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Conformational transitions of single polymer adsorption in poor solvent:
Wetting transition due to molecular confinement induced line tension
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We report a theory capable of describing conformational transitions for single polymer adsorption in a poor
solvent. We show that an additional molecular confinement effect near the contact line can act exactly like
line tension, playing a critical role in the behavior of an absorbed polymer chain. Using this theory, distinct
conformational states: desorbed globule (DG), surface attached cap (SAC), and adsorbed lens (AL), can be
vividly revealed, resembling the drying-wetting transition of a nanodroplet. But the transitions between these
states can behave rather differently from those in the usual wetting transitions. The DG-SAC transition is discrete,
occurring at the adsorption threshold when the globule size at the desorbed state is equal to the adsorption blob.
The SAC-AL transition is smooth for finite chain lengths, but can change to discontinuous in the infinite chain
limit, characterized by the different end-to-end exponent 3/8 and the unique crossover exponent 1/4. Distinctive
critical exponents near this transition are also determined, indicating that it is an additional universality class of
phase transitions. This work also sheds light on nanodrop spreading, wherein the important role played by line
tension might simply be a manifestation of the local molecular confinement near the contact line.
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I. INTRODUCTION

Polymer adsorption is a phenomenon involving association
or binding of polymer chains onto a substrate, as occurs in
many applications such as coating, surface functionalization,
self-assembly deposition, and thin film preparation. How to
control the behavior of a polymer chain so as to acquire
desired functionalities demands a detailed knowledge of how a
chain changes its conformation due to adsorption. Hence, this
subject is of both fundamental and technological importance
to polymer science and engineering.

The behavior of an absorbed polymer chain strongly
depends on the solvent quality. In good solvents, a chain tends
to extend itself over a surface to gain more contacts with the
surface [1,2]. In poor solvents, however, chain spreading would
be resisted by the chain’s natural tendency to minimize its
contacts with the solvent. So in this case how a polymer chain
behaves would be determined by nontrivial interplays between
chain-surface and intersegmental interactions. In fact, this
problem is so complicated that it is unlikely that a single theory
can be developed to explain the diversity of conformational
behaviors [3–7]. Therefore, not only is the nature of polymer
adsorption in a poor solvent not well understood, but also most
of its aspects are largely unexplored.

In this paper we will focus on how a single polymer chain
is absorbed on an attracting surface under the poor solvent
condition, and develop a theory to describe how the chain
changes its conformation. Such a theory is needed to fill up
the gaps in the existing theoretical and simulation studies and
its development is motivated by the following incentives.

First, on the theoretical side, a classical theory has been
long developed for single polymer adsorption in good or theta
solvents [1,2]. This theory is based on the notion of de Gennes’s
blob, under which chain statistics are not altered by adsorption
provided that adsorption is weak at the monomer level [1,2].
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In poor solvents, however, no theory can satisfactorily account
for the behavior of an absorbed polymer chain. While there
are several theoretical attempts, they are either qualitative or
lack the ability to describe in detail how a chain changes its
conformation [8–12]. There is a need to fill up this gap.

Second, because the interactions between a chain and
the underlying surface are generally complex, studying this
problem often relies on computer simulations [3–7]. But the
limitation of computer simulations is that they can handle only
short chains (of the number of polymerizations N < 103).
So resolution of the behavior for long chains, especially
approaching the thermodynamic limit, could still be far beyond
the current computational capability. In addition, because short
chains are more susceptible to Brownian randomization, most
simulations are carried out in the regime where adsorption and
poor solvent effects are strong so that apparent conformational
changes can be observed. As a result, the physics in the weak
regime, which is expected to differ from that in the strong
regime, is completely left out. Moreover, in practice, when both
adsorption and poor solvents are in the strong regime, phase
separation will be inevitable, so that polymer chains hardly
remain at the single molecule level. For the above reasons,
long chain adsorption in the weak regime appears to be the
only missing piece that has not yet been fully studied.

Third, as a polymer chain in a poor solvent tends to
minimize its contact area to the solvent, this surface-tension-
like effect suggests that an adsorbed polymer chain will
behave like a liquid droplet [8,9,13], similar to the usual
wetting-dewetting seen in critical (continuous) wetting. This
analogy seems to have the advantage of elucidating some
physics [8,9,13]. However, because there is an additional
entropic effect associated with conformational changes of a
polymer chain but this effect does not exist in a droplet, such
an analogy in fact is not exact. A complete analogy can be
made only if such an entropic effect can be incorporated into
the description of how an absorbed polymer chain changes its
conformation. But unlike the good or theta solvent counterpart
where the entropic contribution is well known [1,2], how a
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FIG. 1. Distinct conformational states: DG (desorbed globule),
SAC (surface absorbed cap), and AL (absorbed lens), can exist for
adsorption of a single polymer chain in a poor solvent, depending on
the reduced temperature τ and the adsorption strength δ. The DG-SAC
transition (blue line) is discrete. The SAC-AL transition is continuous.
However, it can become discontinuous in the thermodynamic limit
(N → ∞) as the crossover region (enclosed by dotted pink lines)
shrinks toward the transition boundary (pink line) as the chain size
N → ∞.

chain’s conformational entropy changes in a poor solvent is
still not clear.

Alternatively, the wetting-dewetting of single chain adsorp-
tion in a poor solvent might closely resemble the spreading of a
nanodroplet where an additional line tension is often involved
[14,15]. Therefore, establishing an exact correspondence
between these two seems to hinge on whether an equivalent
line tension can exist in the former. If so, could the line tension
be derived from the entropic effect? This is also a question we
want to answer.

Motivated by the above, in this article we develop a self-
consistent theory capable of describing various conformational
states for single polymer adsorption in a poor solvent (see
Fig. 1). Extending de Gennes’ blob idea [1], this theory is
built specifically for the scenario where both adsorption and
poor solvent effects are weak. In contrast to most simulations
which are done for the strong regime and show a diversity of
features for short chains [3–7], this theory allows us not only
to unveil various conformational states in the weak regime,
but also to demonstrate universality on approaching the long
chain or the thermodynamic limit. And more importantly,
we derive an additional line tension term arising from the
molecular confinement effect near the contact line, which
enables us to establish an exact correspondence with nanodrop
spreading. As will be seen shortly, the transition between
desorbed and partially absorbed states is discrete, whereas
a continuous transition can occur between partially absorbed
and completely absorbed states. The latter is identified as an
additional class of conformational transition, characterized by
the unique crossover exponent 1/4 and the exponent 3/8 for
the end-to-end chain distance. The critical exponents near this
transition are also determined, indicating that it is not only

distinct from the usual critical wetting transitions, but also a
different universality class of phase transition.

II. FREE ENERGY: AN ADDITIONAL
LINE TENSION TERM

Here we describe how the theory is developed. Because we
focus on the weak regime, the solvent quality is taken slightly
below the � point, so in the desorbed state the chain takes the
form of a compact globule of size Rgl ∼ aτ−1/3 − N1/3, where
a is the monomer size, τ ≡ (� − T )/�(> 0) the reduced
temperature measuring the closeness to the � point, and N

the number of polymerizations. If adsorption is sufficiently
strong to deform the chain but not enough to change the
chain statistics (i.e., the density ∼ N/R3

gl ∼ τ/a3 remains
unchanged), whenever the chain deforms, it can always be
thought of as an incompressible droplet made of close-packed
thermal blobs of size ξT ∼ ag1/2 ∼ a/τ with g ∼ τ−2 being
the number of monomers inside a blob [1]. The chain
self-energy is then F0/kBT = N/g ∼ Nτ 2. Here we assume
N−1/2 < τ < 1 to ensure that the chain can still remain
compact at the single molecule level without phase separation.
As the chain essentially behaves like a drop, it takes the form
of a spherical cap under the constant volume constraint:

V = (π/6)H (3R2
‖/4 + H 2) = (π/6)R3

gl, (1)

where the base diameter R‖ and height H can be related to
the apparent contact angle θ through tan(θ/2) = 2H/R‖.

The chain free energy Fchain consists of three parts:
surface tension Fsurf , adsorption Fads, and confinement Fconfine.
Including the segment-solvent contact areas from both the cap
surface area π (R2

‖/4 + H 2) and the base area πR2
‖/4, Fsurf is

found to be

Fsurf/kBT = π (R2
‖/2 + H 2)/

(
πξ 2

T/4
)
. (2)

In the absence of adsorption, Eq. (2) guarantees a perfectly
spherical globule (i.e., R‖ = 0 and H = Rgl) after minimizing
Fsurf under Eq. (1).

Adsorption tends to lower the chain’s free energy. We
also assume this effect is weak with small energy gain for a
monomer absorbed onto the surface, −δkBT (N−1/2 < δ < 1)
[1]. A thermal blob attached to an absorbing surface has
about a fraction f = a/ξT ∼ τ of monomers absorbed onto
the surface. Since the number of blobs on the surface is
m = (R‖/ξT)2, the amount of absorbed monomers is nads =
mfg ∼ mτ−1, giving the adsorption energy −m(δ/τ )kBT ,
namely,

Fads/kBT = −(δ/τ ) (R‖/ξT)2. (3)

However, when the chain spreads due to adsorption, chain
compression tends to raise the chain’s free energy to prevent
chain spreading indefinitely. There are two contributions to
this entropic free energy. One comes from the entropic penalty
for the chain segments in contact with the bottom surface, as
already included in part of Fsurf given by Eq. (2). The other
arises from the effect of confinement by the cap. As shown in
the Appendix, it takes the form of

Fconfine/kBT = πR2
‖/2ξTH. (4a)
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FIG. 2. Apparent contact angle θ as a function of τ and δ for various values of the chain size N (a)–(f). As N is increased, the DG zone
shrinks (a)–(c), whereas the SAC-AL transition is getting sharper (d)–(f). Solid line away from the 180◦ plateau is the SAC-AL transition
point δ = 2τ , with the crossover zone indicated by dashed lines. (g) plots θ vs δ at τ = 0.05, showing that the SAC-AC transition can become
discontinuous at δ = 2τ = 0.1 when N becomes sufficiently large.

In fact, this confinement energy can be recognized as the
work done by line tension on the periphery πR‖:

σ = kBT/[ξT tan(θ/2)]. (4b)

For small θ , σ is reduced to 2kBT/ξTθ , consistent with
the result for a polymer chain confined by a wedge [16].
This line-tension-like energy tends to resist chain spreading
via reducing R‖ as much as possible. So in the situation
where adsorption dominates over poor solvent, Fconfine can
compensate the entropic loss due to chain spreading caused
by adsorption and thereby keep the chain extended on the
surface. On the other hand, if poor solvent dominates, this
energy would help the chain to return to the desorbed globule
state. This transition from the globule state to the absorbed
state resembles the drying-wetting transition of a droplet on
a surface, and is impossible to capture without such a line
tension term as given by Eq. (4).

Adding up Eqs. (2)–(4), the chain’s free energy (in reference
to F0) reads

F

kBT
= πR2

‖
2ξTH

+ 1

ξ 2
T

[−εR2
‖ + 4H 2]. (5)

Here ε � δ/τ − 2 measures the strength of adsorption relative
to a poor solvent and > 0 (< 0) means that adsorption is
stronger (weaker). The equilibrium shape of the chain is
determined by minimization of Eq. (5) under Eq. (1).

III. RESULTS

First of all, we present the phase diagram by looking at
how the contact angle θ varies with δ and τ , as sketched in
Fig. 1. There are three distinct conformational states: desorbed
globule (DG), surface attached cap (SAC), and adsorbed lens
(AL), distinguished by different power laws in N for R‖ and

H , as will be shown later. The DG occurs for small δ or
large τ , while the AL takes place for large δ or small τ . In
between these two states, the chain is partially absorbed and
takes the form of the SAC. But near the critical point ε = 0
where adsorption and poor solvent effects cancel out exactly,
there is an added crossover zone between SAC and AL.

Figure 2 shows how the actual phase boundaries change
with the chain size N . First of all, the DG-SAC transition—
the sharp boundary of the 180◦ plateau— is discrete. This
transition is manifest for short chains with N � 5000. If the
chain is too short, such as N = 50, the AL state (roughly
for θ < 30◦) does not emerge until N = 500. Increasing N

disfavors the DG (because the DG zone shrinks), but favors
the AL (because the AL zone expands). It also favors the SAC
(since both the DG and SAC-AL transition zones shrink). But
when N is increased to 50 000 or higher, the SAC-AL transition
gets sharper. At a sufficiently large N like N = 5 × 109, the
transition becomes discontinuous and is precisely located at
δ = 2τ (i.e., ε = 0), the critical state where adsorption and
poor solvent effects cancel out exactly.

In the large-N limit, Table I(a) lists various scaling
results. In addition to R‖, H , and F , we also look at the
fraction of absorbed monomers, z, the ratio of the number
of monomers absorbed on the surface to the total: z ≡
Nads/N = (R‖/a)2τN−1 with Nads = (R‖/ξT)2g(a/ξT) being
proportional to the number of blobs absorbed on the surface
(R‖/ξT)2. As shown in Table I(a), the results for the ε < 0,
ε = 0, and ε > 0 cases are rather distinct, corresponding
to different conformational states. Below we identify how
characteristics of these different states vary with δ, τ , and
N , and how their transitions take place:

(i) Desorbed globule (DG). This state occurs when ad-
sorption is weak (δ/τ � 1), giving R‖ = 0 and H = Rgl ∼
aτ−1/3 N1/3 just as in the case without adsorption. And yet
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TABLE I. (a) Various scaling results in the large-N limit. (b) Results rescaled by the corresponding power laws in N at the SAC-AL
transition point ε = 0, showing that they all (except for θ > 120◦) can be written as certain powers in |ε|N1/4.

(a) ε < 0 (b) ε < 0

θ > 120◦ θ < 120◦ ε = 0 ε > 0 θ > 120◦ θ < 120◦ ε = 0 ε > 0

R‖
a

τ−1/3|ε|−1/2N 1/3 τ−1/3|ε|−1/6N 1/3 τ−1/4N 3/8 ε1/2N 1/2 R‖/a

N3/8 τ−1/3|ε|−1/2N−1/24 τ−1/3(|ε|N 1/4)−1/6 τ−1/4 (εN 1/4)1/2

H

a
τ−1/3N 1/3 τ−1/3|ε|1/3N 1/3 τ−1/2N 1/4 τ−1ε−1 H/a

N1/4 τ−1/3N 1/12 τ−1/3(|ε|N 1/4)1/3 τ−1/2 τ−1(εN 1/4)−1

z τ 1/3|ε|−1N−1/3 τ 1/3|ε|−1/3N−1/3 τ 1/2N−1/4 τε z

N−1/4 τ 1/3|ε|−1N−1/12 τ 1/3(|ε|N 1/4)−1/3 τ 1/2 τ (εN 1/4)
F

kBT
τ 4/3N 2/3 τ 4/3|ε|2/3N 2/3 τN 1/2 −τ 2ε2N

F/kBT

N1/2 τ 4/3N 1/6 τ 4/3(|ε|N 1/4)2/3 τ −τ 2(εN 1/4)2

a sufficiently long chain could provide more contacts to the
surface and hence still be absorbed onto the surface. An
onset of adsorption occurs when H = Rgl is about the size
of the adsorption blob a/δ [2], giving the adsorption threshold
δcrit ∼ (τ/N )1/3 (blue line in Fig. 1) at which the chain starts
to deform from the DG state.

(ii) Surface attached cap (SAC). When δ > δcrit but is
not sufficient to flatten the chain, i.e., δcrit/τ − 2 < ε < 0,
the chain is partially absorbed on the surface and takes a
caplike shape. In this case, although both R‖ and H have
the same poor solvent scaling N1/3 as does Rgl (because
adsorption is still weak here), they can vary with τ and δ

in two different ways. If δ is slightly greater than δcrit such
that 3R2

‖/4 < H 2 in Eq. (1) or θ > 120◦ [because tan(θ/2) =
2H/R‖], only a small fraction of chain segments are absorbed
on the surface, giving H ∼ Rgl ∼ aτ−1/3N1/3 from Eq. (1).
Together with |ε|R2

‖ ∼ H 2 from Eq. (5), by balancing Fads

and Fsurf , we get R‖ ∼ aτ−1/3 − |ε|−1/2 − N1/3 and hence
z ∼ τ 1/3 − |ε|−1N1/3.

Conversely, if δ is sufficiently large compared to δcrit ∼
(τ/N )1/3 especially for long chains, the chain can get more
expanded, so that 3R2

‖/4 > H 2 in Eq. (1) or θ < 120◦. This re-
quires R2

‖H ∼ R3
gl ∼ a3τ−1 − N from Eq. (1). Using |ε|R2

‖ ∼
H 2 from Eq. (5) again, we obtain R‖ ∼ aτ−1/3|ε|−1/6N1/3

and H ∼ aτ−1/3|ε|−1/3N1/3. z ∼ a/H ∼ τ 1/3|ε|1/3N−1/3 can
then be readily found from the latter.

(iii) Adsorbed lens (AL). When adsorption is strong
(δ/τ 	 1), the chain can be compressed into a “pancake”
with R‖ 	 H . This state is determined by balancing R2

‖/ξTH

with ε R2
‖/ξ

2
T in Eq. (5). Together with R2

‖H ∼ R3
gl ∼ a3τ−1N

from Eq. (1), we obtain R‖ ∼ aε1/2N1/2. This has exactly
the same N1/2 scaling as the ideal chain’s R‖ ∼ aN1/2 under
the athermal condition τ � N−1/2. The chain’s height H ∼
aε−1τ−1 ∼ a/δ is therefore the size of the adsorption blob
with z ∼ δ, exactly as for adsorption of an ideal chain [2].

(iv) SAC-AL transition. This transition occurs near the
critical point δ = 2τ or ε = 0 where adsorption and poor
solvent effects cancel out exactly. With R2

‖H ∼ R3
gl ∼ a3τ−1N

from Eq. (1) (because θ < 120◦ here), the chain conformation
is determined by balancing R2

‖/ξTH with the lateral surface
energy H 2/ξ 2

T in Eq. (5). This yields R‖ ∼ aτ−1/4N3/8 and
H ∼ aτ−1/2N1/4 (and hence z ∼ a/H ∼ τ 1/2N−1/4) com-
pletely different from the results for SAC and AL. Note
that if ε is not zero but small, the transition can still
occur within the so-called crossover zone around ε = 0. This
happens when the surface energy |ε|R‖2/ξ 2

T ∼ |ε|τ 3/2N3/4

is comparable to or less than the chain energy τN1/2 at
ε = 0, i.e., 2τ − cτ−1/2N−1/4 � δ � 2τ + cτ−1/2N−1/4 (with
c = 21/4π ≈ 3.73 when the above energies are evaluatedmore
accurately), as indicated by pink dotted lines in Fig. 1.

Figure 3 plots R‖/aN3/8 against ε, showing that all the
curves with various values of N cross at the very same point
ε = 0. R‖ for ε < 0 and ε > 0 are found to scale as N1/3

and N1/2, respectively (see the insets). These results confirm
the various scalings for R‖. The corresponding scalings for H

and z are also confirmed (not shown). In terms of crossover
scaling near ε = 0, having the results in Table I(a) rescaled by
the corresponding power laws in N at ε = 0, we find that they
all vary as certain powers in |ε|N1/4, as shown in Table I(b)
(the θ > 120◦ case is an exception because it is away from the
critical ε = 0 state). In other words, they can be expressed in a
universal finite-size scaling form Nλ f (εNϕ) with the unique
crossover exponent ϕ = 1/4.

To better understand the nature of the SAC-AL transition
around the critical point δ = 2τ , we make an analogy to
magnetism by taking z as the “surface magnetization” and
δ as the ordering field. Because we focus on large N with
δ being close to the SAC-AL transition point 2τ , this yields
R‖ 	 H . This reduces the fraction of absorbed monomers
to z ≈ a/H , which can be shown to be exactly identical to

N
aR

N
aR

N
aR

N

FIG. 3. R‖(ε = 0) ∝ N3/8, as confirmed by the result that all the
curves with different values of N cross at ε = 0. For ε < 0 and ε > 0,
R‖ scales as N 1/3 and N 1/2, respectively (see the insets). τ = 0.2.
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FIG. 4. (a) Surface susceptibility χ against δ − 2τ (≡ εδ) at τ = 0.1, showing an apparent jump for a sufficiently large N . Inset shows
collapse of the curves on plotting χ against εN1/4. Distinctive critical exponents for the fraction of absorbed monomers z, χ , and the heat
capacity C can be obtained by plotting them against t ≡ (Tw − T )/Tw in the small-t regime. In (b) and (c), τ = 0.4. In (d), δ = 0.4.

the surface magnetization ∂(F/N)/∂δ. We further define the
surface susceptibility as χ ≡ (∂z/∂δ)τ . Figure 4(a) plots χ

against δ − 2τ . It clearly shows that, while the transition is
continuous for a given N , it gets sharper as N is increased.
The width of the transition (i.e., the crossover region) scales
as N−1/4 as all the curves collapse on plotting χ against εN1/4

(see the inset), in accordance with the crossover scaling seen
in Table I(b).

Accordingly, as N → ∞ the crossover zone vanishes and
χ displays an apparent jump at δ = 2τ , so that the transition
becomes discontinuous. This jump is identified as associated
with the divergence as ε → 0− but not with ε → 0+ (which
gives a finite value for χ ). To quantify this divergence, we
define the new reduced temperature as

t ≡ (Tw − T )/Tw = (−τε/2)�/Tw. (6)

Here Tw = (1 − δ/2)� is the critical wetting temperature at
ε = 0, indicating a shift of the � point due to adsorption, as in
Ref. [9]. As t → 0+, we expect z, χ , the “specific heat” C ≡
−[∂2(F/N)/∂2τ ]δ , and the correlation length ξ to diverge as
z ∝ t−β , χ ∝ t−γ , C ∝ t−α , and ξ ∝ t−ν . We use the scalings
for ε < 0 and θ < 120◦ in Table I(a) to determine β, γ , and
α. ν can then be determined by the hyperscaling for critical
wetting 2 − α = (d − 1)ν (with dimension d = 3) [17]. These
critical exponents are found to be

β = 1/3, γ = 4/3, α = 4/3, ν = 1/3. (7)

Figures 4(b)–4(d) show numerical confirmations for the
first three. Notice that, to extract these exponents numerically,
not only must N be sufficiently large but also ε must be
chosen outside the crossover zone: |ε| > cτ−1/2N−1/4. As
these exponents are distinct from those of the usual wetting
transitions, the present SAC-AL transition can be classified as
an additional type of wetting transition.

IV. DISCUSSION

We have demonstrated that an analytical theory can be
developed for single chain adsorption under poor solvent
conditions. This theory is made specifically for the weak
regime in which the solvent quality is slightly below the �

point, N−1/2 < τ < 1, and the adsorption strength is also small
at the monomer level, N−1/2 < δ < 1. Under these conditions,
the chain can be treated as an incompressible droplet so that
an analogy to wetting can be established. But in contrast to

the usual wetting, there is an additional line tension arising
from the molecular confinement effect near the contact line.
As shown in Sec. III, we find three distinct conformational
states: DG, SAC, and AL, corresponding to the scenarios when
adsorption is weaker than, comparable to, and stronger than the
poor solvent effect, respectively. In fact, the DG, SAC, and AL
seem to resemble the “desorbed compact,” “layered,” and “ab-
sorbed extended” states, respectively, seen in simulations [4].

Aside from its ability to describe various conformation
states, this theory can provide much more insight into how one
state changes to another. The DG-SAC transition, i.e., the onset
of chain adsorption, is discrete and occurs when the globule
size Rgl ∼ aτ−1/3N1/3 is about the size of the adsorption
blob D ∼ a/δ. So the resulting adsorption threshold δcrit ∼
(τ/N )1/3 means that the longer a chain is the more easily
it can adsorb onto a surface. The SAC-AL transition occurs
when δ ∼ 2τ , corresponding to the situation where D is about
the size of the thermal blob ξT ∼ a/τ , in agreement with
the qualitative theory given in Ref. [9]. This transition is
continuous for a finite chain size but can become discontinuous
as the thermodynamic limit is approached.

The SAC-AL transition has the following features. First,
the transition is characterized by the end-to-end exponent 3/8
which is different from 1/2 for the coil-globule transition
[18]. Second, the corresponding crossover region also becomes
much broader, varying with N−1/4 in width compared to N−1/2

for the coil-globule transition [18]. The resulting crossover
scalings are also distinct from those for polymer adsorption in
good solvents [19]. Last and more important, we identify that
this transition has rather distinctive critical exponents com-
pared to those obtained by the classical Cahn-Landau theory
for wetting transitions [20]. Therefore, it is different type of
wetting transition. In comparison with existing literature, the
present work not only recovers many results shown in previous
theoretical reports, but also complements simulations.

On the theoretical side, Grosberg seems to the first to
draw a phase diagram and sketch a theory to qualitatively
describe the features of globular polymer adsorption [8].
Our theory essentially resolves the low-temperature (i.e.,
weak poor solvent) and weak adsorption corner in his phase
diagram. Other studies employed Flory-Huggins-type theories
to describe the “phase-separated” situation where the dilute
polymer phase is in equilibrium with the more concentrated
phase [9–11]. Johner and Joanny used a self-consistent field
theory to describe the behavior of single-chain adsorption in a
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poor solvent [9]. They showed that the chain behavior critically
depends on the adsorption-to-thermal blob size ratio D/ξT .
This leads to two regimes: partial wetting (D/ξT > 1) and
complete wetting (D/ξT < 1), corresponding to the DG and
AL states, respectively, shown by the present work. These two
regimes cross over at D/ξT ∼ 1, which also corresponds to the
SAC-AL transition reported here. Dolinnyi provided a more
detailed analysis for the transition between these two regimes
[10]. Although his theory was also constructed for the two-
phase situation, he showed that on approaching the transition
point the spreading coefficient is proportional to N−1/4, which
is exactly the same factor found by the present theory for
the SAC-AL transition. Note that the same N−1/4 factor also
appears in the critical interfacial tension for polymer demixing
[21,22]. As the present theory is built specifically for a single
chain, it is somewhat surprising that it still yields the identical
dependence on N as obtained by the mean-field approach.
But in terms of critical exponents, ν = 1/3 [based on 2 − α =
(d − 1)ν or 2/9 if 2 − α = dν is used] found here is different
from ν = 1/4 obtained from the mean-field theory [21]. This
distinction is attributed to the inclusion of the additional
confinement energy term [see Eq. (4)] in the present analysis.

As many previously reported aspects can be captured by the
present theory, this proves that our theory does enable us to cap-
ture the correct physics. As the theory can further describe how
a polymer chain changes its conformation, it can fill up the gaps
in these previous theoretical studies that lack such a capability.

In addition, the present work also complements simulations.
Because we focus on the weak regime which is close to
the tricritical point where all the DG, SAC, and AL states
emerge, it is not always possible to resolve phase boundaries
using simulations for this regime. For the DG-SAC transition,
because the phase boundary is located at δcrit ∼ (τ/N )1/3, a
short chain will start to deform at a higher value of δ than
a long chain. Also, because this transition marks an onset of
chain adsorption, this is why we see the apparent DG “plateau”
for short chains in a sizable range of δ [see Figs. 2(a) and 2(b)].
This also explains why this transition can be easily captured
by simulations [4] for short chains with N < 103. In fact, this
transition seems to correspond to the transition from the “des-
orbed compact” to the “layered” state seen in simulations [4].

On the other hand, the SAC-AL transition could be difficult
to observe for short chains because the width of the crossover
region scales as N−1/4 that is much broader than the N−1/2

scaling normally seen [18]. It has been shown by simulations
[4] that, even in the regime where adsorption is moderately
strong, the actual conformational state cannot be clearly
identified, which could be reminiscent of this transition. To
resolve the chain behavior near this transition, it is necessary
to employ long chains. However, running simulations for long
chains with N > 103 or higher could be quite time consuming.
So our theory is able to describe this transition by going beyond
the computer limitations. Also, given the much broader N−1/4

crossover region predicted by the present theory, to see a sharp
SAC-AL transition the chain size N must be 104 or higher,
which provides a useful estimate for future investigations on
this transition using computer simulations.

It is worth mentioning that most simulations were carried
out for the strong regime where either the solvent quality is
very poor or/and the adsorption strength is not small at the

monomer level [3–7]. In this regime, a chain could undergo
a structural change at the intersegment level to exhibit a
variety of conformational states [3–7]. In particular, because
of the strong compaction effect, an absorbed chain could
even experience monomer packing and a freezing transition
[3,5]. In contrast to these simulation studies, the present
study focuses on the weak regime without structural changes
at the intersegment level. Hence, such internal molecular
effects do not occur. Nevertheless, the present theory provides
an important piece of the picture needed for the complete
phase diagram, which is difficult to obtain using computer
simulations, as discussed earlier. And more importantly, as
already demonstrated, a universality can exist in the weak
regime, whereas it is unlikely to exist in the strong regime.
This universality might also provide renewed insights into
critical phenomena in the presence of surfaces [23].

We emphasize that all the results reported here cannot be
obtained without the added confinement energy term Eq. (4a).
We show that this term actually acts like line tension Eq. (4b).
This line tension is in effect a positive one, which tends to
increase the contact angle to resist the chain spreading due to
adsorption—it is this term that makes an equilibrium state pos-
sible when adsorption is stronger than the poor solvent effect.

Such a line tension σ has a magnitude of ∼ kBT/ξT ∼
kBT τ/a, consistent with Ref. [9]. While σ is determined by the
solvent quality through τ , because we assume N−1/2 < τ < 1,
its magnitude is limited by the chain size N . A chain having
a ∼ 0.2 nm at T = 300 K for N = 102 has σ ∼ 10−12 J/m.
A much longer chain such as N = 104, under which a much
sharper SAC-AL transition can occur, can allow a much higher
line tension σ ∼ 10−10 J/m. These values are within the typical
line tension range σ = 10−12 − 10−10 J/m reported previously
[24–26]. But in contrast to these previous reports, this work
demonstrates that the origin of the line tension can stem from
the molecular confinement effect near the contact line.

From a broader perspective, the present problem is also
closely relevant to nanodrop spreading in that the important
role played by line tension might simply be a manifestation of
the local molecular confinement near the contact line. It has
been shown that line tension can affect the wetting behavior
of a small droplet [14,15] and that the wetting transition with
line tension differs from that without [17]. If a droplet has a
(positive) line tension that behaves like the one reported here
[see Eq. (4b)], its wetting behavior will also be distinct from
that of the constant line tension case [14]. Since a similar line
tension effect might likely occur in spreading of a polymeric
liquid; perhaps one can use a polymeric nanodroplet to test if
its wetting behavior resembles that of the absorbed polymer
chain that we find here.

In terms of experiments, we have not seen any single
molecule experiments that can be compared to or used to
test our theory. Perhaps the reason is that it is difficult to
keep a polymer solution sufficiently dilute without phase
separation under the poor solvent condition. This is also the
reason why most of the existing theoretical studies consider
the “phase-separated” situation [9–11]. Nevertheless, when
a phase separation occurs, the polymer concentration in the
dilute phase could be so low that chains therein could behave
like single molecules. If the dilute phase can exist alone by
completely segregating itself from the coexisting concentrated
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phase, it will be possible to test our theory experimentally by
inserting a suitable substrate into the dilute phase.

As this work has demonstrated an exact correspondence
between single chain adsorption and wetting, it provides the
advantage of understanding a polymer adsorption problem by
studying the analogous wetting problem. Likewise, because
this correspondence is established with the line tension term,
how a chain changes its conformation due to adsorption might
provide a renewed understanding of how line tension works
at the molecular scale. This might offer an alternative to
resolve the longstanding debate about the origin of line tension.
Although the critical exponents and finite size scaling reported
here currently cannot be tested by experiments and simula-
tions, they do display interesting features that could be the sub-
ject of a more general and thorough investigation in the future.
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APPENDIX: DERIVATION OF THE LINE TENSION TERM

Consider a small ring-shaped control volume of height
h(x) and radius x, containing the number of monomers
dn = ρT2πxhdx. With the confinement energy per monomer
kBT a2/h2, the confinement energy for this control volume is
a2dn/h2 = 2πρTa2xh−1dx = 2π (x/ξT)h−1dx. Integrating
the above from x = 0 to x = R‖/2 and making use of
r = R‖/2 sin φ, H = r(1 − cos φ), x = r sin φ, and h =
r(cos φ − 1) + H , we get Fconfine/kBT = (πR‖/ξT)f (θ ) with

f (θ ) = (sin θ )−1
∫ θ−

0 (sin φ cos φ)(cos φ−cos θ )−1dφ ≈ (1 +
B cos θ )/ sin θ , where B = ln(1/ε) − 1 with ε =
(cos θ− − cos θ )/(1 − cos θ ). In the above integral, a
singularity (in B) can exist at the “wedge point” φ = θ

where chain segments are subject to infinite entropic penalty,
which is physically inadmissible. The singularity can be
relieved by a microscopic cutoff in the size of the thermal
blob, ξT. This causes θ− to be slightly smaller than the
apparent angle θ . Here we take B = 1 to ensure that
Fconfine vanishes as θ approaches 180◦ at the desorbed state.
f (θ ) is then reduced to cot(θ/2) = R‖/2H , and hence
Eq. (4).
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