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Marangoni-enhanced capillary wetting in
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Superspreading is a phenomenon such that a drop of a certain class of surfactant on a
substrate can spread with a radius that grows linearly with time much faster than the
usual capillary wetting. Its origin, in spite of many efforts, is still not fully understood.
Previous modelling and simulation studies (Karapetsas et al. J. Fluid Mech., vol. 670,
2011, pp. 5–37; Theodorakis et al. Langmuir, vol. 31, 2015, pp. 2304–2309) suggest
that the transfer of the interfacial surfactant molecules onto the substrate in the vicinity
of the contact line plays a crucial role in superspreading. Here, we construct a detailed
theory to elaborate on this idea, showing that a rational account for superspreading can
be made using a purely hydrodynamic approach without involving a specific surfactant
structure or sorption kinetics. Using this theory it can be shown analytically, for both
insoluble and soluble surfactants, that the curious linear spreading law can be derived
from a new dynamic contact line structure due to a tiny surfactant leakage from the
air–liquid interface to the substrate. Such a leak not only establishes a concentrated
Marangoni shearing toward the contact line at a rate much faster than the usual
viscous stress singularity, but also results in a microscopic surfactant-devoid zone
in the vicinity of the contact line. The strong Marangoni shearing then turns into
a local capillary force in the zone, making the contact line in effect advance in a
surfactant-free manner. This local Marangoni-driven capillary wetting in turn renders
a constant wetting speed governed by the de Gennes–Cox–Voinov law and hence
the linear spreading law. We also determine the range of surfactant concentration
within which superspreading can be sustained by local surfactant leakage without
being mitigated by the contact line sweeping, explaining why only limited classes of
surfactants can serve as superspreaders. We further show that spreading of surfactant
spreaders can exhibit either the 1/6 or 1/2 power law, depending on the ability
of interfacial surfactant to transfer/leak to the bulk/substrate. All these findings can
account for a variety of results seen in experiments (Rafai et al. Langmuir, vol. 18,
2002, pp. 10486–10488; Nikolov & Wasan, Adv. Colloid Interface Sci., vol. 222, 2015,
pp. 517–529) and simulations (Karapetsas et al. 2011). Analogy to thermocapillary
spreading is also made, reverberating the ubiquitous role of the Marangoni effect in
enhancing dynamic wetting driven by non-uniform surface tension.
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1. Introduction
When a drop of a solution of a certain class of surfactants such as trisiloxane

is placed on a solid substrate, it can spread at an unusually fast rate much higher
than a surfactant-free solution (Hill 1988; Zhu et al. 1994; Stoebe et al. 1996). Rafai
et al. (2002) reported that this so-called superspreading can occur at a strikingly fast
rate with the spreading radius growing linearly with time, R ∝ t – the power is 10
times greater than that of Tanner’s law (Tanner 1979). Although there are extensive
studies (Beacham, Matar & Craster 2009; Karapetsas, Craster & Matar 2011; Wang
et al. 2013; Theodorakis et al. 2015) and related investigations (Joanny 1989; Jensen
& Grotberg 1992; Clay & Miksis 2004; Jensen & Naire 2006), the true nature of
superspreading is still not fully understood. It is generally believed that the Marangoni
force caused by the surface tension gradient ∇sσ plays a major role in superspreading
phenomenon (Rafai et al. 2002; Nikolov & Wasan 2015). This force can drive a fluid
at velocity

uM = h∇sσ/η, (1.1)

where h is the drop height and η the viscosity of the wetting fluid. However, the
spreading exponent is often found to be far below unity (Jensen & Grotberg 1992;
Starov, de Ryck & Velarde 1997; Jensen & Naire 2006). In fact, it is impossible to
derive the linear spreading law by having ∇sσ across the drop spreading radius R,
especially when additional global constraints (i.e. constant drop volume and surfactant
mass conservation) are imposed. This implies that the Marangoni force alone does
not suffice to account for this unusual spreading caused by surfactant superspreaders.
Other effects might involve surfactant assembly (Stoebe et al. 1997; Kumar et al.
2003a), surfactant adsorption on the solid surface (Kumar, Couzis & Maldarelli
2003b) and surfactant transport at the contact line (Clay & Miksis 2004). Karapetsas
et al. (2011) developed a lubrication model by including all the above effects and
showed that the linear spreading law can be captured due to delicate interplays
between these effects. In particular, whether interfacial surfactant molecules can be
transferred onto the solid substrate in the vicinity of the contact line seems to play a
crucial role in superspreading (Kim, Qin & Fichthorn 2006; Karapetsas et al. 2011;
Maldarelli 2011; Theodorakis et al. 2015).

In fact, because uM ∝ h ∇sσ according to (1.1), to attain a constant spreading speed
and hence the linear spreading law, ∇sσ in (1.1) needs to be established over the
drop height h (Rafai et al. 2002; Rafai & Bonn 2005). If the above is true, because
uM is invariant with h, h in (1.1) can be taken as any local thickness of a drop that
varies roughly linearly with the distance to the contact line. Taking h→ 0, the contact
line (which is moving at speed U) would have to be driven by a local Marangoni
shearing ∇sσ ∝ 1/h that diverges as fast as the usual moving contact line stress
singularity ηU/h (Huh & Scriven 1971). This might explain why the spreading speed
is independent of the extent of spreading. This also implies that a rational explanation
of the linear spreading law can only be sought by resolving what happens near the
moving contact line.

Therefore, to obtain the linear spreading law, it is necessary to examine how both
the flow field and surfactant transport behave in the vicinity of the contact line
during a superspreading process. It is worth mentioning that in the simulation study
by Karapetsas et al. (2011), the relationship between the dynamic contact angle and
wetting spread is assumed to obey the clean-interface de Gennes–Tanner cubic law.
However, it is not obvious that this has to be the case. In fact, existing theoretical
studies showed that modified wetting relationships can result from a Marangoni stress
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Marangoni-enhanced capillary wetting 183

induced by surfactant (Cox 1986b; Joanny 1989; Chesters & Elyousfi 1998; Rame
2001; Chan & Borhan 2006; Jensen & Naire 2006). So the successful capture of the
linear spreading law by Karapetsas et al. (2011) seems to imply that the classical
de Gennes–Tanner law might be the correct wetting law for surfactant superspreaders,
but not for regular surfactants whose spreading powers are smaller than unity. If this
is the case, a completely different contact line structure must exist for the former to
accommodate the de Gennes–Tanner law when a Marangoni stress is present. The
resolution of this contact line structure will not only complement the simulation
study by Karapetsas et al. (2011), but also provide more insights into how the linear
spreading law results from the transport of superspreaders.

Motivated by the above, we aim at developing a dynamic contact line theory for
surfactant-driven superspreading. How to construct such a theory by acquiring key
ingredients of superspreading is described as follows. As mentioned earlier, the key
to obtaining the linear spreading law lies in a concentrated Marangoni stress in the
vicinity of the contact line. As such a Marangoni stress has to act toward the contact
line, the interfacial surfactant concentration near the contact line has to be much lower
than that away from the contact line. From a mass transfer point of view, a ‘sink’ or
some sort of depletion mechanism must exist to draw surfactant molecules out of the
air–liquid interface to sustain this local surfactant deficiency near the contact line. It
has also been shown previously that the adsorption of surfactant molecules onto the
substrate from the interface is one of key elements to superspreading (Karapetsas et al.
2011; Theodorakis et al. 2015). Therefore, in order to take account of such surfactant
depletion or adsorption effects in a simpler way, in this work we prescribe a local
surfactant leakage flux in the vicinity of the contact line in the surfactant transport
equation. This will directly set-up an interfacial surfactant concentration gradient to
drive the contact line with Marangoni stress. As illustrated in figure 1, such leakage
can occur in two different routes, depending on whether surfactant molecules on the
interface can undergo mass exchange with the bulk. For insoluble surfactant, because
it cannot be desorbed back to the bulk, its leakage can only occur along the interface
via its direct transfer through the contact line (see figure 1a). In contrast, for soluble
surfactant, its leakage can be through the bulk, achieved by corner diffusion from the
interface to the substrate inside the drop (see figure 1b).

The above routes to the depletion of interfacial surfactant have been suggested in
the modelling and simulation studies by Karapetsas et al. (2011) and Theodorakis
et al. (2015). In their studies, the interfacial surfactant concentration gradient needed
for promoting drop spreading is established by delicate interplays between surfactant
molecules on the interface and those in the bulk and on the substrate. In contrast,
in this work we stipulate the surfactant depletion near the contact line as the sole
driving mechanism for superspreading and model it as a local surfactant leakage flux.
As will be demonstrated, by incorporating this local surfactant leakage explicitly into
the contact line hydrodynamics, we can theoretically show that superspreading is in
effect a new class of dynamic wetting: Marangoni-enhanced capillary wetting – the
joint wetting mechanism unique to superspreaders by having both surface tension and
surface tension gradient forces work collaboratively.

This Marangoni–capillary wetting will not only call for a new contact line structure,
but also provide a natural explanation for the linear spreading law. As will also be
shown by this work, it is actually a direct consequence of the features below arising
from local surfactant leakage. First, a fraction of surfactant leakage can set-up a
concentrated Marangoni shearing toward the contact line with a Marangoni stress
singularity diverging at a rate much faster than the usual viscous stress singularity.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

62
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

at
io

na
l C

he
ng

 K
un

g 
U

ni
ve

rs
ity

, o
n 

21
 Ju

l 2
02

0 
at

 0
4:

43
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.626
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


184 H.-H. Wei

U

(a)

(b)

z

Uz

†s

†s

œ0

FIGURE 1. (Colour online) Schematic illustration of surfactant-enhanced spreading.
A Marangoni force toward the contact line can be established by an interfacial surfactant
concentration gradient set-up by a local surfactant leakage. Such leakage can occur via two
different routes, depending on whether surfactant molecules on the interface can undergo
mass exchange with the bulk. (a) For insoluble surfactant, its leak can only occur along
the interface via its direct transfer through the contact line. (b) For soluble surfactant, its
leakage can be achieved through corner diffusion from the interface to the substrate inside
the drop.

Second, this leak also results in a microscopic surfactant-devoid zone in the vicinity
of the contact line. Because the contact line is free of surfactant, the strong Marangoni
shearing does not drive the contact line directly but turns into a local capillary force,
driving the contact line to advance in a purely capillary manner. Third, as a result of
this local Marangoni-driven capillary wetting, the contact line is moving at a constant
wetting speed governed by the de Gennes–Tanner law, thereby leading to the linear
spreading law. Finally, we also determine the range of the leakage flux within which
superspreading can occur without being mitigated by the contact line sweeping. This
explains why superspreading occurs in a range of surfactant concentration and why
only limited classes of surfactants can serve as superspreaders.

The rest of the paper derives the above results according to the following outline. In
§ 2 we begin with the lubrication formulation to provide the basic equations needed
for modelling superspreading. Using this formulation, we first consider insoluble
surfactant in § 3 and demonstrate a possible realization of superspreading. This will
elicit key features of superspreading. Detailed accounts for soluble surfactant will be
given in § 4, which is more relevant to superspreading. In § 5 we make connections
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Marangoni-enhanced capillary wetting 185

of our findings to a variety of results seen in experiments and simulations. A criterion
of superspreading will also be established. In § 6 we show that an analogy can exist
between surfactant-driven spreading and thermocapillary spreading, highlighting the
exclusive role of the Marangoni effect in dynamic wetting driven by non-uniform
surface tension. The paper is finally concluded in § 7.

2. Formulation and basic equations
Similar to the analysis by Joanny (1989), we assume that the region near the contact

line is approximately wedge shaped with the macroscopic contact angle θ0. We further
assume that θ0 is sufficiently small so that the liquid height can be approximated as
h = θ0x. This small angle assumption allows us to apply the lubrication theory to
derive the relevant equations. In the frame moving with the contact line speed U,
the horizontal velocity u satisfies the lubrication equation px = ηuyy with boundary
conditions u=U at y= 0 and ηuy = τs at y= h. The solution is then given by

u= (px/2η)[y2
− 2hy] + τsy/η+U. (2.1)

Here the Marangoni stress τs is written as the interfacial surfactant concentration
gradient Γx according to

τs =−βΓx, (2.2)

where β ≡−(∂σ/∂Γ ) measures the susceptibility to lowering surface tension σ and
could vary with Γ , depending on the bulk surfactant concentration C0. While we are
modelling superspreading that typically occurs at high surfactant concentrations above
the critical micelle concentration (CMC), we actually will be dealing with a large
change of Γ along the interface in the vicinity of the contact line. So β might also
vary considerably. Nevertheless, we still choose a constant β to simplify our analysis
based on the following rationales.

First of all, we notice that it is the interfacial concentration Γ that determines
surface tension. So even at C0 higher than the CMC, the surface tension changes are
controlled by the interfacial concentration at around the CMC, ΓCMC, which does not
vary with C0. Suppose that at a high C0 abundant surfactant molecules are populated
on the interface with the interfacial surfactant concentration Γ0 (at an order of ΓCMC)
and the corresponding surface tension σ0. If variations of Γ are not large, β can
be approximated as a constant value β0 = −(∂σ/∂Γ )0 (which is generally small)
corresponding to the above state. As will be shown in §§ 3 and 4, as long as the
prescribed local surfactant leakage rate is low, Γ merely displays a little or moderate
decrease from Γ0 far away from the contact line. So in this outer region, because
the dependence of σ on Γ is approximately linear, using β ≈ β0 in (2.2) can still
faithfully describe the Marangoni stress behaviour in the region.

For the region near the contact line, however, because of the prescribed local
surfactant leakage, there exists a small depletion region where Γ shows a very
sharp decrease to the clean-interface state. In this depletion region, especially for
the close proximity to the contact line, surfactant molecules are almost emptied
out by the leak. So the interface thereof is little contaminated by surfactant having
an averaged interfacial concentration Γ1 much lower than Γ0(∼ΓCMC). Hence in
this inner region, σ also varies linearly with Γ under a constant susceptibility
β1 =−(∂σ/∂Γ )1 ≈ (σclean − σ1)/Γ1 (where σclean is the clean-interface surface tension
and σ1 the surface tension corresponding to Γ1). In other words, in both outer and
inner regions, because surface tension changes are small, how σ varies with Γ in
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186 H.-H. Wei

each region can be approximately represented by a linear equation of state but with
distinct values of β.

Despite the above, since the behaviour of σ actually deviates from two limiting
surfactant states near which surface tension variations are small −1σ0 from
the surfactant-crowded state and 1σ1 from the clean-interface state, it might
be conceivable that the characteristic surface tension changes 1σ0 = β0Γ0 and
1σ1 = β1Γ1 in these two regions are comparable in magnitude, i.e. β0Γ0 ∼ β1Γ1
(so β1∼β0Γ0/Γ1�β0, which is typical for most surfactants). In this case, even using
β0Γ0 in the outer region as a scale for the surface tension change in the inner region
might not cause a qualitative change to the characteristics of the inner region. Hence,
throughout this work, we take β = β0 in (2.2) and use Γ0 to be the characteristic
interfacial concentration. In fact, as will become clear in our subsequent analysis,
because it is the surface tension change near the contact line that matters and also
because this change can be expressed in terms of the prescribed leakage flux, the
resulting spreading speeds (3.17) and (4.14), which are our main results, will not
explicitly depend on the actual value of β.

To fulfil the requirement of zero flow rate across the wedge, the pressure gradient
has to satisfy

px = (3η/h2)[τsh/2η+U]. (2.3)

The pressure here is supported by the Laplace pressure at the interface:

p=−σhxx. (2.4)

Again, since the surfactant concentration here is located in the regime above CMC
where superspreading occurs, σ does not vary significantly with Γ and hence
can be roughly represented by σ0. However, as will be seen in §§ 3 and 4, this
approximation will break down in the close proximity of the contact line where
surfactant molecules are almost emptied out by the prescribed local surfactant
leakage. In this surfactant-devoid region, the clean-interface value σclean will be
used in σ instead. As for the region sufficiently away from the contact line, the
interface with σ = σ0 remains virtually flat and hence p≈ 0. So even using σ = σclean

in (2.4) will not alter the characteristics for the region far away from the contact line.
Also because (2.4) will be used to determine the actual dynamic contact angle due to
the deformation of the almost clean part of the interface close to the contact line, we
can approximate σ ≈ σclean in (2.4) for such an analysis, which will be implemented
in §§ 3.3 and 4.2.

The remaining issue is to determine how Γ distributes along the interface. Because
we look at the local surfactant transport in the vicinity of the contact line and also
because it occurs at a much smaller length scale than the drop’s, the associated time
scale is typically much shorter than the drop spreading time scale. Hence, in the latter
time scale, we can treat the surfactant transport at a quasi-steady state. This demands
the net of the surface convection flux usΓ to be equal to the diffusive flux JD between
the interface and the bulk phase:

[usΓ ]x = JD, (2.5)

where us is the velocity at the interface given by

us ≡ u(y= h)= τsh/4η−U/2. (2.6)
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Marangoni-enhanced capillary wetting 187

In (2.5), we assume that surface diffusion is negligible. As mentioned earlier in
§ 1, we model superspreading by prescribing a local surfactant leakage to set-up the
required interfacial surfactant concentration gradient. So for soluble surfactant, JD
will be specified as a local diffusive flux across the wedge to model the transfer of
surfactant from the interface toward the substrate (see § 4). As for insoluble surfactant,
a constant surface flux Js will be used to reflect the surfactant leaking effect through
the contact line and the surfactant transport equation is then given by usΓ = −Js,
reduced from (2.5) with JD = 0 (see § 3).

The main equations are (2.5) and (2.3). After substitution of (2.2), (2.4) and (2.6),
we arrive at the following coupled set of equations for h and Γ :

[(βΓxh/η+ 2U)Γ ]x =−4JD, (2.7)
σh2hxxx = (3/2)βΓxh− 3ηU. (2.8)

We non-dimensionalize the above equations with z= x/L, H= h/θ0L, G=Γ/Γ0, j′D=
JDL/uMΓ0, V =U/uM and γ = θ 2

0 (σ/1σ0). Here L is an appropriate length scale such
that it is sufficiently long compared to the microscopic region (such as the precursor
film) near the contact line, but only up to the extent that it can make connection to
the macroscopic region (such as the drop) far away from the contact line. The value
of uM = θ01σ0/η is the characteristic Marangoni velocity scale due to surface tension
variations in the scale of 1σ0 = β0Γ0. As a result, equations (2.7) and (2.8) can be
re-written in dimensionless form as

[(GzH + 2V)G]z =−4j′D, (2.9)
γH2Hzzz = (3/2)GzH − 3V. (2.10)

Below we will use the above equations to model superspreading for both insoluble
and soluble surfactants.

3. Superspreading with insoluble surfactant
3.1. Marangoni stress singularity due to weak surfactant leakage

Because superspreading generally occurs at the early stage of spreading, if the amount
of surfactant exchange with the bulk is small compared to the initial amount of the
surfactant on the interface, the surfactant spreader might behave like an insoluble
surfactant with j′D = 0. Karapetsas et al. (2011) have shown in their simulations that
superspreading can occur to insoluble surfactant through direct transfer of surfactant
from the interface onto the substrate without having mass interchange with the
bulk. Below we theoretically show that it is possible to realize superspreading with
insoluble surfactant in principle. As will also be shown subsequently, although actual
superspreaders are not insoluble, this part of the analysis is able to elicit key features
of superspreading that will appear again in the more realistic situation using soluble
surfactant in § 4.

At j′D = 0, equation (2.9) leads to

[HGz + 2V]G= 4js, (3.1)

with boundary condition G(z → 1) = 1. Here js ≡ Js/uMΓ0 = Jsη/θ01σ0Γ0(>0)
measures the strength of surfactant leakage relative to Marangoni convection. The
actual strength of the leakage flux is represented by Js, accounting for the surfactant
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transfer from the interface to the substrate through the contact line. This flux must be
balanced by the convective surface flux along the interface: usΓ = −Js, the original
dimensional form of (3.1) from an integration of (2.5) with JD = 0. Assume that this
surfactant leakage is small so that it can be sustained by a sufficiently high surfactant
concentration away from the contact line. Then we can let −Js be a negative constant
to represent a ‘sink’ constantly drawing interfacial surfactant molecules toward the
contact line. As can also be clearly seen from (3.1), to establish Gz > 0 and hence
the Marangoni stress Σ ≡ −Gz < 0 to aid in the contact line’s advancement, it can
only be achieved by a local surfactant leak with js > 0 (see also figure 1a).

However, the contact line’s advection V term in (3.1) tends to sweep interfacial
surfactant molecules toward the contact line. This leads to an accumulation of
surfactant near the contact line and hence diminishes Gz established by the js term.
So whether the resulting Marangoni stress can be established toward the contact
line will be determined by the competition between these two terms. If the surfactant
leakage is too slow ( js�V/2), equation (3.1) reduces to −Gz= 2V/H, making Σ > 0
oppose the contact line motion. Obviously, it is impossible to have superspreading in
this case.

A similar competition between surfactant depletion and contact line sweeping has
been shown previously by Joanny (1989) and Karapetsas et al. (2011). In particular,
Karapetsas et al. (2011) showed in their simulations that the drop spreading rate can
be promoted at a sufficiently high Pe but not too high (see their figure 5), where Pe
is the Péclet number measuring the strength of surface convection relative to surface
diffusion in the interfacial surfactant transport. Requiring a large enough Pe to promote
spreading by Marangoni stress is simply because a too small Pe will smooth out
the surfactant concentration gradient by diffusion. On the other hand, if Pe gets too
high, strong contact line sweeping will make surfactant accumulate at the contact
line, which will slow down the spreading unless surfactant depletion is fast enough
to reverse the trend.

In fact, to achieve superspreading, js > V/2 is necessary for preventing surfactant
accumulation at the contact line. If the surfactant leakage is fast ( js � V/2),
equation (3.1) reduces to

HGzG= 4js. (3.2)

To determine G from (3.2), we use Voinov’s approximation (Voniov 1976; Snoeijer
2006) by assuming the wedge shape H to be a slowly varying function with respect
to the linear one:

H = zΘ, (3.3)

where Θ ≡ θ/θ0 measures the departure of the point slope θ = h/x from θ0 and
|Θz|� 1. Because Θ varies slowly with z, G can be determined by a straightforward
integration of (3.2):

G= [1+ (8js/Θ)× ln(z)]1/2. (3.4)

This indicates that G increases with the distance z to the contact line until it reaches
the far-field value at z = 1 (i.e. reaching the scale of the macroscopic length L
where the interfacial surfactant concentration is nearly constant Γ0). Since surfactant
molecules are constantly leaking out through the contact line due to the leakage flux
js, G has to decrease on approaching the contact line (i.e. decreasing z). It is clear
that the larger js is, the stronger the leakage and hence the greater the reduction of
G in the direction toward the contact line. As also indicated by (3.4), since G starts
from a constant level away from the contact line, as its decline continues toward the
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contact line, at some point G must eventually vanish. We call this point the complete
depletion point at which G(z∗)= 0:

z∗ = exp(−Θ∗/8js), (3.5)

with Θ∗ ≡Θ(z∗). Equation (3.5) indicates that z∗→ 0 as js→ 0, meaning that for a
small value of js there must exist a small surfactant-free zone of size z∗.

Equation (3.4) yields the Marangoni stress as

Σ =−Gz =−(4js/Θ)× (1/z)× [1+ (8js/Θ)× ln(z)]−1/2. (3.6)

As a result, Σ will be acting toward the contact line and thereby promote the contact
line advancement. Note that both (3.4) and (3.6) only hold up to the critical point
z∗ given by (3.5). Below this point, surfactant molecules are completely emptied out
by the leak and hence the Marangoni stress vanishes. As also indicated by (3.5), the
surfactant-free zone of size z∗ will shrink very rapidly on lowering js. In other words,
G with small js will exhibit a sharp decline near the contact line.

Now we inspect the behaviour of G and Σ given by (3.4)–(3.6). If the surfactant
leakage in (3.1) is not too fast such that

2V� 4js� 1, (3.7)

the surfactant-free zone will be small, i.e. z∗� 1. For z sufficiently far from z∗, the
surfactant concentration varies slowly with z as G ≈ 1 + 4js × ln(z) (with Θ ≈ 1 in
(3.4)), and hence the corresponding Marangoni stress behaves as Σ ≈ −4js × 1/z.
However, for z close to z∗, G≈ (1− ln(z)/ ln(z∗))1/2 (with Θ ≈Θ∗ in (3.4) together
with (3.5)). This yields Σ ≈ (1/2 ln(z∗))× 1/z× (1− ln(z)/ ln(z∗))−1/2, diverging much
faster than the usual viscous stress singularity 1/z (Huh & Scriven 1971). As will be
shown later, such Marangoni stress singularity will call for a new contact line structure
that can account for the linear spreading law.

To confirm the features discussed above, we also solve (3.1) to determine the actual
profiles of G and Σ . To better illuminate the singular nature for both G and Σ , we
look at the outer region by taking H = z. This admits an analytical solution:

1−G+ (2js/V) ln[(2js − V)/(2js − VG)] = 2V ln(z). (3.8)

Figure 2 plots both G and Σ profiles calculated from (3.8) at a fixed value of V with
various values of js under the constraint (3.7). We also plot the asymptotic results
(3.4) and (3.6) (with Θ = 1), showing an excellent agreement with those given by
(3.8). As shown in figure 2(a), for a given value of js, G declines as the distance z
to the contact line decreases. Notice that G vanishes at some particular point, which
exactly corresponds to the complete depletion point z∗ – the lower js the smaller z∗
in accordance with (3.5). On approaching z∗, such a decline in G gets sharper. For
a very little surfactant leakage having js = 0.01 or lower, G shows merely a small
decrease from the equilibrium value (i.e. G = 1) away from the contact line. But
near the contact line, because the influence of the leak becomes perceivable, a small
depletion region has to form in response to the leak, showing a very sharp decrease
in G. Such a boundary-layer-like surfactant concentration profile also resembles the
simulation result obtained by Karapetsas et al. (2011) for an insoluble surfactant (see
their figure 3a). As for Σ , its magnitude is increased as z is decreased, and rises
more sharply on approaching z∗, as displayed in figure 2(b). The value of Σ blows
up as z→ z∗, signifying a Marangoni stress singularity. All these features confirm
those given by (3.4)–(3.6).
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FIGURE 2. (Colour online) (a) Calculated surfactant distribution G for insoluble
superspreader with various values of surfactant leakage flux js at V = 0.001. Lines:
exact solution equation (3.8). Symbols: approximate solution equation (3.4). (b) Shows
the corresponding Marangoni stress Σ = −Gz whose exact and approximate values are
evaluated using (3.1) and (3.6) respectively. All the results are calculated at H = z.
G vanishes at the depletion point z∗ near which rapid decline in G and divergence in
Σ are evident.

3.2. Emergence of a new contact line structure
As indicated by (3.6), for small js, a Marangoni stress singularity can exist on
approaching the contact line. Because it diverges at a much faster rate than the usual
viscous stress singularity 1/z, there is no way to dissipate it by the viscous force

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

62
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

at
io

na
l C

he
ng

 K
un

g 
U

ni
ve

rs
ity

, o
n 

21
 Ju

l 2
02

0 
at

 0
4:

43
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.626
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Marangoni-enhanced capillary wetting 191

†s

œ0

œ*

z*

P+ P-

FIGURE 3. (Colour online) Schematic illustration of the interface profile and flow field
near the contact line. Owing to surfactant leakage near the contact line, there exists a
complete depletion point z∗ below which there is no surfactant on the interface. The
Marangoni shearing toward the contact line can lead to a pressure build-up, bending the
interface into a microscopic capillary nose with dynamic contact angle θ∗ greater than the
apparent dynamic contact angle θ0.

exerted by the substrate through the movement of the contact line (as it is derived
under js � V/2 due to (3.7)). It thus follows that the dissipation of the Marangoni
forcing has to be sought at the microscopic level at the scale comparable to or below
z∗, implying that a new contact line structure must emerge, which is explained as
follows.

According to (3.6), an intensified Marangoni stress Σ = −Gz < 0 is shearing the
interface in the direction toward the contact line. From (2.10), this shearing will lead
pressure P = −γHzz to build up in the direction toward the contact line, i.e. Pz > 0.
The mounting pressure near the contact line will in turn bend the air–liquid interface
into a capillary nose (see figure 3), making the actual contact angle θactual greater
than θ0. Such bending of the interface with an increased dynamic contact angle is
consistent with the small ridge at the moving front observed in the simulation study
by Karapetsas et al. (2011) (see their figure 3a). Since it is the surfactant leakage
responsible for Σ < 0 that bends the interface, θactual should mainly vary with js,
regardless of the contact line speed U as long as (3.7) is satisfied. Apparently, the
behaviour of θactual cannot be described by the classical clean-interface de Gennes–
Cox–Voinov law that links the apparent dynamic contact angle to U (Voniov 1976;
de Gennes 1985; Cox 1986a). Instead, a new wetting law must emerge to govern how
θactual varies with js. Because of surfactant leakage and Marangoni stress, the physics
involved in determining this new law will be very different from those in deriving
the de Gennes–Cox–Voinov law. So we anticipate that the corresponding contact line
structure will also be distinct from the latter’s.

In fact, because the interface becomes clean below x∗(= z∗L � L), the strong
Marangoni shearing will transform into an enormous capillary pressure and this
pressure will act as an additional wetting force to drive the contact line. The situation
is quite distinct from the usual de Gennes–Tanner capillary wetting that occurs in
a somewhat macroscopic sense over the outer length scale L (de Gennes 1985). In
contrast, such capillary wetting takes place in a microscopic sense at the length
scale x∗. More importantly, it is not purely driven by surface tension but by the
Marangoni shearing set-up by the surfactant leakage near the contact line. It is this
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local Marangoni-driven capillary wetting responsible for constant wetting speed and
hence the linear spreading law seen in superspreading.

We should stress that the peculiar features mentioned above are the propositions
that closely follow the two analytical results derived from our theory under the ‘little
but fast’ leak condition (3.7): (i) the complete depletion point z∗ given by (3.5), and
(ii) the Marangoni stress singularity at z∗ in (3.6). Although somewhat similar views
can be drawn from the simulations by Karapetsas et al. (2011), here we will provide
a rigorous proof for these propositions, which is given next.

3.3. Marangoni-driven capillary wetting: a new dynamic contact angle relationship
To determine the actual contact line speed caused by the Marangoni-driven capillary
wetting described above, we need to establish the corresponding dynamic contact
angle relationship. Hence we consider (2.10) by neglecting the V term under (3.7).
Further combining (3.2), we arrive at

γH2Hzzz = 6js/G. (3.9)

Note here that the surface tension parameter γ = θ 2
0σclean/1σ0 is taken to correspond

to the clean interface’s tension σclean. This is because we want to determine the
microscopic contact angle as z approaches the complete depletion point z∗, the
pressure has to match that at z∗. Substituting (3.4) into (3.9) and writing H in terms
of Θ using (3.3), (3.9) becomes

Θ2Θzz = 6γ −1js × z−2
[1+ (8js/Θ)× ln(z)]−1/2. (3.10)

For the left-hand side of (3.10), we have used Voinov’s approximation Hzzz≈Θzz from
Hz =Θ + zΘz ≈Θ .

Equation (3.10) will be used to determine the actual contact angle θactual. Because
z∗ is small, θactual can be roughly represented by θ(z∗). Therefore, the purpose
of solving (3.10) is to find Θ(z∗). Following the approach to solving the Bretherton
equation for deriving the de Gennes–Cox–Voinov wetting law (see appendix A, § A.1),
equation (3.10) can be solved approximately using Voinov’s method (see appendix A,
§ A.2). Integrating both the left- and right-hand sides of (3.10) respectively and
making use of the fact that

∫ z
1 Θ2Θzz dz ≈ Θ2Θz (see (A 3) in appendix A),

equation (3.10) becomes
Θ2Θz = 6γ −1js × φ(z), (3.11)

where φ(z) is the integral below (obtained by (A 11) in appendix A):

φ(z)=
∫ z

1
z−2
[1+ (8js/Θ)× ln(z)]−1/2 dz≈ ln(z). (3.12)

Integrating (3.11) from z = 1 from z = z∗ and recognizing Θ(z = 1) = 1 and∫ z∗

1 ln(z) dz≈ 1 for small z∗, we obtain

Θ3(z∗)= 1+ 18γ −1js. (3.13)

With Θ(z∗)= θ∗/θ0, γ = (σclean/1σ0)θ
2
0 and js= Jsη/1σ0θ0Γ0, the slope θ∗ at z∗(� 1),

which can represent the actual contact angle θactual, can be determined as

θ∗3 = θ 3
0 + 18Ca1. (3.14)
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Here, instead of the usual capillary number Ca = ηU/σclean, equation (3.14) is
characterized by the modified capillary number based on the speed of surfactant
leakage Js/Γ0,

Ca1 ≡ θ
3
0γ
−1js = (Js/Γ0)η/σclean. (3.15)

Somewhat surprisingly, equation (3.14) looks quite similar to the well-known
de Gennes–Cox–Voinov law (see (A 9) in appendix A). As θ∗ in fact measures
the slope of the ‘capillary nose’ which is surfactant free, it should match the
clean-interface contact angle described by the de Gennes–Cox–Voinov law (see
(A 9) in appendix A):

θ 3
clean ≈ 9Ca ln(z∗L/`). (3.16)

Here the length scale ratio in the logarithmic term is taken as the length z∗L of
the surfactant-free zone (with z∗ given by (3.5)) to a microscopic cutoff length
`(� z∗L) or an inner length scale (due, for instance, to the precursor film ahead of
the capillary nose or to wall slip). The associated microscopic contact angle θ(`) is
assumed negligible here. Matching θ∗ given by (3.14) to θclean given by (3.16), we
can determine the contact line speed as

U =
1
9
σclean

η
θ 3

0 (1+ 18γ −1js)[ln(z∗L/`)]−1, (3.17)

wherein ln(z∗)=−(1+ 18γ −1js)
1/3/8js is a result of combining (3.5) and (3.13). For

18γ −1js ∼ O(1) or smaller (i.e. 18Ca1 ∼ O(θ 3
0 ) or smaller), U scales as the capillary

velocity θ 3
0σclean/η, just like that of capillary wetting. Notice that during the spreading

θ0 is gradually decreasing whereas the surfactant leakage contribution 18Ca1 in (3.14)
is kept constant. Because the ratio of the latter to θ 3

0 in (3.14) varies as θ−3
0 , the

contribution from surfactant leakage 18Ca1 to θ∗ would become increasingly important
during the spreading. In other words, as long as 18γ −1js is not too small compared
to unity, θ∗ might still be dominated by 18Ca1 from the surfactant leakage and hence
might not change significantly during spreading. In fact, if 18γ −1js is too small, the
situation will reduce to the usual capillary wetting and there will be no superspreading
at all, making (3.17) no longer applicable.

On the other hand, if surfactant leakage is sufficiently strong such that 18γ −1js� 1
(i.e. 18Ca1� θ 3

0 ), not only does the contact angle θ∗≈ (8Ca1)
1/3 become independent

of θ0 in (3.14), but also the contact line speed (3.17) reduces to

U = 2
(

Js

Γ0

)
[ln(z∗L/`)]−1. (3.18)

It is essentially the speed of surfactant leakage Js/Γ0 which is constant and
independent of θ0. This speed comes from the surface flow set-up by the surfactant
leakage near the contact line through usΓ = −Js which gives us ∼ −Js/Γ0. This
surface flow is sustained by the corresponding Marangoni shearing working with
surface tension to push the contact line forward, making the contact line advance
at a constant speed given by (3.18). Together with the fact that U with not too
small 18γ −1js also does not change significantly during spreading, U given by (3.17)
can be deemed as a constant, thereby explaining the linear spreading law seen in
superspreading.
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4. Superspreading with soluble surfactant
4.1. Surfactant leakage due to corner diffusion and corresponding Marangoni

shearing
Having analysed superspreading with an insoluble surfactant, we now move on
to soluble surfactant which is more relevant to superspreading. A similar contact
line structure can also form due to surfactant leakage around the contact line.
But unlike direct surfactant transfer from the interface onto the substrate for
insoluble surfactant, the surfactant transport (2.5) is driven by a bulk surfactant
concentration gradient resulting from desorption of surfactant from the interface
to the substrate (see figure 1b). This process establishes a corner diffusion flux
JD = D(C1 − C2)/h from the surfactant-rich interface at concentration C1 toward the
surfactant-poor substrate at concentration C2(<C1), where D is the bulk diffusivity
of surfactant. In the dimensionless form, this flux can be re-written as j′D = jD/H,
where jD = (D1C/θ0Γ0)/uM = ηD(1C/Γ0)/1σ0θ

2
0 measures the strength of the

corner diffusion flux relative to Marangoni convection and 1C= C1–C2. Hence (2.9)
becomes

[(GzH + 2V)G]z =−4jD/H. (4.1)

We again focus on the little but fast leak scenario:

2V� 4jD� 1, (4.2)

where Marangoni shearing toward the contact line can be established by a weak
surfactant leakage without being mitigated by the contact line’s sweeping. Under this
condition, equation (4.1) reduces to

[GzHG]z =−4jD/H. (4.3)

Using Voinov’s approximation (3.3): H= zΘ modulated by a slowly varying function
Θ(z), G can be determined below by integrating (4.3) with G(z→ 1)= 1:

G= [1− (4jD/Θ
2)× (ln(z))2]1/2, (4.4)

with the corresponding compete depletion point

z∗ = exp(−Θ∗/2j1/2
D ). (4.5)

The Marangoni stress is then

Σ =−Gz = (4jD/Θ
2)× (ln(z)/z)× [1− (4jD/Θ

2)× (ln(z))2]−1/2. (4.6)

For z close to z∗, since Θ ≈Θ∗, equation (4.4) behaves as G≈[1− (ln(z)/ ln(z∗))2]1/2,
exhibiting a very sharp decay near z∗. The corresponding Marangoni stress is Σ ≈
ln(z∗) × (ln(z)/z) × (1 − (ln(z)/ ln(z∗))2)−1/2, again diverging much faster than the
viscous stress singularity 1/z.

Figure 3 plots both G and Σ profiles by numerically solving (4.1) with H = z
under (4.2). Similar to figure 2 for insoluble surfactant, the larger jD is the sharper
the decrease for G and hence the greater build-up of Σ . The results also show an
excellent agreement with the approximation solution (4.4) and (4.6) with Θ = 1,
confirming the sharp decline in G and the divergence in Σ near z∗ due to weak
surfactant transfer shown above. The boundary-layer-like profile for G also resembles
the simulation result reported by Karapetsas et al. (2011) for soluble surfactant (see
their figure 9a).
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4.2. New contact line structure and dynamic contact angle relationship
To determine the dynamic contact angle relationship based on (4.6), we need (2.10)
by neglecting the V term under (4.2):

γHHzzz = (3/2)Gz. (4.7)

Substituting (4.6) into (4.7) and re-writing it in terms of Θ using H= zΘ and Hzzz≈

Θzz, we arrive at

Θ3Θzz =−(6γ −1jD)× (ln(z)/z2)× [1− (4jD/Θ
2)× (ln(z))2]−1/2. (4.8)

Following the procedures given by appendix A (see § A.3), to solve (4.8) we first
integrate its left- and right-hand sides to yield

Θ3Θz =−(6γ −1jD)×ψ(z), (4.9)

where ψ(z) is the integral below (obtained by (A 13) in appendix A):

ψ(z)=
∫ z

1
(ln(z)/z2)×[1− (4jD/Θ

2)× (ln(z))2]−1/2 dz≈ (ln(z))2/2. (4.10)

Integrating (4.9) from z=1 to z= z∗ and knowing Θ(z=1)=1 and
∫ z∗

1 [ln(z)]
2 dz≈−2

for small z∗, we arrive at

Θ4(z∗)= 1+ 24γ −1jD. (4.11)

Compared to (3.13) for an insoluble superspreader, the last term due to surfactant
leakage has the same dependence on surface tension and surfactant leakage flux.
However, the power of Θ is different. The additional power comes from the
corner diffusion term −4jD/H in (4.3). Re-writing (4.11) in terms of actual physical
quantities, we obtain the following dynamic contact angle relationship for a soluble
superspreader:

θ∗4 = θ 4
0 + 24Ca2, (4.12)

characterized by the modified capillary number

Ca2 ≡ θ
4
0γ
−1jD = (D1C/Γ0)η/σclean. (4.13)

So the velocity here D1C/Γ0 can be interpreted as the velocity of the surface flow
induced by the corner diffusion flux, as indicated by (4.3). Matching θ∗ given by
(4.12) to θclean with (3.16), the contact line speed is found to be

U =
1
9
σclean

η
θ 3

0 (1+ 24γ −1jD)
3/4
[ln(z∗L/`)]−1, (4.14)

wherein ln(z∗) = −(1+ 24γ −1 jD)
1/4/2j1/2

D is a result of combining (4.5) and (4.11).
Similar to (3.17) for an insoluble superspreader, U again scales as the capillary
wetting velocity θ 3

0σclean/η. Impacts of surfactant leakage are mainly reflected in
(1+ 24γ −1jD)

3/4
= (1+ (D1C/Γ0)η/σcleanθ

4
0 )

3/4. So for 24γ −1jD� 1, equation (4.14)
is reduced to

U =
1
9
σclean

η

(
ηD1C/Γ0

σclean

)3/4

[ln(z∗L/`)] −1. (4.15)
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Again, U is independent of θ0. But U will vary as the 3/4 power of the driving
surface flow D1C/Γ0, in contrast to the insoluble surfactant result (3.18) in which
U is linearly proportional to Js/Γ0. The reason for this difference is that the power
of θ∗ in (4.12) does not match that of θclean in (3.16) because of the additional corner
diffusion term −4jD/H in (4.1).

A remark is worth making below concerning the spreading speed given
by (4.14). Recall that the concentrated Marangoni stress near the contact line is
a result of a tiny surfactant leakage imposed by our model to account for the effects
of the surfactant transfer from the interface to the substrate. This feature also agrees
with what Karapetsas et al. (2011) observed in their simulation study. And yet,
because of the leak, the contact line is actually surfactant free. So this Marangoni
stress does not drive the contact line directly. Instead, it transforms into an enormous
Laplace pressure, which in turn drives the contact line in a clean-interface manner.
It is this Marangoni-driven capillary wetting that drives superspreading, leading to a
constant spreading speed given by (4.14) and why the resulting speed scales as the
capillary velocity. It is also this reason why the spreading speed U does not directly
depend on the Marangoni stress but on the leakage flux jD.

4.3. Criterion of superspreading
Because only a certain class of surfactants can exhibit superspreading, this implies
that, to be a superspreader, certain requirements have to be met. While the present
analysis is made under the constraint (4.2), a superspreader must at least satisfy

2V < 4jD < 1, (4.16)

where V =U/uM and jD= (D1C/θ0Γ0)/uM with uM = θ01σ0/η. The criterion 4jD < 1
to ensure that surfactant leakage is weak so that the surfactant depletion zone can be
confined in a small region near the contact line. On the other hand, the leak has to
be sufficiently strong to establish the surfactant concentration gradient needed to push
the contact line without being mitigated by the contact line’s sweeping. This demands
2V < 4jD.

In addition to (4.16), we also need the following condition from (4.11) to ensure
that the Marangoni flow is strong enough to bend the interface by making θ∗

significantly deviated from θ0 according to (4.12):

24γ −1jD > 1, (4.17)

with γ = θ 2
0 (σclean/1σ0). Hence, to satisfy both (4.16) and (4.17), jD has to be within

the following range under which superspreading might occur:

γ /24< jD < 1/4. (4.18)

It is worth pointing out that to make (4.18) hold it is necessary to have γ /24> V/2
so that V/2 < jD in (4.16) can be replaced by γ /24 < jD. In fact, γ /24 > V/2
is equivalent to V/γ = Cacleanθ

−3
0 < 1/12, meaning that surface tension force has

to be sufficiently strong compared to the viscous force. We further notice that
jD = (Dη1C/Γ0)/θ

2
01σ0 is approximately proportional to the surfactant concentration

C0 because superspreading generally occurs in the high concentration regime above
the CMC where the surface coverage Γ0 is nearly constant. As will be illustrated
later in § 5, the actual value of C0 is close to the lower bound from γ /24 < jD in
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(4.18). This underpins the need for a sufficiently strong surfactant leakage in driving
the contact line with Marangoni shearing. Also because jD > γ/24 > V/2 here, not
only jD > V/2 guarantees that the as-established surfactant concentration gradient is
not diminished by the contact line’s sweeping, but also γ /24> V/2 ensures that the
Marangoni shearing can turn into a capillary wetting force to drive the contact line.

On the other hand, if the surfactant leakage is too strong, Marangoni shearing would
no longer be concentrated near the contact line to make the Marangoni–capillary
mechanism work. In fact, in this case the entire interface would be short of
surfactant, which reduces to the standard capillary wetting and hence does not
lead to superspreading. This demands 1/4 > jD to give the upper bound of C0. All
these requirements result in a range for C0, restricting the surfactant concentration
and properties for seeing superspreading.

To better see how the condition for seeing superspreading is determined by
surfactant concentration, we re-write jD in terms of the adsorption length λ≡ Γ0/1C.
This allows us to transform (4.18) to the following range for the dimensionless
adsorption length Λ≡ λσclean/ηD:(

σclean

1σ0

)
θ−1

0 <
1
4
Λθ0 < 24θ−4

0 . (4.19)

In (4.19), the lower bound comes from jD < 1/4 and the upper bound corresponds
to γ /24 < jD in (4.18). In Λ, the diffusivity of surfactant molecule D can be
evaluated using the Stokes–Einstein equation D = kBT/6πηa with kBT being the
thermal energy and a the size of surfactant molecule. Hence Λ can be re-written as
Λ= 6πλaσclean/kBT , measuring the amount of the work needed to spread a surfactant
monolayer of thickness a over distance λ under the actions of surface tension σclean.

As indicated by (4.19), to be a superspreader, the adsorption length λ≡ Γ0/1C ∼
Γ0/C0, has to be within a certain range. Apparently, not every surfactant can meet
this criterion. As λ essentially represents the adsorption isotherm of a surfactant, for
a given surfactant and a given surface coverage Γ0, equation (4.19) will fix the range
of surfactant concentration C0 in which superspreading will be observed. In addition,
the range strongly depends on the apparent dynamic contact angle θ0, suggesting that
surfactant wettability and surface chemistry also have a part to play. As a potential
candidate of superspreader has to fulfil all of the requirements listed above, this
restrains the types of surfactants that become superspreaders.

Recall that (4.19) comes from the need for a local surfactant leakage under the flux
constraint (4.18). It seems that an arbitrary surfactant can produce such a leakage
effect, which actually is not true. The reason is that to meet (4.18), the surfactant
might require a specific affinity and a special kinetic pathway to adsorb onto the
substrate, so that the surfactant transfer from the interface to the substrate can occur
at the desired level. And to acquire such affinity and sorption kinetics, it is also
necessary for the surfactant to possess certain chemical properties or structure that
favour such a very restrictive adsorption process. In other words, the special physical
and chemical properties needed for being a superspreader are actually hidden in
the local surfactant leakage flux imposed by the present hydrodynamic model. As
superspreading can also be influenced by other factors such as dynamic surface
tension (Rafai & Bonn 2005), evaporation (Semenov et al. 2013), wetting and surface
chemistry (Ivanova, Zhantenova & Starov 2012), surfactant assembly (Stoebe et al.
1997; Kumar et al. 2003a), humidity (Ivanova et al. 2012), etc., the criterion (4.18)
or (4.19) should be viewed as a part of the requirements for superspreading. Hence,
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it is a sufficient condition for superspreading. That is, if this criterion is satisfied,
superspreading might occur; but if superspreading occurs, then it must be fulfilled.
Because we do not take into account all of these effects, to see superspreading, the
range of surfactant concentration predicted by (4.19) would be wider than the actual
concentration range occurring in experiments, which is indeed found in the case
considered in the next section. Nevertheless, we at least verify that local surfactant
leakage is one of the necessary elements for triggering superspreading.

5. Connections to experiments and simulations

Our analysis can capture a variety of results seen in experiments and simulations
reported previously. Having established the criterion (4.19) for superspreading, we
first estimate the range of surfactant concentration within which superspreading might
occur experimentally. Assume 1σ0≈ 2 mN m−1 taken about 10 % of σ0≈ 20 mN m−1

(Rafai & Bonn 2005) (because near the contact line the interface is only a little
contaminated by surfactant). With θ0 ∼ 10−1 and σclean ≈ 70 mN m−1, equation (4.19)
yields 3.5 × 103 < Λ/4 < 2.4 × 106. For a ∼ 1 nm and kBT ≈ 4 × 10−21 J at
25 ◦C, the above range of Λ gives λ = 45 nm–30 µm. Since we stipulate that
superspreading is driven by a local surfactant leakage through corner diffusion
across the wedge (with soluble surfactant spreaders), to make this leaking process
more effective, it might be more desirable to use high surfactant concentrations.
In this case, the interface would likely be covered by densely packed surfactant
molecules with the interfacial concentration Γ0 as high as that at the CMC, ΓCMC

(which is nearly the maximum surface coverage that does not change beyond CMC).
Hence, λ ≡ Γ0/1C can be approximated as ΓCMC/C0 with C0 being the surfactant
concentration. With ΓCMC ∼ 10−10 mol cm−2 and CCMC ∼ 10−7 mol cm−3 for typical
trisiloxane superspreaders (Kumar et al. 2003b), λ = 45 nm–30 µm yields C0 that
falls in the range of 10−8–10−5 mol cm−3. It is approximately 1/10–100 times CCMC.
In the experimental study by Rafai et al. (2002), superspreading was observed at
C0 = 10–50CCMC, which falls into the range estimated above.

As for the spreading speed U, because superspreader surfactants are typically
soluble, U can be roughly estimated as the capillary wetting velocity θ 3

0σclean/9η
according to (4.14). With σclean ≈ 70 mN m−1, η ≈ 1 m Pa s and θ0 ∼ O(10−1),
we find U ∼ 1 mm s−1 in agreement with experimental observations (Nikolov et al.
2002; Rafai et al. 2002; Wang et al. 2013; Nikolov & Wasan 2015). Using (4.14),
we can see how U (in mm s−1) varies with jD, as displayed in figure 5. With
σclean≈70 mN m−1, 1σ0≈2 mN m−1, θ0∼10−1 and z∗L/`∼102 (by taking 1 % of the
typical value L/`∼ 104), to have U be of the order of mm/s observed in experiments,
figure 5 reveals that the strength of the surfactant leakage is 0.02 < jD < 0.2, which
also falls within γ /24< jD < 1/4 given by (4.18). This also confirms that a fraction
of surfactant leakage will suffice to sustain the Marangoni-driven capillary wetting
mechanism needed for superspreading.

The need for surfactant transfer from the interface to the substrate or local surfactant
leakage to trigger superspreading implies that a special sorption kinetics is necessary
to be a superspreader. Why such a characteristic is essential to a superspreader seems
to have been partially supported by the experimental study of Rafai & Bonn (2005).
These authors measured the dynamic surface tension for a trisiloxane superspreader
and compared with that of a normal surfactant (dioctyl sulfosuccinate sodium salt,
AOT) whose spreading does not deviate much from Tanner’s law. Both measurements
were conducted near the CMC using pendant drop and maximum bubble pressure
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methods. Their results reveal that the differences between these two surfactants
are rather striking (see their figure 4). In the normal surfactant case, the surface
tension merely exhibits a slight decrease around 30 mN m−1 and quickly reaches
an equilibrium (within 1 s). In contrast, the trisiloxane’s surface tension shows a
large change from the nearly clean-interface value 70 mN m−1 to the CMC value
22 mN m−1 but is slowly decreasing with time (in a period of 100 s). The much larger
and slower change in the dynamic surface tension for the trisiloxane case indicates
that trisiloxane surfactants would take a longer time to absorb onto the bubble/drop
surface than normal surfactants. This implies that trisiloxane surfactants have less
inclination to land onto an air–liquid interface compared to normal surfactants. If
spreading a trisiloxane surfactant to a substrate that has some degree of affinity to
the surfactant, the surfactant would be more inclined to absorb onto the substrate and
hence even discourage the surfactant from adsorption onto the interface. Because the
closer to the contact line the stronger the surfactant adsorption toward the substrate,
the more severe surfactant deficiency would occur at the interface near the contact line,
acting as if there were an additional sink to remove the surfactant. This in turn would
establish a local Marangoni shearing toward the contact line to aid in its motion. But
for normal surfactants, since they can be quickly absorbed onto an air–liquid interface
and lack an adsorption bias to a solid substrate, they are not able to generate a local
surfactant leakage to establish the Marangoni stress needed for speeding up the
contact line advancement. In short, the peculiar dynamic surface tension behaviour of
trisiloxane surfactant seen in the experiment by Rafai & Bonn (2005) can be linked
to the notion of local surfactant leakage in our model for superspreading. Hence, the
distinctions between superspreaders and normal surfactants are actually implied in the
presupposition of local surfactant leakage used in our model.

Rafai et al. (2002) conducted their experiment for C0 = 0.8–50CCMC and found
that the spreading exponent can vary between 0.16 and 1, depending on C0.
At C0 = 10–50CCMC the linear spreading law can be observed (see figure 6a).
This concentration range corresponds to λ = 200 nm–1 µm, falling within λ =
45 nm–30 µm estimated from (4.19). For C0 below 10CCMC, however, the spreading
is slowed down and the spreading exponent decreases on lowering C0. At C0 =

0.8CCMC, which is the lowest surfactant concentration in their experiment, in particular,
the spreading is the slowest, showing that the spreading radius R is growing as a 1/6
power of time (see figure 6b).

Various spreading power laws can be explained by the fact that surface tension
gradients no longer occur locally near the contact line but are established over the
drop radius R. In other words, the spreading is driven by a global Marangoni force.
Balancing this force to the viscous force from (1.1), we get U∼ βh1Γ/ηR∝1Γ/R3

(because h ∝ R−2 for fulfilling the constant drop volume constraint). Here 1Γ is
controlled by the amount of the surfactant over the drop surface, Γ R2

∼Mi− qt with
Mi being the initial amount of the interfacial surfactant and q the surfactant leakage
rate due to the surfactant transfer/leak to the bulk/substrate.

At low C0, q is small. So the surfactant might behave like an insoluble surfactant
with 1Γ ∝ R−2, giving U ∝ R−5 and hence R ∝ t1/6. This explains the smallest
spreading power 1/6 observed by Rafai et al. (2002).

At C0 higher than the CMC, we have to consider impacts of q∼ (JbR2
+ JsR) that

comprise the surfactant flux to the bulk Jb and the leakage flux Js at the contact line.
In this case, the surface concentration varies as 1Γ ∼ qt/R2, giving U ∝ qt/R5. The
spreading dynamics for this case is determined by how q varies with R, depending on
whether Jb is diffusion controlled or kinetics controlled.
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FIGURE 4. (Colour online) (a) Calculated surfactant distribution G for soluble
superspreader with various values of corner diffusion flux jD at V = 0.001. Lines:
numerical solution to (4.1). Symbols: approximate solution (4.3). (b) Shows the
corresponding Marangoni stress Σ = −Gz whose exact and approximate values are
evaluated using (4.1) and (4.6) respectively. All of the results are calculated at H = z.
G vanishes at the depletion point z∗. Similar to figure 2 for an insoluble superspreader,
rapid decline in G and divergence in Σ can also occur near z∗.

When C0 is slightly higher than the CMC, q could be dominated by JsR or
controlled by lateral diffusion with Jb∝R−1. This leads to q∝R and hence U∝ t/R4,
giving R∝ t2/5.
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FIGURE 5. (Colour online) Dependence of actual wetting speed U on the surfactant
transfer rate jD for soluble superspreader. The result is obtained from (4.14) with σclean ≈

70 mN m−1, 1σ0 ≈ 2 mN m−1 (approximately 10 % of σ0 ≈ 20 mN m−1), θ0 ≈ 10−1 and
L/`≈ 104.

At C0 much higher than the CMC, q might be dominated by JbR2. Because Jb
is likely kinetics controlled, it is roughly constant, especially at the late stage of
spreading where plenty of surfactant molecules are absorbed onto the substrate or the
interface. This leads to q∝ R2 and hence 1Γ ∝ t as assumed by Nikolov & Wasan
(2015). As a result, U ∝ 1Γ/R3

∝ t/R3, giving R ∝ t1/2. This 1/2 power law has
been observed during the late-time spreading in the experiment by Nikolov & Wasan
(2015) (see figure 7).

It is possible that Jb is dominated by vertical diffusion with Jb ∝ h−1. This can
happen when the transport is driven by the surfactant transfer from the interface
to the substrate. Because this flux is most amplified near the contact line, this is
essentially equivalent to the corner diffusion analysed in § 4. So Jb ∝ h−1

∝ R2 yields
q∼ JbR2

∝ R4. Together with 1Γ ∼ qt/R2, we arrive at U ∝1Γ/R3
∝ t/R, recovering

the linear spreading law R ∝ t. Together with the fact that the initial spreading in
this case is also superspreading at constant U, this explains why the linear spreading
law somewhat persists as it emerges, as Rafai et al. (2002) observed. The linear
spreading law followed by the 1/2 power law observed by Nikolov & Wasan (2015)
(see figure 7) suggests that the surfactant transport might undergo a transition from
corner diffusion to kinetics controlled.

Likewise, for two-dimensional spreading with surfactant, we can also find the
corresponding spreading laws in accordance with those reported previously. In this
case, the drop width W expands under constraints h∝W−1 and Γ ∼ (Mi− qt)/W with
q∼ (JbW + Js). Also because the spreading speed now varies like U ∼ βh1Γ/ηW ∝
1Γ/W2, the resulting spreading dynamics will be different from three-dimensional
cases.

When q is small at low C0, because 1Γ ∝ W−1, we get U ∝ W−3 and hence
W ∝ t1/4. This can occur after the linear superspreading law W ∝ t, as seen in
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FIGURE 6. (Colour online) Experimental data by Rafai et al. (2002). (a) At surfactant
concentration C0 = 10–50 CMC, linear spreading law can be observed. (b) At
C0 = 0.8 CMC however, which is the lowest surfactant concentration in the experiment,
the spreading radius grows as the 1/6 power of time. The 1/6 spreading exponent is the
smallest in their experiment.

simulations for insoluble surfactant (Karapetsas et al. 2011). In the high C0 regime,
effects of q have to come into play. Because 1Γ ∝ qt/W, we have U ∝ qt/W3,
giving W ∝ (qt2)1/4. If q is dominated by Js or controlled by lateral diffusion with
Jb ∝ W−1, q is roughly constant and we arrive at W ∝ t1/2. If q is dominated by
corner diffusion with Jb ∝ h−1, the linear superspreading law W ∝ t is recovered.
At late times the surfactant transport could be controlled by lateral diffusion again,
making the spreading slow down to W ∝ t1/2. Such a transition from the linear law to
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FIGURE 7. (Colour online) Experimental data by Nikolov & Wasan (2015). The spreading
first follows the linear law as shown in (a). At late times it then slows down to the 1/2
law, as displayed in (b).

the 1/2 law has been observed by Karapetsas et al. (2011). On the other hand, if q
is kinetics controlled and dominated by JbW (with constant Jb), then W ∝ t2/3, which
explains the main finding reported by Beacham et al. (2009).

In short, for three-dimensional (3-D) axisymmetric drop spreading with surfactant,
its spreading dynamics follows R∝ tα with α= 1/6− 1. Similarly, for two-dimensional
(2-D) spreading we find W ∝ tα with α = 1/4 − 1. Table 1 summarizes the various
spreading laws shown above.
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Three-dimensional: R∝ tα Two-dimensional: W ∝ tα

Small q 1/6 1/4
q∼ JsR 2/5 —
q∼ Js — 1/2
q∼ JbR2 1/2 —
q∼ JbW — 2/3
Jb ∝ h−1 1 1

TABLE 1. Various values of spreading exponent α for 3-D spreading and 2-D spreading
with surfactant.

6. Analogous thermocapillary spreading
The present superspreading with surfactant can be analogous to thermocapillary

spreading because both are driven by surface tension gradients. A similar Marangoni
enhancement can also occur to thermocapillary spreading on a cooled plate (Ehrhard
& Davis 1991; Ehrhard 1993; Smith 1995; Sui & Splet 2015). Such thermally driven
spreading can also display a linear spreading law but it is achieved by nonlinear
surface tension variations arising from a temperature minimum inside the droplet
(Karapetsas et al. 2014; Chaudhury & Chakraborty 2015). If surface tension still
varies linearly with temperature as commonly assumed, the situation would be quite
similar to the present surfactant-driven spreading using a linear equation of state. In
this case, we find that the same 1/6 and 1/2 spreading laws can emerge, depending
on the cooling rate.

Similar to surfactant-driven spreading, a drop in this case will spread at speed UT ∼

hβTKT/η driven by the gradient KT ≡ ∂xTs of the interfacial temperature Ts = T∞ −
(T∞−Tw)/(1+Bh/d) (Ehrhard & Davis 1991). Here B=haird/kdrop is the Biot number
measuring the heat flux on the air side (having heat transfer coefficient hair) relative
to that on the fluid side (having thermal conductivity kdrop), d is the scale of the
drop height, Tw the plate temperature and T∞ the ambient air temperature, and βT =

−(∂σ/∂T).
When B is small, this describes the insulated limit, resembling spreading with

insoluble surfactant. In this case, because 1Ts ≡ Ts − T∞ ∝ h, we get UT ∝ hKT ∝

h∂xh ∝ h2/R ∝ R−5 and hence arrive at R ∝ t1/6, similar to the late-time spreading
of the insoluble superspreader shown in figure 6(b). This 1/6 spreading law is also
supported by the experimental data measured by Ehrhard (1993), as shown in figure 8.

On the contrary, large B corresponds to the perfectly conducting limit, analogous to
the spreading with soluble surfactant. Because this case has 1Ts ∝ h−1 much greater
than the small B case, the gradient KT ∝ ∂xh/h2

∼ 1/(hR)∝R increases with R instead
of decreasing with R. The spreading speed thus behaves as UT ∝ hKT ∝ R−1. This
results in R∝ t1/2, similar to the late-time spreading of soluble superspreader shown
in figure 7.

7. Concluding remarks
In conclusion, we have demonstrated that the curious linear superspreading

law observed in experiments (Rafai et al. 2002; Nikolov & Wasan 2015) can be
explained by the new contact structure resulting from a local surfactant leakage to
the substrate near the contact line. As some affinity to the substrate is necessary
for a surfactant superspreader, the rate of surfactant leakage represents the ability to
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FIGURE 8. (Colour online) Experimental data by Ehrhard (1993). The same 1/6 law seen
in figure 6(b) can also occur to the analogous thermocapillary on a cooled plate.

transfer surfactant to the substrate. We identify that a tiny rate of surfactant leakage
will suffice to trigger superspreading. Specifically, a small surfactant depletion zone
can form to almost remove interfacial surfactant molecules near the contact line. As
a result, a concentrated Marangoni shearing can be established toward the contact
line, exhibiting a Marangoni stress singularity diverging at a rate much faster than
the usual viscous stress singularity (Huh & Scriven 1971). And more importantly,
being devoid of surfactant near the contact line, this strong Marangoni shearing can
turn into a local capillary force to drive the contact line in a surfactant-free manner.
The actual dynamic contact angle depends only on the properties (i.e. affinity and
concentration) of a surfactant spreader, giving a constant spreading speed according
to the de Gennes–Cox–Voinov law and hence the linear spreading law independent
of the extent of spreading. As such, we demonstrate that a rational account for
superspreading can be made in a purely hydrodynamic manner without appealing
to a specific surfactant structure or sorption kinetics. Our results also capture many
features seen in the simulation study by Karapetsas et al. (2011).

It actually turns out that the condition for the occurrence of superspreading is
quite stringent. On the one hand, the contact line movement can advect surfactant
molecules toward the contact line to diminish the surface tension gradient established
by the surfactant leakage. So if the rate of surfactant leakage is too low compared to
the speed of the moving contact line, the spreading will be opposed by Marangoni
retardation. On the other hand, the rate of surfactant leakage cannot be too high either;
otherwise the drop would become virtually clean and its spreading would be governed
by Tanner’s 1/10 law. Even if there is a surfactant concentration gradient, it would no
longer be confined near the contact line but extend over the drop, making Marangoni
shearing less stronger than that in the tiny surfactant leakage case. Therefore, there
must exist a range of the surfactant leakage rate within which superspreading can
occur. We also convert this rate range in terms of surfactant concentration (see (4.19)).
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This might explain the existence of a maximum spreading rate in a range of surfactant
concentration (Hill 1988; Stoebe et al. 1996, 1997; Wang et al. 2013). The estimated
surfactant concentration range is found to cover concentrations much higher than the
CMC, just like the condition for seeing superspreading experimentally observed by
Rafai et al. (2002). This explains why only a certain class of surfactants such as
trisiloxane can serve as superspreaders.

Experiments show that the spreading of surfactant spreaders can be slowed down
to a variety of powers of time (Rafai et al. 2002; Nikolov & Wasan 2015). We
show that a variety of power laws can be attributed to distinct surfactant transport
mechanisms governing at different surfactant concentration levels. In particular, the
1/6 and the 1/2 power laws found respectively by Rafai et al. (2002) and Nikolov
& Wasan (2015) can occur to the analogous thermocapillary spreading processes.
The same 1/6 power law seen in the surfactant spreading experiment by Rafai
et al. (2002) can appear in the thermocapillary spreading experiment by Ehrhard
(1993). These resemblances between surfactant-driven spreading and thermocapillary
spreading reverberate the ubiquitous role of the Marangoni effect in these dynamic
wetting phenomena driven by non-uniform surface tension.
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Appendix A. Voinov’s method for solving Bretherton-like equations
The equations we are tackling can be generalized as of Bretherton type:

HnHzzz = f1(z), (A 1)

where f1 is a given function and the power n > 0. The solution to (A 1) can be
approximately determined using the approach below due to Voniov (1976) and
Snoeijer (2006).

The essence of this method is that H is assumed to vary slowly with respect to
z :H= zΘ with |Θz|� 1. Because Hz=Θ+ zΘz≈Θ , Hzzz≈Θzz. Hence (A 1) becomes

ΘnΘzz = f (z), (A 2)

with f (z)= f1(z)/zn.
The solution to (A 2) can be obtained by integrating (A 2) twice with the slow

variation approximation for Θ . The first step is to take respective integration for the
left- and right-hand sides of (A 2). Integrating the left hand side gives∫ z

1
ΘnΘzz dz=ΘnΘz −

1
n+ 1

∫ z

1
Θn−1Θ2

z dz≈ΘnΘz, (A 3)

where we have used Θz(z→ 1)→ 0 (viz., Hzz(z→ 1)→ 0) and neglected the second
term containing Θz which is assumed small here. Let the result of integrating the right-
hand side of (A 2) be

∫ z
1 fdz≡ F(z). Then (A 2) reduces to

(Θn+1)z = (n+ 1)F(z). (A 4)

So the solution can be readily found by integrating both the left- and right-hand sides
of (A 4).
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A.1. Derivation of the de Gennes–Cox–Voinov law for capillary wetting
The approach described above can be used to solve (3.9) and (4.7) in the presence
of surfactant. Prior to solving these equations, we validate this approach by first
demonstrating its use for solving the Bretherton equation for complete capillary
wetting: h2hxxx =−3Ca or

H2Hzzz =−3, (A 5)

by letting h=Ca1/3LH(z) with z= x/L (Bonn et al. 2009). Using H= zΘ with |Θz|�

1 and Hzzz ≈Θzz (from Hz =Θ + zΘz ≈Θ), equation (A 5) becomes

Θ2Θzz =−3/z2. (A 6)

Note that Θ in this case can be thought of as a rescaled slope in the sense that hx≈

Ca1/3Θ . Following the derivation from (A 2) to (A 4), equation (A 6) can be reduced
to

(Θ3)z = 9/z, (A 7)

which yields the solution

Θ3(z)=Θ3(z1)+ 9 ln(z/z1). (A 8)

Taking z1 = `/L associated with the inner length scale ` and replacing Θ by Θ ≈

Ca−1/3hx, equation (A 8) recovers the well-known de Gennes–Cox–Voinov law for the
dynamic contact angle θ ≈ hx (Voniov 1976; de Gennes 1985; Cox 1986a):

θ 3
= [θ(`)]3 + 9Ca ln(x/`). (A 9)

Having validated the use of Voinov’s method in solving (A 6) for the standard capillary
wetting problem, we next proceed to use it to solve the new equations (3.9) and (4.7)
for modelling superspreading.

A.2. Superspreading with insoluble surfactant
For superspreading with insoluble surfactant, the equation is (A 2) by taking n = 2
and f = Bz−2

[1+ A ln(z)]−1/2 with A= 8js/Θ(� 1) and B= 6γ −1js, as in (3.10). So
an integration of f /B in (A 4) is φ(z) in (3.11):

φ(z)=
∫ z

1
z−2
[1+ A ln(z)]−1/2 dz. (A 10)

Let ρ2
= 1+ A ln(z). Equation (A 10) changes to

φ(z) = (2/A)e1/A
∫ ρ(z)

1
exp(−ρ2/A) dρ

= (π/A)1/2e1/A(erf(ρ(z)/
√

A)− erf(1/
√

A))≈ ln(z). (A 11)

The final result ln(z) comes from a Taylor expansion of the integral at ρ = 1.
Integrating (3.11) from z= 1 to z= z∗ and recognizing that

∫ z∗

1 ln(z) dz≈ 1 for small
z∗, the solution can be readily obtained, as given by (3.13).
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A.3. Superspreading with soluble surfactant
For superspreading with soluble surfactant, we need to solve (4.7) or (A 2) with n= 3
and f = B(ln(z)/z2) × [1 − A(ln(z))2]−1/2 where A = 4jD/Θ

2(� 1) and B = −6γ −1jD.
After integrating f in (A 4), we have to evaluate the following integral which is ψ(z)
in (4.9):

ψ(z)=
∫ z

1
(ln(z)/z2)× [1− A(ln(z))2]−1/2 dz. (A 12)

Let ρ2
=1−A(ln(z))2. Equation (A 12) can be changed to the following integral which

can be evaluated approximately by taking a Taylor expansion at ρ = 1:

ψ(z) = −A−1
∫ (1−A(ln(z))2)1/2

1
exp(−A−1/2(1− ρ2)1/2) dρ

≈ (−A−1)× exp(−A−1/2(1− ρ2)1/2)|ρ=1 × (−A/2)× (1− A(ln(z))2)−1/2
|z=1

× (ln(z))2

≈ (ln(z))2/2. (A 13)

With (A 13), we can obtain the solution (4.11) by integrating (4.9) from z= 1 to z= z∗

with
∫ z∗

1 [ln(z)]
2 dz≈−2 for small z∗.
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