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We report that the well-known Marangoni film thickening in surfactant-laden
Landau–Levich–Bretherton coating flow can be completely suppressed by wall slip.
The analysis is made by mainly looking at how the deposited film thickness varies
with the capillary number Ca (� 1) and the dimensionless slip length Λ = λ/R
(� 1) in the presence of a trace amount of insoluble surfactant, where λ is the
slip length and R is the radius of the meniscus. When slip effects are weak at
sufficiently large Ca (but still �1) such that Ca�Λ3/2, the film thickness can still
vary as Ca2/3 and be thickened by surfactant as if wall slip were absent. However,
when slip effects become strong by lowering Ca to Ca� Λ3/2, the film, especially
when surface diffusion of surfactant is negligible, does not get thinner according
to the strong-slip quadratic law reported previously (Liao et al., Phys. Rev. Lett.,
vol. 111, 2013, 136001; Li et al., J. Fluid Mech., vol. 741, 2014, pp. 200–227).
Instead, the film behaves as if both surfactant and wall slip were absent, precisely
following the no-slip 2/3 law without surfactant. Effects of surface diffusion are also
examined, revealing three distinct regimes as Ca is varied from small to large values:
the strong-slip quadratic scaling without surfactant, the no-slip 2/3 scaling without
surfactant and the film thickening along the no-slip 2/3 scaling with surfactant. An
experiment is also suggested to test the above findings.

Key words: interfacial flows (free surface), lubrication theory, thin films

1. Introduction
The goal of a coating process is to deposit a thin fluid layer with a desired thickness

over a solid surface. This can be simply achieved hydrodynamically by pulling a
plate (or a fibre) out of a bath of liquid (Landau & Levich 1942). If the coating
is on the inside of a tube, film deposition can be realized by displacing the sample
fluid using a long air bubble (Bretherton 1961). In either case, the film thickness can
be precisely controlled by the coating speed U through a balance between viscous
and surface tension forces. This so-called Landau–Levich–Bretherton (LLB) problem
not only possesses common features of many coating flows seen in practice (Wilson
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1982; Campanella & Cerro 1984; Quéré 1999), but also is closely relevant to dynamic
wetting and drop spreading (de Gennes 1985; Kalliadasis & Chang 1994; Stone 2010;
Liao, Li & Wei 2013; Li et al. 2014). Hence, it is of fundamental importance to many
problems in interfacial fluid mechanics.

It is well known that for this kind of problem the deposited film thickness varies as
Ca2/3, where Ca is the capillary number (Landau & Levich 1942; Bretherton 1961),
measuring the relative importance between viscous forces and surface tension forces.
This result was originally derived for clean-interface systems without surfactant.
While the 2/3 law has been confirmed experimentally, the measured film thickness
appears to be slightly thicker than the clean-interface result (Bretherton 1961). This
film thickening is commonly attributed to interfacial contamination by impurities
or surface-active agents such as surfactants. Several theoretical and experimental
investigations (Ratulowski & Chang 1990; Park 1991; Ramdane & Quéré 1997; Shen
et al. 2002) with surfactants support this view. Specifically, surfactant sweeping by
capillary draining towards the meniscus tends to lower the interfacial surfactant
concentration at the film end. This non-uniform surfactant distribution in turn
establishes a surface tension gradient opposing capillary draining, thereby generating
a Marangoni shearing to thicken the film. For an insoluble surfactant, this film can
be thickened at most by a factor of 42/3 due to immobilization of the interface (Park
1991). The same thickening factor was actually first reported by Ratulowski & Chang
(1990) in their study with soluble surfactant. More recent developments on how
surfactant influences the film thickness can be seen in the works of Krechetnikov &
Homsy (2006) and Delacotte et al. (2012).

The widely accepted results mentioned above are based on the usual no-slip
condition applied at the walls. However, this condition does not always hold.
For instance, in situations involving polymeric fluids (de Gennes 1985) and
hydrophobic/textured surfaces (Choi & Kim 2006), apparent wall slip often exists.
One might think that wall slip merely reduces drag and does not change no-slip flow
characteristics. Recent studies on the Bretherton problem without surfactant show
that the usual 2/3 law can change to a quadratic law when slip effects become
strong for Ca below some critical value (Liao et al. 2013; Li et al. 2014). In another
related study on the thermocapillary motion of a long bubble in a slippery tube,
the dependence of the bubble speed on the applied temperature gradient over the
bubble can change from the no-slip 5/3 law to the strong-slip cubic law (Liao et al.
2014). All of these studies indicate that wall slip can cause not only quantitative but
also qualitative changes in flow characteristics, occurring when the film thickness b
becomes much smaller than the slip length λ. That is, a flow characteristic change
arises when the transverse length scale switches from b for the no-slip regime (b�λ)
to λ for the strong-slip regime (b� λ). In fact, such a no-slip-to-slip transition is not
limited to the LLB problem, but also occurs in dynamic wetting as well as interfacial
instability (Liao et al. 2013). Hence, this transition should be a generic feature for a
wide range of interfacial flows when wall slip is present.

In this paper we extend the length-scale-change idea mentioned above to the
surfactant-laden LLB problem by examining how wall slip influences the Marangoni
film thickening phenomenon. Whether film thickening can still persist in the presence
of wall slip is not obvious. This is because, while wall slip can promote film
thickening by facilitating Marangoni pumping into the film, it can equally make the
film thinner by speeding up capillary draining out of the film (Li et al. 2014). Much
to our surprise, it turns out that film thickening can be completely suppressed by wall
slip at sufficiently low Ca where slip effects are strong. More precisely, even though
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FIGURE 1. (Colour online) Flow geometries for the Landau–Levich–Bretherton problem
with wall slip in the presence of insoluble surfactant. (a) The Bretherton problem for a
bubble moving with a constant velocity in a slippery tube, which is the focus of the
present work. (b) The Landau–Levich coating problem by pulling a slippery plate out of
a bath of a liquid. Here, we focus on the transition film region of length ` ∼ (bR)1/2
between the uniform film region of thickness b and the round meniscus region. h(x) is
the local film thickness in the transition region. The transition length `∼ (bR)1/2 comes
from the balance of the Laplace pressures between that of the film, σ0b/`2, and that of
the meniscus, σ0/R. In (b), R is taken as the capillary length (σ0/ρg)1/2, where ρ is the
density of the liquid and g is gravitational acceleration.

the interface can be completely immobilized by surfactant (when surface diffusion is
negligible), wall slip in effect can remobilize the entire film flow, making the film
behave like one without surfactant in thickness, exactly described by the usual 2/3
law without any thickening.

This paper is organized as follows. In § 2, we begin with the lubrication theory to
describe how the film changes its thickness due to both wall slip and surfactant effects.
Numerical results and discussion are presented in § 3. In § 4, we make connections to
experiments and propose ways to test our findings. Conclusions are given in § 5.

2. Lubrication theory

In this paper we focus our attention on the axisymmetric Bretherton problem with
a trace amount of insoluble surfactant in a cylindrical tube of radius R (see figure 1a).
Here, the tube wall is slippery, characterized by the slip length λ. Our analysis is
equally applicable to Landau–Levich dip coating over a slippery plate, with the
meniscus radius R being the capillary length (see figure 1b). The present approach
largely follows Park (1991). The only difference here is that the no-slip condition is
replaced by the Navier slip condition. As will be seen shortly, this additional slip
term will have a significant impact on the deposited film thickness, and its combined
effect with surfactant will lead to results that are completely different from those
reported previously.

To begin with, we need a model to describe how the surface tension σ decreases
with the surface concentration Γ . Let σ0 be the surface tension at the static state
with the corresponding surface concentration Γ0. If the surfactant layer can be crudely
treated as a 2D ideal gas, the linear equation of state σ = σclean − kBTΓ can be
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assumed (Ramdane & Quéré 1997), where σclean is the surface tension of a clean
interface without surfactant and kBT is the thermal energy. Therefore, in the reference
to the static state, we can rewrite the equation of state as σ = σ0(1 − Mγ ). Here,
M ≡ −(Γ0/σ0)(∂σ/∂Γ )Γ0 = (σclean − σ0)/σ0 is the Marangoni number (kept O(1)),
which reflects the ability to lower surface tension (because of the minus sign here),
and γ ≡ Γ/Γ0 − 1 measures the extent of the surface excess concentration relative
to Γ0.

It is well known that there is an abrupt change in curvature and hence pressure
in a small transition region between the bubble cap region and the uniform film
region of thickness b. We employ lubrication theory to analyse the flow field and the
bubble shape in the transition film region of length ` ∼ (bR)1/2 (which comes from
the balance of the Laplace pressures between that of the film, σ0b/`2, and that of
the meniscus, σ0/R). Let x̂= x/R and ŷ= y/R be the dimensionless spatial variables
in the horizontal and transverse directions respectively. To better see the relative
importance between relevant effects in the transition film region, it is convenient to
rescale the horizontal and transverse length scales as X = x̂/Ca1/3 and Y = ŷ/Ca2/3

using Bretherton’s scalings (Park 1991), where Ca = µU/σ0 is the capillary number
which is assumed to be small (�1). We define the dimensionless film thickness as
H(X) = h/(RCa2/3) using the same vertical length scale used to non-dimensionalize
the vertical coordinate y given above. Let ũ = u/U be the dimensionless velocity in
the horizontal direction. The dimensionless transverse velocity is then ṽ= v/(UCa1/3)
because of the continuity equation. With these rescaled variables, we can rescale
the surface excess concentration as G = γ /Ca2/3 by allowing the Marangoni stress
Mγx̂ = (M/Ca1/3)γX to be comparable to the viscous stress Ca ũŷ = Ca1/3ũY in the
tangential stress condition (Ratulowski & Chang 1990; Park 1991; Ramdane & Quéré
1997). Moreover, let p̃ = p/(σ0/R) be the dimensionless pressure normalized by
the Laplace pressure σ0/R. In the frame moving with the bubble, the leading-order
governing equations and boundary conditions (for which we drop the tildes for
simplicity) are as follows:

uX + vY = 0, (2.1)
pX = uYY, (2.2)

p=−HXX at Y =H, (2.3)
uY =−MGX at Y =H, (2.4)
u+ 1=ΛuY at Y = 0, (2.5)

[u(1+Ca2/3G)]X =DGXX at Y =H. (2.6)

Here, (2.1) and (2.2) are the continuity equation and the equation of motion in
the horizontal direction respectively, and (2.3) is the Laplace pressure responsible for
capillary draining (Bretherton 1961). It should be noted that because of the cylindrical
interface, there should be an additional contribution from the circumferential curvature
in (2.3). However, this term is O(Ca2/3) and is hence negligible here. Equation (2.4)
is the tangential stress condition accounting for the Marangoni shearing (Park 1991),
(2.5) is the Navier slip condition (in the moving frame, Matthews & Hill 2009) with
Λ = Λ/Ca2/3 and Λ = λ/R, and (2.6) is the surfactant transport equation along the
interface of the film (Park 1991) with D=D/Ca2/3 and D the inverse of the surface
Péclet number based on the capillary velocity σ0/µ.

In (2.5), while Λ = λ/R measures the amount of wall slip with respect to the
tube radius R, the actual extent of wall slip in the film is reflected by the dynamic
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slip parameter Λ = Λ/Ca2/3 = λ/b0 with respect to the Bretherton film thickness
b0∼RCa2/3 for the no-slip case without surfactant. This parameter can be understood
by looking at how the extent of wall slip is increased by decreasing the film thickness
by lowering Ca (Li et al. 2014). At sufficiently large Ca (but still � 1), the film
can be made sufficiently thick compared with the slip length λ. In this case, the
film would behave like one without slip according to the Bretherton 2/3 law b0 ∼
RCa2/3. Hence, this weak-slip situation corresponds to λ/b0� 1 or Λ� 1. However,
on lowering Ca along the 2/3 law to the point where the film thickness is comparable
to λ, i.e. λ/b0∼1 or Λ∼1, slip effects start to become important. Further lowering Ca
makes the film thinner than λ, which corresponds to the strong-slip regime, signified
by λ/b0 � 1 or Λ � 1. Therefore, on decreasing Ca from large to small values,
one would experience a no-slip-to-slip transition from the weak-slip regime to the
strong-slip regime. We emphasize that to solve for the problem, it is necessary to
specify Λ=λ/R for the amount of wall slip so that one can use Λ to evaluate whether
slip effects are important in the film, depending on Ca. Even though Λ is typically
small, slip effects could be strong since the film thickness can be made comparable
to or smaller than the slip length. As will be demonstrated later in § 3, even though
the amount of wall slip (with respect to R) is 1 % (i.e. Λ= 0.01), it is still enough
to completely suppress Marangoni film thickening.

It is worth mentioning how the surfactant transport equation (2.6) is derived.
An inspection of the full surfactant transport equation in dimensional form (Stone
1990) reveals that the term due to the interface expansion/contraction, Γ v/R ∼
Ca1/3UΓ0/R, is much smaller than the term due to surface convection along the
interface, (Γ u)x ∼ (UΓ0/R)Ca−1/3. Hence, the surfactant transport equation here
can be taken as an approximate form by keeping the surface convection term
[u(1+ γ )]X = [u(1+Ca2/3G)]X as the primary contribution in the surfactant transport
along the film (Park 1991). To emphasize O(Ca2/3) surfactant concentration variations
under Ca� 1, we keep Ca2/3G in (2.6) at this moment. This term will be neglected
later. We also take into account surface diffusion of surfactant and use D=D/Ca2/3

to reflect its importance relative to surface convection (Park 1991), where D≡ 1/Pes

is the inverse of the surface Péclet number Pes = σ0R/µDs, which is based on the
capillary velocity σ0/µ and the surface diffusion coefficient of surfactant Ds. Since
the flow here is steady in the frame of the bubble, there is no time derivative term
in (2.6).

Ignoring the O(Ca2/3) term, we integrate (2.6) once and apply the downstream
condition u→−1 as X→−∞. This reduces (2.6) to

u=DGX − 1 at Y =H, (2.7)

which simply states that the net surface convective flux u(Y = H) + 1 is exactly
counterbalanced by the surface diffusion flux −DGX (Park 1991). In the special
case where surface diffusion is negligible (D = 0), (2.7) leads to u(Y = H) = −1
everywhere along the interface, meaning that the interface is completely immobilized
by surfactant.

With (2.1)–(2.5) and (2.7), the relevant differential equation for H can be readily
derived below. We first determine the horizontal velocity by integrating (2.2) subject
to (2.4) and (2.5). This leads to

u= pX

2
[Y2 − 2H(Y +Λ)] −MGX(Y +Λ)− 1, (2.8)
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where GX is expressed in terms of pX by applying (2.7),

GX =−1
2

pX

[
H2 + 2HΛ

M(H +Λ)+D

]
. (2.9)

Next, we equate the volumetric flux (per unit width) in the transition film region to
that in the uniform film region of (unknown) thickness B≡ b/(RCa2/3), which is the
direct consequence of (2.1). This yields∫ H

0
u dY =−B. (2.10)

Obtaining the flow rate by integrating the velocity profile (2.8) across the film, (2.10)
leads to

−pX

3
(H3 + 3H2Λ)− MGX

2
(H2 + 2ΛH)=H − B. (2.11)

Eliminating GX using (2.9) and making use of (2.3), we can rewrite (2.11) as the
following differential equation for H:

SH3HXXX = 3(H − B), (2.12a)

where S= S(H) and is defined as

S≡ 1+ 3
Λ

H
− 3

4
MH(1+ 2Λ/H)2

MH(1+Λ/H)+D
. (2.12b)

The factor S measures how the strength of the apparent capillary flow (relative to
pure capillary draining of the no-slip clean-interface case) varies with wall slip and
surfactant effects. Because this flow tends to thin the film, the larger S becomes the
thinner the film. As will be seen later in the discussion after (2.15), S will determine
whether the film gets thinner or thicker due to the combined effects of wall slip
and surfactant, and hence the film thickening factor b/b0, where b/b0 is taken to
be the film thickness ratio with respect to the no-slip clean-interface one, b0 ≡ b
(M= 0,Λ= 0) with S= 1. Rescaling (H,B,X) as (H/S2/3,B/S2/3,X/S1/3), (2.12a) can
be transformed back to the classical Bretherton equation with no slip and no surfactant.
The rescaling B/S2/3 also means that the film thickening factor b/b0 = 1/S2/3. We
emphasize that while the transformation above suggests that (2.12a) is mathematically
equivalent to the classical Bretherton equation, new physics is actually brought out
by S. The transformation is meant to illuminate the role of S in controlling the film
thickness by comparing (2.12a) with the classical Bretherton equation.

To solve (2.12), the following boundary conditions have to be imposed by requiring
the interface profile to match those at the uniform thin-film end and the round
meniscus end (Park 1991):

H→ B, HX→ 0, HXX→ 0 as X→−∞, (2.13a−c)

HXX→ 1 as X→∞. (2.14)

Here, (2.14) comes from matching the Laplace pressure σ0hxx in the transition film
region to the bubble cap σ0/R. After solving for H, the excess surface concentration
G can then be readily found by solving (2.9) with G(X→−∞)=G0 (constant) (Park
1991).
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Equation (2.12) is the central equation of this paper and describes how the film
thickness behaves under the combined influence of surfactant and wall slip effects.
The equation is translational invariant because it will not change at all if one shifts the
origin of X. This is easily understood because the interface shape (and hence the film
thickness B) will not depend on where the origin is defined. We should also remark
that the equation only holds for M 6= 0, which renders the Marangoni stress −MGX
in (2.4), and is also the prerequisite of the surface diffusion term DGXX in (2.6). (That
is, D has to be set to be zero when M = 0; otherwise S(M = 0, Λ = 0) will not
be equal to 1, contradicting the requirement S = 1 for the no-surfactant and no-slip
case.) Whether the film gets thinner or thicker is controlled by S given by (2.12b).
The factor S can be raised by wall slip (via 3Λ/H) which promotes capillary draining
out of the film, which tends to thin the film. On the other hand, S can be decreased
by the Marangoni shearing towards the film due to surfactant (via the negative M
term), which tends to thicken the film. However, this film thickening effect cannot
be increased indefinitely by increasing M, since the surface concentration gradient
(and hence the Marangoni stress) will be diminished by surface convection (via the
denominator of (2.9)). Similarly, such film thickening can also be mediated by wall
slip in that while the Marangoni pumping is compensated by surface convection with
a factor (1+Λ/H), it can be enhanced by wall slip with a factor (1+ 2Λ/H)2.

In the special case where surface diffusion is negligible (D= 0), (2.12b) is equal to

S= 1
4

1+ 4
Λ

H

1+ Λ
H

 , (2.15)

which is independent of M ( 6= 0). Hence, for an arbitrary non-zero M (but kept O(1)),
in the weak-slip regime, Λ� 1 or Ca�Λ3/2 yields S= 1/4, reducing (2.12a) to

H3HXXX = 12(H − B). (2.16)

This is essentially the Bretherton equation, but on the right-hand side of (2.16), the
usual factor of 3 for the clean-interface case is replaced by 12, giving the well-known
maximum film thickening factor of 42/3 (Ratulowski & Chang 1990; Park 1991) as
a result of complete immobilization of the air–liquid interface by surfactant. The
42/3 factor here comes from the fact that (2.16) can be transformed from the no-slip
Bretherton equation without surfactant (2.17) (see below) by rescaling (H, B, X)
as (42/3H, 42/3B, 41/3X). It should be noted that if one assumes the interface to be
no-slip everywhere, i.e. u(Y = H) = −1, and solves the problem without using the
tangential condition (2.4), one would end up with H3HXXX = 6(H − B), which leads
the thickening factor to be 22/3 (Bretherton 1961; Schwartz, Princen & Kiss 1986)
(again, this 22/3 factor can be realized by transforming the coefficient ‘3’ into ‘6’
in (2.17) after rescaling (H, B, X) as (22/3H, 22/3B, 21/3X) in (2.17)).

Conversely, in the strong-slip regime where Λ� 1 or Ca� Λ3/2 with surfactant,
we have S= 1 in (2.15), reducing (2.12a) to the no-slip Bretherton equation without
surfactant exactly,

H3HXXX = 3(H − B). (2.17)

As a result, the film thickness will exactly follow Bretherton’s 2/3 law b/R∼ Ca2/3.
This is a very surprising result since wall slip and surfactant effects together make the
film behave as if both were absent!
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Why (2.17) is very surprising can also be seen by comparing it with the strong-
slip case without surfactant. The equation for the latter case can be obtained by first
eliminating the M term in (2.12) and then taking Λ� 1 (Liao et al. 2013; Li et al.
2014), yielding

ΛH2HXXX =H − B. (2.18a)

The scaling of the film thickness for this case can be obtained by balancing the terms
in (2.18a) using H ∼ B (because h ∼ b) and X ∼ B1/2 (because ` ∼ (bR)1/2), giving
B∼Λ−2

or

b/R∼Ca2R2/λ2. (2.18b)

This is much thinner than the no-slip result b/R ∼ Ca2/3 without surfactant because
capillary draining out of the film, which tends to thin the film, becomes much more
intensified by wall slip (Liao et al. 2013; Li et al. 2014). As the strong-slip case with
surfactant (2.17) also leads to a much thicker film b/R∼ Ca2/3 than (2.18b) without
surfactant, this implies that the Marangoni shearing towards the film is also enhanced
by wall slip. This slip-enhanced shearing is so strong that it is able to completely
compensate the equally intensified capillary draining, which in turn thickens the film
back to the no-slip result without surfactant.

Alternatively, although the interface is immobilized by surfactant (see (2.7) with
D= 0), wall slip in effect can remobilize the entire film flow. More importantly, the
film does not get thinner by wall slip by lowering Ca, contrary to the strong-slip
case (2.18) without surfactant. Instead, it behaves just like the clean-interface
case (2.17) without slip. Therefore, compared with the no-slip case with surfactant,
the Marangoni film thickening is completely suppressed by wall slip. Indeed, on
inspecting the velocity profile (2.8) for this strong-slip scenario, we find that the slip
part of the Marangoni flow, −MGXΛ≈ pXHΛ (because of (2.9)), is exactly cancelled
out by the slip part of the capillary flow, −pXHΛ. This reduces (2.8) to

u= pX

2
(Y2 −H2)− 1. (2.19)

As a result, even though the air–liquid interface is immobilized by surfactant (see (2.7)
with D=0), the film flows in a purely capillary manner, independent of M ( 6=0). More
precisely, it flows in such a way that the velocity minimum (in magnitude) is shifted
onto the slippery wall. The reason for this result is that the velocity increment by wall
slip is mainly manifested by the Λ terms in (2.8). While wall slip can prompt the
Marangoni shearing towards the film via −MGXΛ, it can equally speed up capillary
draining out of the film via −pXHΛ. When slip effects are strong, these two linear
flows completely cancel each other out, leaving the Laplace pressure gradient (i.e. the
Y2 term in (2.8) and the H2 term in (2.9)) alone to drive the film. This explains (2.19)
and hence the complete suppression of the film thickening by wall slip.

Combining both (2.16) for Λ�1 and (2.17) for Λ�1 discussed above for the case
with negligible surface diffusion, we conclude that the film thickness always scales as
Ca2/3. Specifically, when Ca� Λ3/2 the film can be thickened by surfactant in the
no-slip manner according to (2.16). However, on lowering Ca to the regime where
Ca�Λ3/2, the film can be thinned back to the result without surfactant on a no-slip
wall according to (2.17). The transition between film thickening (with respect to the
no-slip case without surfactant) and film thinning (with respect to the slip case with
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surfactant) occurs at Λ∼ 1 or Ca∼Ca∗≡Λ3/2, just like the Bretherton problem in a
slippery tube without surfactant (Liao et al. 2013; Li et al. 2014).

If surface diffusion is included, we anticipate that the effects will diminish surfactant
concentration gradients, which will in turn reduce the Marangoni film thickening. It
is obvious that D→∞ will completely suppress surfactant concentration gradients
(see (2.9)), thereby making the film behave as the case without surfactant (i.e. the
M term in (2.12) vanishes). In this case, wall slip tends to thin the film according
to (2.18). Therefore, at a finite value of D, we anticipate that this slip-induced film
thinning (without surfactant) can compete with the Marangoni film thickening (with
surfactant). As will be shown later, how the film thickness is determined by this
competition can be seen more clearly by looking at how the velocity profile changes
by decreasing Ca from the no-slip (Ca�Λ3/2) regime to the strong-slip (Ca�Λ3/2)
regime.

3. Results and discussion
To confirm the features discussed above, we integrate (2.12) numerically for the

film with surfactant (M 6= 0) using a nonlinear shooting method. The equation is first
linearized around H=B. One of the solutions, which grows exponentially towards the
bubble cap region, is chosen as the profile near the uniform film end (X = 0), where
H deviates from B with a very small amplitude. It is worth mentioning that (2.12),
together with boundary conditions (2.13) and (2.14), is translational invariant. This
provides convenience for constructing the linearized solution by choosing the origin
X= 0 (Bretherton 1961). For a given B, we take values for H, HX , and HXX at X= 0+
from the linearized solution and then integrate (2.12) towards the bubble cap region.
The thickness of the uniform film region, B, is adjusted iteratively until (2.14) is
satisfied. More details about the solution method can be seen in appendix A.

Figure 2(a) plots how b/R varies with Ca. In the absence of surfactant (M = 0),
we recover the switch from the no-slip 2/3 law to the strong-slip quadratic law (Liao
et al. 2013; Li et al. 2014). We also calculate the no-slip case with surfactant (at
M = 1) by neglecting surface diffusion (D= 0) in (2.12), confirming the 42/3 (≈ 2.5)
factor increase in b/R along the 2/3 law. As for the slip case, we again set D = 0
and find that surfactant essentially causes the quadratic scaling to disappear. What may
be really surprising is that even when the amount of wall slip is 1 % with respect
to R (Λ = 0.01), it can completely suppress the Marangoni film thickening, thereby
causing b/R to follow the 2/3 law in the entire Ca � 1 range. The thickening-to-
thinning transition can be seen more clearly in figure 2(b) by plotting the thickening
factor b/b0 against Ca. It should be noticed that the results here are independent of
M ( 6= 0) because of (2.15).

The above results indicate that the situation combining both wall slip and surfactant
behaves differently from the case when either effect exists alone. If surfactant is
absent, wall slip tends to thin the film because of slip-intensified capillary draining
out of the film (Liao et al. 2013; Li et al. 2014). This thinning can change the
well-known 2/3 law to the quadratic law and is manifested most when slip effects
become strong for Ca < Ca∗ = Λ3/2. When surfactant is present, however, we find
that not only does the strong-slip quadratic law completely vanish, but also the
entire curve essentially varies along the 2/3 law. Therefore, compared with the
surfactant-free case, wall slip can also help film thickening. As the film without
surfactant can now be thickened back to the 2/3 law with the aid of surfactant, this
implies that the Marangoni shearing towards the film is also promoted by wall slip,
which is again manifested in the strong-slip regime for Ca<Ca∗.
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Ca Ca
10–110–210–310–410–6 10–5 10–110–210–310–410–6 10–5

10–1
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10–4

10–5
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10–2

10–3

10–4

10–110–310–7 10–5
1.0
1.5
2.0
2.5

3

3

1

2

2
4

(a) (b)

No slip, surfactant laden
No slip, no surfactant

FIGURE 2. (Colour online) (a) Dependence of the dimensionless film thickness b/R on
Ca at Λ = 0.01. In the absence of surfactant (the Marangoni number M = 0, solid
line with circles), the well-known no-slip 2/3 law b/R ∼ Ca2/3 (blue dash-dotted line)
can switch to the strong-slip quadratic law b/R ∼ Ca2 for Ca below a certain value.
When surfactant is present and surface diffusion is negligible (M = 1 and D = 0, red
solid line), the film is thickened along the 2/3 law (dashed line) in the large-Ca (but
still �1) regime. However, for small Ca, the film does not get thinner according to
the strong-slip quadratic law. Instead, it follows the no-slip 2/3 law without surfactant,
indicating that the Marangoni film thickening can be completely suppressed by wall slip.
(b) The corresponding thickening factor b/b0 (with respect to the no-slip clean-interface
result b0) is plotted as a function of Ca. The result for the surfactant case (red solid line)
shows that the maximum thickening factor 42/3 (≈2.5) seen in the large-Ca regime can
be reduced to 1 on decreasing Ca from large to small values, as can be seen more clearly
in the inset. It should be noted that for D= 0 the result is independent of M ( 6= 0), as
indicated by (2.15).

To see how the thickening-to-thinning transition is affected by wall slip, figure 3
plots the thickening factor b/b0 against Ca for various values of Λ at M = 1 and
D= 0. It shows that the larger Λ is, the greater the Ca at which the transition takes
place. This is obvious because the strong-slip Ca� Ca∗ regime extends to a larger
Ca∗ =Λ3/2 as Λ is increased.

The above results, which exclude the influence of surface diffusion, basically
confirm the features discussed in § 2. Inclusion of surface diffusion tends to lower
surfactant concentration gradients. Therefore, one might anticipate that the result will
return to the clean-interface one as D→ ∞, as indicated by (2.12). However, for
a given surface diffusion coefficient Ds, this erasing concentration gradient effect
actually varies like D∝ Ca−2/3. Therefore, for any finite value of Ds, the Marangoni
film thickening could still persist although it is gradually weakened by decreasing Ca.
On the other hand, the slip term in (2.5) also varies like Λ ∝ Ca−2/3 and is getting
more important as Ca is decreased, which tends to thin the film in a manner like
b/R∼ Ca2 in the absence of surfactant (Liao et al. 2013; Li et al. 2014). Therefore,
there is a competition between surfactant-induced film thickening and slip-induced
film thinning.

Figure 4(a) shows surface diffusion effects on the film thickness by plotting
the film thickening factor b/b0 against Ca at Λ = 0.01 and M = 1 for various
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Ca
10–110–210–310–410–610–710–8 10–5

1.0

1.5

2.0

2.5

No slip,
surfactant laden

FIGURE 3. (Colour online) Plot of the film thickening factor b/b0 against Ca for various
values of Λ at M = 1 and D= 0, showing that the thickening-to-thinning transition takes
place at larger Ca as Λ is increased.

No slip, 
surfactant laden

No slip, 
surfactant laden

Ca Ca
10–110–210–310–410–610–710–8 10–5 10–110–210–310–410–6 10–5

100

10–1

10–2

10–3

100

10–1

10–2

10–3

10–4

10–5

10–6

(a) (b)

3
3

4
4

0.0001
0.001
0.01
0.1
10

FIGURE 4. (Colour online) (a) Effects of surface diffusion on the film thickness by
plotting the thickening factor b/b0 against Ca for various values of D≡ 1/Pes indicated
in the legend. Here, Λ = 0.01 and M = 1. For D = 0.1 or larger, the film thickness
displays three distinct regimes as Ca is varied: the strong-slip quadratic scaling b/R∼Ca2

without surfactant (indicated by b/b0∼Ca4/3), the no-slip 2/3 scaling b/R∼Ca2/3 without
surfactant (indicated by b/b0 ∼ 1) and the thickening along the no-slip 2/3 law with
surfactant (indicated by b/b0 > 1). (b) At given D and Λ, increasing M tends to thicken
the film and thereby to shift the curve towards smaller Ca, as illustrated by plotting how
b/b0 varies with Ca for M = 1, 2 and 4 at Λ= 0.01 and D= 0.01.

values of D ≡ 1/Pes. Even for small D, the film thickness varies as b/R ∼ Ca2 or
b/b0 ∼ Ca4/3 when Ca is below a certain value, much like the strong-slip situation
without surfactant (Liao et al. 2013; Li et al. 2014). It should be noticed that at a
sufficiently large Ca the film still remains thicker than the no-slip case without
surfactant. Increasing D makes the strong-slip scaling b/R ∝ Ca2 shift slightly
towards a larger Ca. However, increasing D to 0.1 or higher does not make the
strong-slip curve shift any further. This corresponds to the situation where the
surfactant concentration gradient is completely erased by surface diffusion. Hence,
for very small Ca, we recover the strong-slip result without surfactant (Liao et al.
2013; Li et al. 2014). However, since D=D/Ca2/3, surface diffusion effects become
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weakened by convection as Ca is increased (see (2.7)). Together with the fact that
the slip coefficient Λ = Λ/Ca2/3 is also diminished by increasing Ca, the film
thickness follows the no-slip clean-interface result b/R∼ Ca2/3 or b/b0 = 1 when Ca
is increased beyond a certain value. Yet, at a sufficiently large Ca, surface diffusion is
completely suppressed by convection. This leads the surfactant concentration gradient
to be re-established, thereby thickening the film again due to the restored Marangoni
shearing. This is the reason why figure 4(a) shows the coexistence of the strong-slip
result (b/b0 ∼Ca4/3) without surfactant, the no-slip clean-interface plateau (b/b0 = 1)
and the no-slip thicker film result (b/b0 > 1) with surfactant. At given D and Λ, it
is obvious that increasing M tends to thicken the film and hence to shift the curve
towards smaller Ca, as shown in figure 4(b).

To better visualize how surface diffusion of surfactant influences the film
thickening/thinning behaviour, figure 5 plots velocity profiles within the film for
various values of Ca at M = 1, D = 0.001 and Λ = 0.01. Here, in conjunction
with figure 4(a), the values of Ca are chosen to cover all possible regimes, from
the no-slip regime (Ca � Ca∗) to the strong-slip regime (Ca � Ca∗), so that one
can see more clearly how the Marangoni shearing gets enhanced or diminished so
as to determine film thickening or thinning due to the combined effects of wall
slip and surface diffusion, where Ca∗ = Λ3/2 = 10−3. Taking Ca = 0.01 (Λ ≈ 0.22,
figure 5a) greater than Ca∗, the flow basically behaves like the no-slip case. Because
D = D/Ca2/3 ≈ 0.02 here, surface diffusion is weak. Therefore, the film can be
thickened by Marangoni shearing with the maximum thickening factor 42/3. When Ca
is decreased to 10−3 (Λ= 1.0, figure 5b) or 10−4 (Λ≈ 4.64, figure 5c), slip effects
become more pronounced. In this case, compared with Ca = 0.01, the Marangoni
shearing (towards the film) is enhanced, which tends to promote film thickening.
However, capillary draining (out of the film), which tends to thin the film, is also
equally enhanced by wall slip. Because the former is compensated by the latter, the
resulting film thickening is slightly weaker than that at Ca = 0.01 (see figure 4a).
However, when Ca is decreased to 10−5 (Λ ≈ 21.54, figure 5d) where slip effects
become very strong, we find that the Marangoni shearing becomes weaker compared
with that at Ca = 10−4. This is because D = D/Ca2/3 ≈ 2.15 here, surface diffusion
becomes effectively strong and hence greatly reduces surface concentration gradients.
The situation here is like the strong-slip case without surfactant, explaining why the
film becomes considerably thinner than those at larger Ca (see figure 4a).

4. Connections to experiments

In terms of experiments, we have not seen any studies that are specifically designed
for testing how wall slip influences the film thickness b for the Bretherton/Landau–
Levich problems with or without surfactant. Nevertheless, it is worth discussing the
feasibility of such an experiment. First of all, apparent wall slip can be achieved by
using polymeric liquids (e.g. silicone oil). For low molecular weights (having a degree
of polymerization >103), the slip length λ can be as large as 1 µm (de Gennes 1985).
Taking a capillary tube with a radius of R ∼ 100 µm, the amount of wall slip is
Λ= λ/R∼ 0.01. If the air–liquid interface is clean, Bretherton’s 2/3 law b/R∼Ca2/3

still holds for Ca greater than the critical value Ca∗ ∼Λ3/2 ∼ 10−3. However, for Ca
below this value, the strong-slip quadratic scaling b/R∼Ca2Λ−2 should be observed.
In addition, to make the film thickness detectable but not too thick compared with
the slip length (especially for confirming the strong-slip quadratic law), it would be
better for the bubble to move at U∼ 1 cm s−1 (or Ca∼ 10−3 for µ∼ 10−1 poise and
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(a)

(b)

(c)

(d)

Gas

Liquid

X

Y

FIGURE 5. (Colour online) Calculated velocity and interface profiles for the Bretherton
problem at M = 1, Λ = 0.01 and D = 0.001. Results are plotted in terms of rescaled
variables X = x/RCa1/3 and Y = y/RCa2/3 in the frame moving with the bubble. As
the interface profiles are represented by H(X) = h/RCa2/3, the rescaled film thickness
H(X→−∞) can be roughly regarded as the film thickening factor. At (a) Ca= 10−2, at
which the effective slip coefficient Λ=Λ/Ca2/3 ≈ 0.2 is small, the situation behaves like
the no-slip case. When Ca is decreased to (b) Ca= 10−3 or (c) Ca= 10−4, Λ=Λ/Ca2/3

(>1) becomes significantly increased, although Marangoni shearing towards the film can
be promoted by decreasing Ca, capillary draining out of the film is equally enhanced.
Because the former is compensated by the latter, the resulting film thickening is slightly
weaker than (a) at Ca= 10−2. At (d) Ca= 10−5, while slip effects are very strong with
Λ ≈ 21.54, surface diffusion is also effectively strong with D = D/Ca2/3 ≈ 2.15. This
greatly reduces surface concentration gradients, making the film thin as in the strong-slip
situation without surfactant.
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Slip-induced suppression of Marangoni film thickening 591

σ0 ∼ 30 dyn cm−1) to ensure a film thickness in the range of 1–10 µm, like what is
observed in the experiment using silicone oil (Piroird, Clanet & Quéré 2011).

For the case with surfactant, we take sodium dodecyl sulphate (SDS) in silicone
oil (Piroird et al. 2011) as an example to illustrate the effects at work. For this
system, σclean≈ 35 dyn cm−1 (the surface tension of silicone oil), µ∼ 10−1 poise (the
viscosity of silicone oil) and M = (σclean − σ0)/σ0 ranges from 0.17 to 1.33 (where
σ0 ≈ 30–15 dyn cm−1 for 1–10 % of the critical micelle concentration, see figure 2b
of Piroird et al. 2011). The surface diffusion coefficient Ds has the same typical
value as the diffusion coefficient in the bulk, Db ∼ 10−7–10−6 cm2 s−1 (in silicone
oil) (Ramdane & Quéré 1997), giving the surface Péclet number Pes = σ0R/µDs
to be of order 106–107. For a small capillary tube, it is likely that the time scale
required for surfactant to absorb onto the interface is much longer than that for
advecting surfactant over the transition length `∼ (bR)1/2 (Ramdane & Quéré 1997).
In this case, the surfactant acts as an insoluble surfactant, making the Marangoni film
thickening most efficient (Ramdane & Quéré 1997). Moreover, because Ca= µU/σ0
typically ranges from 10−5 to 10−2 for U= 10 µm s−1 to 1 cm s−1, D= (PesCa2/3)−1

is of order 10−3 at most, and hence the surfactant transport is essentially dominated
by surface convection. Thus, one might expect to observe film thickening and thinning
along the 2/3 law without seeing the strong-slip quadratic law.

However, if one can select a surfactant such that its adsorption rate is sufficiently
fast but not too fast (by, for instance, controlling the amount of surfactant) to
completely erase the surfactant concentration gradient, the quadratic law might
reappear along with the film thickening and thinning along the 2/3 law, just like
figure 4.

Landau–Levich coating can be achieved by withdrawing a fibre or a plate out of
a bath of a liquid. For fibre coating, the situation is pretty much the same as the
Bretherton problem, except that R should be taken as the fibre radius. For plate
coating, R is roughly the capillary length (σ0/ρg)1/2 ∼ 1 mm, where ρ ∼ 1 g cm−3

is the fluid density and g is the gravitational acceleration. In this case, in order to
have discernible wall slip effects like Λ = λ/R ∼ 0.01, λ would have to be as large
as 10 µm, which can be achieved by using a high-molecular-weight polymeric liquid
with a degree of polymerization >103.

5. Concluding remarks
We have demonstrated for the Bretherton problem with insoluble surfactant that

the well-known Marangoni film thickening can be completely suppressed by wall
slip effects, especially when surface diffusion is small or negligible. That is, in
contrast to the clean-interface problem with wall slip, which shows that Bretherton’s
2/3 law can turn to the strong-slip quadratic law for Ca below some critical value
(Liao et al. 2013; Li et al. 2014), the film thickness here can still be described
by the 2/3 law without undergoing further thinning by wall slip. In other words,
while both Marangoni shearing towards the film and capillary draining out of the
film can be enhanced by wall slip, the former can be compensated by the latter,
which alleviates the Marangoni film thickening. We also find that surface diffusion
can cause a competition between surfactant-induced film thickening and slip-induced
film thinning. Because of this competition, how the film thickness varies with Ca can
exhibit three distinct regimes as Ca changes from small to large values: the strong-slip
quadratic scaling b/R ∼ Ca2 without surfactant, the no-slip 2/3 scaling b/R ∼ Ca2/3

without surfactant and the film thickening along the 2/3 law with surfactant. These
different scaling results are summarized in table 1.
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No surfactant, M = 0 With surfactant, M 6= 0
Weak slip, Λ� 1 Strong slip, Λ� 1 Weak slip, Λ� 1 Strong slip, Λ� 1

b/R Ca2/3 Ca2Λ−2 Ca2/3 Ca2/3 for D= 0
Ca2Λ−2 as D→∞

b/b0 1 Ca4/3Λ−2 42/3 for D= 0 1 for D= 0
1 as D→∞ Ca4/3Λ−2 as D→∞

TABLE 1. Summary of various scaling results for the film thickness b/R and the film
thickening factor b/b0 (with respect to the no-slip result b0 without surfactant). Here, Λ=
Λ/Ca2/3 is the slip coefficient measuring the extent of wall slip in the film, with Λ= λ/R
being the dimensionless slip length; D= 1/Pes is the inverse of the surface Péclet number
to reflect the strength of surface diffusion of surfactant.

With a soluble surfactant, the effects would be similar to those produced by an
insoluble surfactant having a large surface diffusion coefficient since the interfacial
surfactant concentration gradient would probably be diminished by surfactant
adsorption/desorption from/to the bulk. Hence, much like figure 4, it is likely that
the resulting film thickness might display three distinct regimes as Ca is varied due
to the competition between surfactant-induced film thickening and slip-induced film
thinning.

In practice, because wall slip can be rendered by using polymer liquids and
also because the solubility of a surfactant can be adjusted by its added amount,
it is possible to test our findings by selecting a proper surfactant–polymer–liquid
system, as discussed in § 4. If this can be done and our predictions can be
confirmed by experiments, one might be able to make use of wall slip and
surfactant together to have a more precise control of the deposited film thickness
for Landau–Levich–Bretherton flow. One can also employ such a flow to quantify the
amount of wall slip by having a more accurate determination of the slip length.
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Appendix A
This appendix provides additional details about the method we employed for

determining the film thickness by solving (2.12a) numerically. First, we define new
variables:

η= H
B
, ξ = X

B
. (A 1a,b)

Then, (2.12a) is reduced to

ηξξξ = 3(η− 1)
Sη3

, (A 2)

where

S= 1+ 3
Λ

η
− 3

4
Mη(1+ 2Λ/η)2

Mη(1+Λ/η)+D
, (A 3)
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with Λ=Λ/B and M=M/B. As we approach the uniform film region, ξ→−∞, an
asymptotic solution to (A 2) can be obtained by linearizing (A 2) about η= 1, and is
given by

η→ 1+ Ae(3/S∞)
1/3ξ as ξ→−∞, (A 4)

where A is an integration constant and S∞= S|η=1. In the neighbourhood of the bubble
tip, ξ → ∞, the asymptotic solution to (A 2) must have constant curvature (since
ηξξξ→ 0), and can be expressed as

η= 1
2 P(η− η0)

2 +Q, (A 5)

where P= limξ→∞ ηξξ , Q and η0 are constants which are determined numerically. The
dimensional form of (A 5) is

h= 1
2

PCa2/3 (x− x0)
2

b
+Qb. (A 6)

Thus, the radius of curvature at the tip is b/PCa2/3, and to leading order (for Ca� 1)
this must equal to the tube radius R. Therefore,

B= b
RCa2/3

= P. (A 7)

That is, the scaled thickness parameter B is equal to the integration constant P. In
order to determine P, (A 2) is first rewritten as a system of three first-order differential
equations and then solved numerically using the initial value problem package LSODE
(Hindmarsh 1983). The initial conditions come from the asymptotic solution derived
above, and because the system is translational invariant, they can be defined at ξ =0:

η(0)= 1+ A, ηξ (0)= A(3/S∞)1/3, ηξξ (0)= A(3/S∞)2/3. (A 8a−c)

In the calculations presented in this paper, A = 10−8, and the size of the domain is
chosen to be large enough so that ηξξ (ξ = ξmax) is approximately constant. It should
be noted that for given Λ, M and D, the system of differential equations is solved
just once in order to determine P and hence B.
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