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Superdiffusion in dispersions of active colloids driven by an external field
and their sedimentation equilibrium
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The diffusive behaviors of active colloids with run-and-tumble movement are explored by dissipative particle
dynamics simulations for self-propelled particles (force dipole) and external field-driven particles (point force).
The self-diffusion of tracers (solvent) is investigated as well. The influences of the active force, run time, and
concentration associated with active particles are studied. For the system of self-propelled particles, the normal
diffusion is observed for both active particles and tracers. The diffusivity of the former is significantly greater
than that of the latter. For the system of field-driven particles, the superdiffusion is seen for both active particles
and tracers. In contrast, it is found that the anomalous diffusion exponent of the former is slightly less than that
of the latter. The anomalous diffusion is caused by the many-body, long-range hydrodynamic interactions. In
spite of the superdiffusion, the sedimentation equilibrium of field-driven particles can be acquired and the density
profile is still exponentially decayed. The sedimentation length of field-driven particles is always greater than
that of self-propelled particles.
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I. INTRODUCTION

Microswimmers, such as omnipresent microbes in nature,
can propel themselves to display active motion, and they
adopt a wide range of swimming mechanisms. For example,
E. coli bacteria whirl their flagella but ciliates beat their cilia
for locomotion. Even though various differences exist among
these mechanisms, all microswimmers live in the world of
low Reynolds numbers [1] so that general features associated
with their hydrodynamic behaviors are anticipated to be found.
Brownian motion is usually neglected for microswimmers.
However, it influences the behavior of nanoswimmers signifi-
cantly [2,3]. Different from passive Brownian colloids which
are at thermal equilibrium with their environment and move
randomly, nanoswimmers viewed as active Brownian colloids
are able to take up energy and convert it into directed motion.
This process drives active colloids out of equilibrium. The
nanopropulsion system has been a branch of nanotechnology
and therefore it promises a variety of applications such as
targeted delivery of cargo [4–7]. In addition, it is used to
explore some core concerns of nonequilibrium statistical
physics and has been investigated by theory [8–17], experiment
[1–3,18–23], and simulation [24–41].

The run-and-tumble model is widely employed to describe
the motions of active colloids. That is, active colloids would
generally follow a series of approximately linear motions
(“run”), which are intervened by sudden changes in their
swimming direction (“tumble”). In general, the straight runs
are characterized by a constant speed va and the tumbles come
about randomly with a mean duration τ [8,9]. Dependent
on the propulsion mechanism, two kinds of active colloids
are considered in this study, self-propelled and field-driven
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motion. For a self-propelled particle, the driving force exerted
by the active colloid itself on the fluid is internally generated in
the system through the flagella of bacteria [42,43] or chemical
reactions catalyzed by Janus colloids [2,3,19]. The flow field
generated around a self-propelled particle is similar to that by
a force dipole. For a field-driven particle, the driving force
is provided by the external field such as an optical trap [44]
or a magnetic field [45–48]. Recently, it is reported that the
turbulent state of the Janus particles, which consist of two
hemispheres with different dielectric constants, can be driven
by an ac electric field. Due to rotational Brownian motion and
hydrodynamic interactions of the particles, their trajectories
are not straight but random [49]. This experimental result
reveals the run-and-tumble behavior of field-driven particles.
However, different from self-propelled particles, the flow fluid
created around a field-driven particle is similar to that by a
force.

For the run-and-tumble organisms, their behaviors at large
length and time scales are diffusive and can be depicted
by Fick’s law, where the diffusivity follows D = v2

aτ/d and
d is the dimensionality [8,28]. The active motion of those
microswimmers is not influenced by passive Brownian motion.
As the diffusive trajectories of nanoswimmers are considered,
however, the purely Brownian diffusivity (D0) plays an
important role in the effective diffusivity (D) driven partly
by active motion. According to the experiment of artificial
nanoswimmers, i.e., Janus active spheres in an H2O2 solution,
the effective diffusivity obeys the relation (D − D0) ∼ v2

aτr

based on the mean-squared displacement (MSD) analysis
[2,19]. Here τr is the rotational diffusion time associated
with the self-propelled colloid [10,27]. In addition to active
colloids themselves, the motion of tracers (passive colloids
or solvent) in a dispersion of active colloids has been studied
as well. A hydrodynamic diffusion theory based on a Fickian
constitutive law is employed to describe the diffusive behavior
of a Brownian tracer particle in a dispersion of run-and-tumble
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bacteria. When the Peclet number (Pe) is small, the hydrody-
namic diffusivity of a tracer is proportional to v2

a(τ/D0)1/2n,
where n is the number density of active colloids. In contrast, for
large enough Pe and τ , the hydrodynamic diffusivity becomes
independent of τ and is proportional to van [50].

An anomalous diffusive behavior is observed for the
Brownian particle in a complex fluid or a biological system.
Numerous examples include cytoskeleton dynamics [51],
amoeboid locomotion [52], and cell migration [53]. The
normal diffusive behavior is characterized by the linear growth
of the mean-squared displacement (MSD) with time. However,
for anomalous diffusion, the MSD 〈�r2(t)〉, in the three-
dimensional case, deviates from the linear relationship and
adopts the asymptotic form,

〈�r2(t)〉 = 6Dαtα, (1)

where Dα and α represent the generalized diffusion coefficient
and the anomalous diffusion exponent, respectively. While
the normal diffusion corresponds to α = 1, the process is
called the superdiffusion as α > 1. A superdiffusive behavior
is often observed in nonequilibrium systems driven by external
active mechanisms [54–56]. Recently, it is reported that the
superdiffusion of a particle immersed in a thermal reservoir
is induced by a long-correlated external random force. That
is, the particle disperses faster than the normal diffusion.
Moreover, as the stochastic force is more correlated, the
superdiffusive system approaches the ballistic limit (α → 2)
[57]. In this work, the diffusive behaviors of the two types of
active colloids driven by different propulsion mechanisms are
explored by dissipative particle dynamics (DPD) simulations.
The superdiffusive behavior is observed for run-and-tumble,
field-driven particles because the hydrodynamic interactions
among them are strong.

It is well known that the dispersion of passive colloids under
gravity exhibits sedimentation equilibrium. The sedimentation
of colloids is balanced by the Brownian diffusion which
influences the sedimentation length (δ) in the barometric law.
That is, the density of colloids at height z is depicted by
C(z)/C0 = e−z/δ . Because of the local fluid flow generated by
active colloids and their diffusive behavior, it is anticipated that
the sedimentation lengths of active colloids are different from
those of passive colloids. Recently, nonequilibrium stationary
states of active colloids have been studied both theoretically
[8,9,12] and experimentally [3,19]. Evidently, those active
particles behave as self-propelled particles. The experiment
associated with field-driven particles is somewhat difficult
to perform but the different behavior between self-propelled
and field-driven particles should be clarified. In this study,
the influences of those two types of active colloids on the
sedimentation equilibrium are investigated by DPD as well.

II. MODEL AND SIMULATION METHOD

DPD, a particle-based mesoscopic simulation technique
[58–60], can simulate the rheological and dynamic properties
of fluids. Every DPD bead represents a cluster of atoms or
molecules moving together, and their motions obey Newton’s
second law. The solvent particle (S) is represented by a DPD
bead and the number density (ρ) is 3 generally. For simplicity,

an active particle (A) is also expressed by a single DPD
bead in this work. The pairwise interactions between DPD
beads contain the conservative force, dissipative force, and
random force. These forces are purely soft-repulsive and apply
to all beads within a cutoff radius (rc = 1) beyond which
the forces vanish. The detailed expression of those forces
has been described elsewhere [39,61]. The conservative force
between species i and j is characterized by the interaction
parameter (aij ), which is chosen as 25 for the same species
(aSS = aAA = 25). To avoid effects other than hydrodynamics,
aAS = 25 is simply set for the interaction between active
particles and solvent. The dissipative force between the fluid
bead and the solid wall bead is six times greater than that
between the fluid beads [62].

Two propulsion mechanisms of run-and-tumble active
colloids are considered: force dipole and point force. The
active force (Fa) is always imposed on an active colloid,
and this force would change its direction randomly after
a fixed period of time (τ ). Note that the directions of all
active forces are independent and they change their orientation
asynchronously. For the case driven by force dipole, the
particle is self-propelled in such a way that one solvent bead
behind this particle is acted upon by an opposite force (−Fa).
However, as the active force is originated from an external
field, a point force exerts on the field-driven particle only and
the reaction force does not exist, as illustrated in Fig. 1. More
details have been disclosed elsewhere [38,41].

To examine the diffusive behaviors for both active colloids
and solvent tracers, DPD simulations are implemented in a

FIG. 1. Schematic diagram of the simulation systems: For the
dispersion of self-propelled colloids, active colloids (yellow beads)
and solvents (gray beads) are acted upon by Fa and −Fa , respectively.
For the dispersion of field-driven colloids, only active colloids are
acted upon by Fa . After each τ , the active force would change the
direction randomly.
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box (30 × 30 × 30) under periodic boundary conditions. For
the sedimentation simulation, the upper and lower walls are
constructed along the direction of the gravitational gradient (z
axis) and the box size is 20 × 20 × 150. The DPD time step is
�t = 0.04 to avoid the divergence of simulation and the total
DPD steps are at least 106. The length, force, and time are
scaled by the cutoff radius rc and kBT /rc, and (mr2

c /kBT )1/2,
respectively. Here kBT denotes the thermal energy and m is
the mass of a DPD bead. For a bead with rc about 1–10 nm
at room temperature, the magnitude of the active force on
nanoswimmers is about O(1) pN.

III. RESULTS AND DISCUSSION

A. Effective diffusivity of fluid particles enhanced
by self-propelled colloids

For both solvent bead and self-propelled colloid (driven
by force dipole), their diffusivities can be obtained from either
mean-squared displacement (MSD) or velocity autocorrelation
function (VACF). The relationship between the diffusivity and
MSD or VACF are given by

〈�r2(t)〉 = 6Dt, (2)

D = 1

3
lim
t→∞

∫ t

0
〈v(τ ) · v(0)〉dτ, (3)

where 〈v(t) · v(0)〉 represents VACF of the target particle’s
velocity. Note that the above expressions are valid only as
t � τ . As the diffusivity of a self-propelled colloid has
been previously studied and well understood [38], here we
restrict our attention to the behavior of solvent particles.
Our simulations reveal that the solvent particles are purely
diffusive. We also confirm that the diffusivities evaluated
from the two approaches agree with each other. Figure 2

FIG. 2. The variation of the diffusivity of solvents (tracers) in the
dispersion of active self-propelled colloids with F 2

a at τ = 16 and
φp = 0.05. The variation of the solvent diffusivity with τ is in the
inset.

shows that the solvent diffusivity (Ds) grows quadratically
with active force Fa at given run time τ and concentration
of active particles (φp = 0.05). In other words, with respect
to the intrinsic diffusivity of solvent particle D0, the solvent
diffusivity is increased according to (Ds − D0) ∝ F 2

a , just like
the active particle diffusivity. However, at a given Fa , Ds grows
with τ at smaller τ until reaching a plateau at larger τ (see the
inset), which is distinct from the diffusivity of active particle
Dp that is proportional to τ [38]. The reason for the increase in
Ds in the small τ regime is that the solvent particles around an
active particle undergo frequent random kicking by the latter.
Obviously, these solvent particles cannot move faster than the
active particle since each of these particles merely receives
part of the energy from the latter. But if τ is too large, these
solvent particles will be less correlated except for those in the
direction of Fa . Just like the case where a single particle is
moving steadily in a bath of solvent particles, Ds cannot be
increased indefinitely. Thus, for a sufficiently large τ , Ds has
to stop growing with τ unless one increases Fa to have more
solvent particles influenced by kicking from an active particle.
This explains why the larger Fa is, the longer the τ needed for
reaching the plateau. Because both (Ds − D0) and (Dp − D0)
scale as F 2

a with the former being saturated at large τ and the
latter admitting a linear growth with τ [38], we conclude that
Ds is always smaller than Dp; i.e., Ds(Fa,τ ) < Dp(Fa,τ ).

The above results are made specifically for a sufficiently
dilute suspension of active particles in which the active
diffusivity depends mainly on active force Fa and run time
τ . However, as the concentration of active particles φp

is increased, the diffusivities of both active colloids and
solvent particles are anticipated to be altered by substantial
hydrodynamic interactions between active colloids. As shown
in Fig. 3, the increment of Ds not only scales as v2

a , but
also grows linearly with φp. This increment is basically
attributed to the fluid motion generated by active colloids
as well as their collective hydrodynamic interactions. Since
(Ds − D0) scales as v2

a for large enough τ (see Fig. 2),

FIG. 3. The variations of (Ds − D0)/v2
a and (Dp − D0)/v2

aτ

(inset) with φp .

042611-3



CHEN, WEI, SHENG, AND TSAO PHYSICAL REVIEW E 93, 042611 (2016)

its dependence on φp is universal, independent of Fa . The
slope of the linear line (Ds − D0)/v2

a vs φp for τ = 16 is
0.73 and that for τ = 2 is 0.45, giving Ds = D0 + 0.73φpv2

a

and Ds = D0 + 0.45φpv2
a , respectively. In contrast, for the

active particle diffusivity, plotting (Dp − D0)/v2
aτ against φp

collapses all the data points with various values of Fa and
τ into a single straight line with the unique slope 0.092, as
shown in the inset. Thus the active particle diffusivity can be
expressed as Dp = D0 + (0.164 + 0.092φp)v2

aτ , which also
agrees with the result in the dilute limit (φp = 0) [38]. Unlike
the diffusivity of self-propelled particles rising linearly with
τ , the solvent diffusivity Ds does not grow linearly (see the
inset of Fig. 2). As a result, the curves of the solvent diffusivity
cannot collapse on a single line for a different run time.

B. Superdiffusion of field-driven colloids and fluid particles

If the motion of the active colloid is driven by an external
field which changes the direction randomly after a time period
of τ , the fluid flow around this active colloid is similar to that
associated with a point force at low Reynolds number. The
MSD and VACF of such field-driven colloids are evaluated
and the trajectories of fluid particles (tracers) are monitored
as well. At fixed Fa and τ the typical behaviors of MSD with
various values of φp for both active colloids and fluid particles
are shown in Figs. 4(a) and 4(b), respectively. Clearly, the
results do not obey normal diffusion that displays a linear
growth 〈�r2(t)〉 with respect to t . As seen from the log-log
plot in the inset, the linear line with a slope α > 1 is shown,
indicating that 〈�r2(t)〉 grows like tα . One might expect that
the system goes back to normal diffusion at sufficiently long
times. As illustrated in Fig. 4(c), the MSD of field-driven
particles remains to evolve like tα for a much longer time,
although the linear behavior of MSD of self-propelled particles
is readily seen at a very short time. Hence, the diffusive motion
in this case is faster than normal diffusion.

In fact, both field-driven particles and tracers exhibit
superdiffusive behavior with α > 1. The abnormal diffusive
behavior can be clearly demonstrated by VACF, as shown in
Fig. 5(a). Compared to self-propelled particles [38], a very long
tail in VACF of field-driven particles is observed. As a result,
the integral of VACF in Eq. (3) grows with the upper limit
of integration. Therefore, it is divergent as t → ∞. Note that
the velocity distributions for active colloids are deviated from
the Maxwell-Boltzmann distribution because of Fa and are
essentially similar to those reported in Ref. [38]. In addition to
the direct analysis of MSD, the anomalous diffusion exponent
(α) can also be determined from the analysis of VACF by [63]

〈�r2(t)〉 = 2t

∫ t

0

(
1 − τ

t

)
〈v(τ ) · v(0)〉dτ = 6Dαtα. (4)

In the inset of Fig. 5(b), the exponents obtained from both
MSD and VACF are compared to each other. The agreement
between both approaches is clearly shown, verifying the
superdiffusive behavior for field-driven particles and tracers.

Such superdiffusive behavior is essentially a result of
strong hydrodynamic interactions between point force active
particles, as the anomalous diffusion exponent (α) is found
to be an increasing function of the concentration of active

(a)

(b)

(c)

FIG. 4. (a) The variation of mean-squared displacement with
t at Fa = 2 and τ = 16 for field-driven colloids. The log-log
representation is shown in the inset to demonstrate the power law
behavior. (b) The variation of mean-squared displacement with t at
Fa = 2 and τ = 16 for solvent (tracers). The log-log representation
is shown in the inset to demonstrate the power law behavior. (c)
The variation of mean-squared displacement with t at φp = 0.03,
Fa = 2.5, and τ = 16 for self-propelled colloids and field-driven
colloids for t = 0 − 400. The slope in the inset represents the
anomalous diffusion exponent α: 1 (normal diffusion) and 1.75
(superdiffusion).
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(a)

(b)

FIG. 5. (a) The velocity autocorrelation function of field-driven
colloids Fa = 2 and τ = 16 for different φp . (b) The variation of the
anomalous exponent (α) with φp at Fa = 2 and τ = 16 for the field-
driven particles and solvents. The inset demonstrates the consistency
between the results acquired from MSD and VACF.

particles (φp). As shown in Fig. 5(b), α grows rapidly with
φp in the small φp regime. But when φp exceeds 0.3, α

approaches the ballistic limit (α → 2). Such a nontrivial
increase of α with respect to φp seems to be a reminiscent of the
divergence of the velocity variance when coming to evaluate
VACF by accounting for pairwise hydrodynamic interactions
between point force particles. (In contrast, for a suspension
of self-propelled particles its velocity variance—because of
the very rapid decay for point dipole interactions—is finite,
rendering the effective particle diffusivity to be constant.) As
will be shown later in Figs. 6 and 7, α also varies with Fa

(or va) and τ . In the small φp regime, α would vary as a
function of vaτ/� characterized by a certain length scale �.
Because � has to depend on φp, the only possible choice

FIG. 6. The variation of the anomalous exponent (α) with Fa at
φp = 0.03 and τ = 16. The variation of α with τ at φp = 0.03 and
Fa = 2 is shown in the inset.

for � is the mean particle separation rcφ
1/3
p , making α vary

with vaτφ
1/3
p /rc. Because Fig. 6 shows that α ∝ vn

a with
n < 1, the above form suggests α ∝ φm

p with the exponent
m = n/3 not greater than 1/3, which explains the growing
behavior of α in the small φp regime seen in Fig. 5(b). Such
a particle-concentration-dependent diffusion exponent is quite
unusual because it implies that the time correlation between
any two consecutive movements for a test particle would
actually depend on how the particle is correlated spatially
to the surrounding particles. The latter is determined by
hydrodynamic interactions. For point force active particles
their hydrodynamic interactions would be so strong that a
collective hydrodynamic force (through the spatial correlation)
can be produced to alter the diffusive nature of each individual
particle (through the time correlation).

When these active point force particles become very
crowded, however, hydrodynamic interactions around a test
particle would be limited to its nearby particles. While the
particle movements might be slowed down by hydrodynamic
interactions, these particles would undergo frequent collisions
between each other. Because the collision time τcollide in this
case is much shorter than the run time τ , the particles are only
correlated for time scale within τcollide. The resulting VACF
will look like a series of spikes separated by a constant time
interval τ . Therefore, its time integration, which gives the
diffusivity [see Eq. (2)], will be proportional to the number of
collisions and hence time t . This explains why the particles
can exhibit the ballistic behavior with α = 2 when this special
type of active suspension becomes sufficiently dense.

It is also interesting to observe that the anomalous diffusion
exponent of solvent particles (αs) is found to be always
slightly larger than that of active particles (αp) at specified
Fa and τ ; i.e., αs(φp) > αp(φp). Hence for long times Ds will
eventually outweigh Dp, which is different from Ds < Dp for
self-propelled particles. Hence, self-propelled and field-driven
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particles have rather distinct diffusive behaviors. The dis-
tinction between these two different propulsion mechanisms
manifests mostly in the way in which the diffusivity varies
with the particle concentration. For self-propelled particles the
diffusivity can grow linearly with the particle concentration,
whereas for field-driven particles the anomalous diffusion
exponent can rise more rapidly with the particle concentration
in the dilute limit. Our results for superdiffusion may be
relevant to intracellular transport of pigment organelles driven
by myosin-V motors [56].

Aside from the concentration of active particles (φp), both
the anomalous exponent (α) and generalized diffusion coeffi-
cient (Dα) can vary with Fa and τ as well. Figure 6 shows how
α varies with Fa and τ at fixed φp = 0.03. As Fa is increased,
both αs and αp are increased because of strong hydrodynamic
interactions. As τ is increased, both αs and αp rise first and
then approach plateaus. In general, the anomalous exponent of
the solvent is slightly greater than that of field-driven particles,
αs > αp. This result associated with Fa or τ is consistent with
that associated with φp. Figure 7 plots the variation of Dα with
Fa and τ at φp = 0.03. There exist minima for the generalized
diffusion coefficients of field-driven particle (Dα,p) and solvent
(Dα,s). Both Dα,p and Dα,s grow rapidly at large values of Fa

but approach plateaus at large values of τ . Generally, one
has Dα,s < Dα,p. Note that Dα approaches D0 as Fa → 0.
The above results reveal that the superdiffusion of field-driven
particles is mainly controlled by φp and Fa . For large enough τ ,
its saturation effect on Dα remains essentially the same as that
in self-propelled particles. But unlike self-propelled particles,
the diffusivity of the solvent (tracer) can be as strong as that
of the active particle in a suspension of field-driven particles.
The difference is mainly attributed to distinct hydrodynamic
natures between self-propelled and field-driven particles: In
the former hydrodynamic interactions between force dipoles

FIG. 7. The variation of the generalized diffusion coefficient (Dα)
with Fa at φp = 0.03 and τ = 16. The variation of Dα with τ at
φp = 0.03 and Fa = 2 is shown in the inset.

are weak, whereas those between point forces are strong in the
latter.

C. Sedimentation equilibrium of field-driven colloids

It is well known that the sedimentation equilibrium of
passive colloids subject to a constant force Fe along the z

direction such as gravity can be depicted by the stationary
solution of a drift-diffusion equation with the particle flux J =
−Ddc/dz + vec, where ve represents the terminal velocity
associated with Fe. When the system reaches a steady state, the
balance between upward diffusion and downward migration
gives an exponential decay of the density profile C(z) with a
sedimentation length δ = D/ve. Recently, the sedimentation
equilibrium of self-propelled colloids is also found to exhibit
an exponential distribution with the sedimentation length that
can also be determined from their effective diffusivity (Dp)
[38]:

δ = Dp(Fa,τ )

ve(Fe)
. (5)

It is found that the effective diffusivity determined from
MSD is consistent with that determined from δ in the
sedimentation equilibrium, which varies with the active force
and run time [38]. However, for active colloids driven by point
forces, it is unclear how their sedimentation equilibrium is
established because these particles are superdiffusive. Specif-
ically, because the particle diffusivity here is not constant but
growing with time, a stationary Boltzmann distribution cannot
be obtained by simply setting the net particle flux to be zero
in the drift-diffusion equation. Hence, Eq. (5) cannot be used
to predict δ.

FIG. 8. The variation of the sedimentation length (δ) with Fa at
φp = 0.03 and τ = 16 for self-propelled and field-driven colloids.
The dimensionless density profile for different Fa is shown in the
inset.
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FIG. 9. The variation of the sedimentation length (δ) with τ at
φp = 0.03 and Fa = 2 for self-propelled and field-driven colloids.
The dimensionless density profile for different τ is shown in the
inset.

The DPD simulations of the sedimentation equilibrium for
field-driven particles is performed subject to the downward
force Fe = 0.02 at a fixed concentration of active particles
(φp = 0.03). For comparison, the simulation of the sedimen-
tation equilibrium for self-propelled particles is carried out.
The density profiles are obtained at various values of Fa and
τ , as shown in the insets of Figs. 8 and 9. It is surprising
to find that the density profiles for field-driven particles still
obey the barometric law (exponential decay), similar to those
for self-propelled particles. The sedimentation equilibrium is
simply the consequence of the balance between downward
flux by gravity and upward flux by random motion of active
particles. Although active particles showing superdiffusion
possess long-term memory in their velocities, they still have
to obey the aforementioned balance and the particle density
decreases with height. However, the density variation for
field-driven particles extends over a greater length than that
for self-propelled particles at the same Fa and τ . This is
expected because field-driven particles are more diffusive than
self-propelled particles.

By evaluating the sedimentation length δ for field-driven
particles from the plot of lnC(z) against z, Figure 8 shows
how δ varies with the active force Fa at τ = 16. It is found that
δ grows linearly with F 2

a , similar to that of self-propelled parti-
cles. Nonetheless, δ of field-driven particles is always greater
than that of self-propelled particles at a given Fa . Figure 9
plots the variation of the sedimentation length with the run
time τ at Fa = 2. Evidently, similar to self-propelled particles,
δ of field-driven particles increases linearly with τ . Again, δ

of the latter is always greater than that of the former at a
given τ .

For self-propelled particles, δ is proportional to F 2
a τ

because their effective diffusivity is Dp ∝ F 2
a τ according

to Eq. (5). Note that the diffusivity of the self-propelled

particle can be acquired from MSD, VACF, or δ [38]. All
three approaches yield consistent results. For field-driven
particles, however, their diffusive behavior is not normal
but superdiffusive. Although the diffusive behaviors depicted
by MSD and VACF are consistent, they are different from
the approach of the sedimentation equilibrium. According to
Eq. (5), it seems that the apparent diffusivity of field-driven
particles can be defined from the sedimentation equilibrium
and it is proportional to F 2

a τ as well. On the basis of the
approach of δ, the apparent diffusivity of field-driven particles
is always greater than that of self-propelled particles under
the same values of Fa and τ owing to strong hydrodynamic
interactions. Our analysis indicates that experiments like
sedimentation equilibrium fail to distinguish particles with
superdiffusion from those with normal diffusion but MSD and
VACF are able to do so.

IV. CONCLUSIONS

In this work, we consider active particles with the run-
and-tumble movement subject to active force Fa and run time
τ . The diffusive behaviors of self-propelled particles (force
dipole) and field-driven particles (point force) are explored
by DPD simulations. The diffusion of solvent (tracer) is
investigated as well. Both MSD and VACF approaches are
employed and their results are consistent. For the system
of self-propelled particles, the normal diffusion is observed
for both active particles and solvent. The diffusivity of
self-propelled particles is proportional to φpF 2

a τ , while the
diffusivity of solvent is proportional to φpF 2

a for large enough
τ . The former is significantly greater than the latter.

For the system of field-driven particles, the superdiffusion
is seen for both active particles and solvents. Different from
superdiffusive behavior in the literature, the mechanism of
our superdiffusion is originated from strong hydrodynamic
interactions. The anomalous exponent (1 < α < 2) grows
with increasing φp and Fa , while it approaches plateaus
at large τ . It is surprising to find that in general, α of
the solvent is slightly greater than that of active particles.
That is, the MSD of the solvent is as significant as that
of active particles, distinctly different from the system of
self-propelled particles. This result is owing to the weak
hydrodynamic interactions of self-propelled particles and the
strong hydrodynamic interactions of field-driven particles. In
spite of the superdiffusion, the sedimentation equilibrium of
field-driven particles can be acquired and the density profile is
still exponentially decayed. The sedimentation length of field-
driven particles is always greater than that of self-propelled
particles but is also proportional to F 2

a and τ .
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