constant wall stress τw = −µuy

(y = 0) = µU/λ. Since uy ∼ u/δ, the fluid velocity due to this
constant stress will scale as Uδ/λ, similar to Eq. (2) with
δ � λ. Thus, for short times where slip effects are
strong, the velocity profile has a very distinct self-similar
structure

u/U =
[
(νt)1/2/λ

]
f (η), (5a)

f =
(
2/π1/2

)
exp

(
−η2/4

)
− η erfc(η/2). (5b)

Here (5b) can be obtained by an integration of the transformed
equation of Eq. (3) f − ηf ′ = 2f ′′ with f ′(0) = −1 (owing to
−U ≈ λuy) and f (∞) = 0.

In fact, the strong-slip velocity profile Eq. (5) can be
obtained from a vorticity point of view by solving for the
vorticity distribution ω = −uy corresponding to (3) and (4)
ωt = νωyy and ω (y = 0) = U/λ. So the problem becomes
exactly the Stokes 1st problem for vorticity that is gen-
erated from the virtual no-slip plane below the wall.
Together with ω(t = 0) = 0 and ω (y → ∞) = 0, the
solution is ω = (U/λ) erfc(η/2), whose integration gives
exactly Eq. (5).

FIG. 2. (a) Temporal responses for the wall velocity uw and stress τw using
the exact solution obtained in Ref. 14. Short-term and long-term responses
follow λ → ∞ (dotted lines) and λ → 0 (dashed lines) results, respectively,
with a crossover at t ∼ λ2/ν. (b) Replot of (a), showing that both uw and τw
vary virtually linearly with δ/(δ + λ), confirming the universal scalings (2)
and (1).

As for long times, because δ � λ, the slip term in Eq. (4)
becomes negligible. Hence u(∼U) can be described by the
usual no-slip solution to give the wall stress τw ∼ µU/δ
∼ µU/(νt)1/2. Both short and long time responses crossover
at time t ∼ λ2/ν—the viscous diffusion time across the slip
length when δ ∼ (νt)1/2 grows to the size of λ. It also marks the
unique time scale for the onset of the slip-to-slick transition
(SST).

Using the exact solution obtained in Ref. 14, we plot
temporal responses for the wall velocity uw and stress τw in
Fig. 2(a), showing that the short-term and long-term responses
do correspond to the strong-slip and no-slip results, respec-
tively. In fact, Fig. 2(b) reveals that both τw and uw vary
virtually linearly with S = δ/(δ + λ), confirming the universal
scalings (1) and (2).

In analogy to the Stokes 1st problem, a similar flow struc-
ture change can also occur spatially to a steady boundary
layer flow driven by a moving slippery plate (of length L).
This moving boundary problem can be used to model sheet
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drawing or fiber extrusion processes.15 Let u and υ denote the
velocity components in the streamwise (in x) and transverse (in
y) directions, respectively. The equations governing the flow
field within the boundary layer are

ux + υy = 0, (6a)

uux + υuy = νuyy, (6b)

subject to the slip condition Eq. (4) u − U = λuy and υ = 0 at
the plate (y = 0) plus u(y→∞) = 0.

At low U (but still in the high Reynolds number regime)
such that δ� λ, the slip condition (4) is reduced to the usual no-
slip condition u ≈U. Balancing the inertial terms ∼U2/x to the
viscous term ∼νU/δ2 in Eq. (6b), we recover the well-known
Blasius boundary layer scale

δ ∼ (νx/U)1/2 ≡ δB(x) (7a)

or
δB(x = L) = LRe−1/2, (7b)

where Re = UL/ν is the Reynolds number. A self-similar solu-
tion can then be constructed as u/U = f ′(η) with η = y/δB(x),
reducing Eq. (6) to ff ′ + 2f ′′′ = 0 with f ′(0) = 1, f (0) = 0,
and f ′(∞) = 0.15 We are interested in the overall skin friction
coefficient which is defined as

Cf =

(∫ L

0
τwdx/L

) /(
ρU2/2

)
. (8)

With the wall stress τw = −µUf ′′(0)/δB, Eq. (8) yields the
well-known −1/2 law

Cf = 4�� f ′′(0)��Re−1/2, (9)

with f ′′(0) = −0.443 75.15

The Blasius scale (7) indicates that increasing U will thin
δ as δ ∝ U−1/2. This means that if U increases to the point
where δ is comparable to or thinner than λ, the classical no-
slip results given above will cease to hold. In particular, if U
is sufficiently high (but still in the laminar regime) such that
δ � λ, u ∼ (δ /λ)U � U in Eq. (4) and the fluid at the wall
will slide according to −U ≈ λuy. Balancing the inertial terms
∼(δ/λ)2U2/x to the viscous term ∼ν(δ/λ)U/δ2 in Eq. (6b), we
find a new scaling for δ,

δ ∼ (νλx/U)1/3
≡ δs(x) (10a)

or
δs(x = L) = LRe−1/3(λ/L)1/3. (10b)

Also because of (10), the velocity profile will take a new self-
similar form

u/U = (δs(x)/λ)φ′(η) with η = y/δs(x), (11)

where φ is determined by the ordinary differential equation
transformed from Eq. (6),(

φ′
)2
− 2φφ′′ = 3φ′′′, (12)

with φ′′(0) = −1, φ(0) = 0, and φ′(∞) = 0. A more formal
way to derive this new boundary layer structure is given in
the supplementary material. As the wall stress here is simply
τw = µU/λ, the corresponding skin friction coefficient (8)
becomes

Cf = 2(L/λ)Re−1. (13)

It is similar to Levich’s free-surface result Cf ∼ Re−1.16 Direct
numerical simulations do show that Cf can be reduced to
Levich’s free-surface result as λ → ∞.17 But here, we show
that for a finite value of λ, it must enter to characterize the
boundary layer flow.

Because the no-slip −1/2 law (9) for δ � λ at low U can
turn into the strong-slip −1 law (13) for δ � λ at high U, the
change will occur at the crossover Reynolds number between
these two laws,

Rec ∼ (L/λ)2, (14)

which also marks the SST point from the no-slip Blasius
scaling (7b) to the strong-slip scaling (10b) for δ.

In fact, just like the Stokes 1st problem, both no-slip and
strong-slip cases can be unified using Eq. (2). Letting x ∼ L
and balancing the inertial terms ∼S2U2/L to the viscous term
∼νSU/δ2 in Eq. (6b), we find

δ/L ∼ S−1/2Re−1/2, (15)

FIG. 3. (a) Plot of Cf against Re for various values of λ/L, showing that the
friction law can change from the no-slip −1/2 law (9) to the strong-slip −1
law (13) when increasing λ from small to large values. (b) Plot of δ(x = L)/L
against Re to show the corresponding scaling changes for δ, revealing that δ
can change from −1/2 law (7b) to the −1/3 law (10b).

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-051812
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which is able to unify both the no-slip −1/2 law (7b) for
δ � λ and the strong-slip −1/3 law (10b) for δ � λ. Using
Cf ∼ τw /ρU2 ∼ L/(δ + λ) · Re−1 and setting δ ∼ δB = LRe−1/2,
the two distinct friction laws (9) and (13) can also be unified as
Cf ∼ Re−1/2/[Re1/2(λ/L) + 1]. Recognizing Cf (λ = 0) ∼ Re−1/2

from Eq. (9), the above universal friction relationship can be
re-written as

Cf /Cf (λ = 0) ∼ 1/
[
Re1/2(λ/L) + 1

]
, (16)

which signifies an apparent drag reduction when increasing Re
beyond the SST point Rec∼ (L/λ)2 given by (14). The friction
relationship (16) also agrees with that given in Ref. 18.

To test our scaling results described above, we solve
Eq. (6) numerically using prediction and correction iteration
scheme19 in conjunction with the up-wind scheme for dis-
cretizing the inertial terms. Figure 3(a) plots Cf against Re for
various values of λ/L. The result clearly shows that the friction

FIG. 4. (a) The no-slip −1/2 friction law (9) and the strong slip −1 friction
law (13) can be collapsed according to (16). The transition between these two
laws occurs at (λ/L)2 Re ∼ 1, in agreement with (14). (b) The corresponding
−1/2 law (7b) and −1/3 law (10b) for δ seen in Fig. 3(b) can be unified as
δ/L ∼ S−1/2 Re−1/2 according to (15), where S = δ/(δ + λ).

law can shift from the no-slip −1/2 law (9) to the strong-slip
−1 law (13) when gradually increasing the value of λ/L. The
corresponding scaling change for δ can be seen by plotting
δ(x = L)/L against Re. As shown in Fig. 3(b), the change from
the no-slip −1/2 law (7b) to the strong-slip −1/3 law (10b) is
also evident.

Figure 4(a) shows that the two distinct friction laws (9)
and (13) can be collapsed according to the universal friction
law (16), with the transition at (λ/L)2Re ∼ 1 as predicted by
Eq. (14). The corresponding scaling laws for δ: (7b) and (10b)
also virtually collapse according to the universal boundary
layer law (15), as shown in Fig. 4(b). All these numerical
results confirm the scaling changes shown earlier. We empha-
size that the universal laws (15) and (16) can describe any
situation with an arbitrary extent of slip λ/δ, including the sit-
uation near the SST in which λ/δ ∼ O(1) and the flow is not
self-similar.

We also expect that a similar flow characteristic change
can also occur to a flow past a fixed plate. This fixed plate
situation is in fact a special case of the Falkner-Skan bound-
ary layer flow over wedge. In the latter case, the external flow
outside the boundary layer is irrotational and takes the form
Ue(x) = U0 (x/L)m,13 where L and U0 stand for the character-
istic length and velocity scales, respectively, and m = β/(2−β)
is the exponent depending on the wedge angle βπ. The gov-
erning equations for this flow are Eq. (6a) plus the following
momentum equation:

uux + υuy = UeUe
′ + νuyy, (17)

where UeUe
′= m(U0

2/L) (x/L)2m−1 comes from the Bernoulli
pressure with Ue

′ ≡ dUe/dx. Boundary conditions are u = λuy

at y = 0 and u (y→∞) = Ue.
In the no-slip limit (δ � λ), just like a uniform flow over

a flat plate, how the boundary layer here varies with x sim-
ply follows the Blasius scaling (7a) with U being replaced
by Ue(x),

δF(x) = LRe0
−1/2(x/L)(1−m)/2, (18)

with Re0 = U0L/ν. The velocity profile can then be constructed
as u = Ue(x) f ′(η) with η = y/δF(x), and f can be deter-
mined from the transformed equation of Eq. (17): f ′′′ + [(m
+ 1)/2] ff ′′ + m (1 − f ′2) = 0 with f ′(0) = 0, f (0) = 0, and
f ′(∞) = 1. The skin friction coefficient (8) can be determined
as

Cf = 4f ′′(0)/(3m + 1) · Re0
−1/2. (19)

Obviously, m = 0 reduces to the classical Blasius result.
In the strong-slip limit (δ� λ), we set u = Ue(x) + ũ with

ũ being the correction to the local plug flow, i.e., |ũ| � U0.
Substituting the above into Eq. (17) and dropping higher order
terms ũũx and υũy, we get

(Ueũ)x = ν̃uyy, (20)

subject to u(y → ∞) = Ue and the strong-slip conditon
Ue = λũy at y = 0. In this case, while the boundary layer
thickness still scales as (18), the flow has the following self-
similar structure due to constant shearing set up by the above
strong-slip condition:



121702-5 H. Fujioka and H.-H. Wei Phys. Fluids 30, 121702 (2018)

ũ = [δF(x)/λ]Ue(x)F(η) with η = y/δF(x), (21)

where F is determined by the following equation after substi-
tuting (21) into (20):

2F ′′ + (1 − m)ηF ′ − (1 + 3m)F = 0, (22)

with F ′(0) = 1 and F(∞) = 0. Since the local flow field is a plug
flow, the resulting wall shear stress is τw = µUe(x) /λ, leading
the skin friction coefficient (8) to

Cf = 2/(m + 1) · (L/λ)Re0
−1. (23)

Again, Cf still changes from Re0
−1/2 to Re0

−1 when increasing
Re0 beyond the SST point ∼(L/λ)2 at the crossover between
(19) and (23).

The key feature of a slipping boundary layer flow is that
the extent of the wall slip is not fixed but varies with the bound-
ary layer thickness δ. This leads to a slip-stick transition and
a flow characteristic change when δ becomes comparable to
or thinner than the slip length λ.The present analysis is merely
restricted to simple boundary layer flows and we demonstrate
that new self-similar boundary layer structures can arise from
wall slip. Such new structures can likely be seen in bound-
ary layer flows over superhydrophobic plates5,18 or porous
substrates20 in which effective slip lengths can be of µm or
larger due to trapped air bubbles or fluid leakage on surfaces. A
similar flow characteristic change might also occur in weakly
rarefied gas flows in small MEMS devices or in low pressure
applications where large boundary slip can exist.21 For liquid
flows, the extent of slip could be relatively small owing to
relatively thick boundary layers. In this case, the distinct tem-
poral responses found for the Stokes 1st problem could be used
to experimentally determine slip lengths using an oscillatory
rheometer.

For non-similar boundary layer flows which are more
prevalent in practice, we expect that they might also undergo
similar flow characteristic changes like those reported here. In
any case, such flow characteristic changes can have profound
impacts on convective heat or mass transfer processes. Taking
a flow over a fixed slippery plate as an example, the Nusselt
number Nu will be increased by increasing the amount of wall
slip, changing the no-slip result Nu ∼ Re1/2 Pr1/3 to the strong-
slip or free-surface result Nu ∼ Re1/2 Pr1/2,13 where Pr is the
Prandtl number. On the contrary, if the plate is moving as in a
sheet drawing process, Nu will be diminished by slip and its
strong-slip behavior will be completely different from the fixed
plate case because of (10). As all these characteristic changes
are exclusive to the situation where wall slip is present; they
might provide new alternatives for probing slip boundaries or
for a better control of transports in wall-bounded boundary
layer flows.

While the present work merely focuses on how slip mod-
ifies the characteristics of a boundary layer flow in the laminar
regime, our findings might provide renewed insights into its
subsequent development to turbulence. Recent studies reveal
that slip effects arising from surface structure and hydropho-
bicity can significantly alter the behavior of turbulent boundary
layer flows.18,22–25 Such development, which is still waiting
for exploration, might have strong connections to the features
found in these studies.

See supplementary material for the formal derivations of
Eqs. (10)–(12).
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