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Against the common wisdom that wall slip plays only a minor role in global flow
characteristics, here we demonstrate theoretically for the displacement of a long bubble
in a slippery channel that the well-known Bretherton 2/3 law can break down due to
a fraction of wall slip with the slip length λ much smaller than the channel depth R.
This breakdown occurs when the film thickness h∞ is smaller than λ, corresponding
to the capillary number Ca below the critical value Ca∗∼ (λ/R)3/2. In this strong slip
regime, a new quadratic law h∞/R ∼ Ca2(R/λ)2 is derived for a film much thinner
than that predicted by the Bretherton law. Moreover, both the 2/3 and the quadratic
laws can be unified into the effective 2/3 law, with the viscosity µ replaced by an
apparent viscosity µapp = µh∞/(λ + h∞). A similar extension can also be made for
coating over textured surfaces where apparent slip lengths are large. Further insights
can be gained by making a connection with drop spreading. We find that the new
quadratic law can lead to θd ∝ Ca1/2 for the apparent dynamic contact angle of
a spreading droplet, subsequently making the spreading radius grow with time as
r∝ t1/8. In addition, the precursor film is found to possess `f ∝ Ca−1/2 in length and
therefore spreads as `f ∝ t1/3 in an anomalous diffusion manner. All these features are
accompanied by no-slip-to-slip transitions sensitive to the amount of slip, markedly
different from those on no-slip surfaces. Our findings not only provide plausible
accounts for some apparent departures from no-slip predictions seen in experiments,
but also offer feasible alternatives for assessing wall slip effects experimentally.

Key words: coating, interfacial flows (free surface), lubrication theory, thin films

1. Introduction
In the standard texts of fluid mechanics, it is commonly assumed that a fluid

has no relative motion with respect to a solid boundary. This no-slip condition
has its rationale in that the inevitable friction on a surface can bring the nearby
fluid to rest. It is also the condition that ensures steady flow, since viscous drag
can be generated by sharp velocity gradients on solid boundaries to counterbalance
the applied forcing. While the no-slip condition has been widely used in many
practical flows, considerable wall slip, intrinsic or apparent, might exist in a number
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of occasions. Typical examples are polymer solutions flowing over surfaces (de
Gennes 1979), pumping in hydrophobic microchannels with/without surface structures
(Tretheway & Meinhart 2002; Choi et al. 2006; Tsai et al. 2009), draining on
chemically decorated substrates (Craig, Neto & Williams 2001; Zhu & Granick
2001), and coating on uneven/structured plates (Krechetnikov & Homsy 2005; Seiwert,
Clanet & Quéré 2011).

Slip effects are often characterized by the Navier slip condition (Navier 1823):

u= λ
∂u
∂y
, (1.1)

where the slip length λ can be defined as the ratio of the slip velocity to the
local shear rate. As the actual no-slip point can be located by extrapolating to
the zero-velocity plane outside the slip surface, λ can therefore be interpreted
as the distance from that point to the surface. With the above picture in mind,
(1.1) immediately reveals that λ = 0 recovers the usual no-slip condition and that
λ = ∞ allows complete slip in a stress-free manner, ∂u/∂y = 0. Depending on the
molecular/microscopic nature of a surface, λ can range from 10 nm to 10 µm
(Lauga, Brenner & Stone 2007). Thus, wall slip, if it exists, would become much
more apparent at submicron or nanometre scales. Perhaps the most frequent use of
the Navier condition (1.1) occurs in modelling dynamic wetting in order to relieve
the stress singularity at the moving contact line (Hocking 1976; Cox 1986). In most
situations, λ is much smaller than the liquid thickness h. So slip effects are only
important near the contact line and do not change the macroscopic flow characteristics
(see Bonn et al. 2009 for a more comprehensive review). While the above is generally
true for smooth surfaces whose intrinsic slip lengths are of about molecular sizes or
nanometre scales (Bocquet & Barrat 2007), there exist situations where apparent slip
lengths are large, for instance, flows of polymeric liquids (de Gennes 1979), spreading
on less viscous pre-wetting films (Brochard-Wyart, Debrégeas & de Gennes 1996),
and imbibition on porous surfaces (Beavers & Joseph 1967). In this case, λ can be
so large that slip effects do not merely affect the local flow field but the global one,
causing the entire flow to speed up by a factor of λ/h. What is more important is
that this flow amplification might significantly modify how the fluid–fluid interface
behaves both spatially and temporally in response to such a very slippery flow. So
for the systems mentioned above, we anticipate that the flow characteristics would
differ quantitatively from those on no-slip surfaces.

Motivated by the above, in this paper we pay particular attention to how wall
slip affects thin film coating processes. One important class of coating flows is
deposition of a thin film on the interior wall of a small capillary by displacing liquid
with a long bubble. This is the classical Bretherton problem (Bretherton 1961). A
similar film deposition can also be realized by withdrawing a plate from a bath of
liquid, the so-called Landau–Levich dip coating (Landau & Levich 1942), which
was known long before Bretherton’s work. For coating flows of this sort, it is well
known that the deposited film thickness scales like the 2/3 power of the coating
speed – the classical Bretherton law (Bretherton 1961). This result is based on the
no-slip boundary condition commonly assumed for solid surfaces. Just like flow near
the contact line in dynamic wetting problems, we anticipate that introduction of the
additional slip length might also change the flow characteristics for the Bretherton
problem. But it is not clear whether the film is thickened or thinned by such a
change, nor how the Bretherton 2/3 law is modified due to wall slippage. These two
questions will be addressed in this paper. In addition, we will look into how the
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coating behaviour is characterized by the amount of wall slip under the strong slip
situation, relevant to situations involving polymeric liquids, heterogeneous surfaces,
and coating over pre-wetting films mentioned above.

In terms of experiments, there does exist some evidence showing violation of the
Bretherton law. Seiwert et al. (2011) performed dip coating over a plate textured with
micropillars and found that the deposited film thickness is systematically thicker than
the Bretherton law. Specifically, the film thickness approaches the Bretherton law at
high plate withdrawal velocities whereas it approaches a constant in the low velocity
regime. This observation can be interpreted by the fact that part of the wetting liquid
is trapped within the interspace of the pillars, giving rise to an increase in the viscous
drag on the liquid and therefore thickening the film. But when the liquid thickness
becomes comparable to the pillar height, this film thickening becomes saturated,
causing the film thickness to no longer vary with the plate velocity. In a related
work, Krechetnikov & Homsy (2005) examined surface roughness effects on dip
coating processes. They found that the film thickness appears to be slightly thicker
and shows a slower power-law dependence on the plate pulling speed compared
to the Bretherton law. They also introduced an apparent slip length in their model
to explain the role played by slip effects. These studies seem to imply that the
Bretherton law still holds when the sizes of the surface structures are small compared
to the film thicknesses. In fact, the observed film thickening phenomena can actually
be interpreted in terms of negative slip length in the sense that the surface structures
impart more viscous dissipation to slow down the fluid motion.

Another motivation for this work comes from the need to measure slip length
experimentally. Common techniques involve measurement of pressure drop (Choi,
Westin & Breuer 2003), particle image velocimetry (Tretheway & Meinhart 2002),
squeeze flow rheometry (Zhu & Granick 2001), surface force apparatus (Restagno
et al. 2002), and so on. Among these, the last two appear to be more reliable
approaches because one can use a solid probe to extract the slip length of a surface
by analysing how the force on the probe responds in the near-contact situation.
However, such a force does not change appreciably with the amount of slip, especially
when the probe–surface distance is smaller than the slip length (Vinogradova 1995).
Inspired by the Bretherton problem that the film thickness can be controlled by the
coating speed, perhaps a better way to render a greater hydrodynamic susceptibility
to probing slip boundaries is to inject a long bubble into a confined channel or to
simply withdraw a plate from a bath of liquid. By identifying how the measured film
thickness deviates from the Bretherton law, one might be able to determine the slip
length more accurately.

In addition to coating and measuring slip length, the Bretherton problem with slip
walls is also relevant to gas–liquid slug flows seen in microfluidic devices (Song, Tice
& Ismagilov 2003; Oskooei & Sinton 2010). On the one hand, wall slip can reduce
drag to facilitate transport of these slugs. On the other hand, trailing films on the gas
side could become so thin that they might be more inclined to be in contact with the
channel walls to impede the motion of slugs. Therefore, it is necessary to understand
the role played by wall slip in such a system so that one can optimize the transport
without clogging the channels.

We have recently demonstrated that wall slippage can drastically modify
hydrodynamics for a wide class of interfacial flows (Liao, Li & Wei 2013). In
this paper we will give a more detailed account of how wall slip impacts the
Bretherton problem. Using both scaling theory and lubrication analysis in §§ 2 and 3,
we will show how the Bretherton 2/3 law breaks down when wall slip effects become
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FIGURE 1. (Colour online) Flow geometry for the motion of a long, closely fitting bubble
in a channel. Here we focus on the transition region between the front meniscus and the
uniform film region, as indicated by the box.

important at sufficiently low bubble speeds. In addition, a new quadratic law will be
derived to characterize the behaviour of the film thickness in this strong slip regime,
accompanied by the unique no-slip-to-slip transition between these two laws. In § 4
we extend the analysis to textured surfaces. This part will not only provide a link
between apparent slip length and apparent viscosity, but also show how we unify
both the 2/3 and the quadratic laws. We also show in § 5 that more insights and
perspectives can be found by making connections to dip coating and drop spreading.
In § 6, at the micro/mesoscale level, we make further connections between slip length
and molecular length arising from disjoining pressure, and demonstrate how both
determine a new precursor film structure in drop spreading. These connections can
possibly explain a number of apparent deviations from no-slip predictions seen in
experiments. The paper is concluded in § 7.

2. The Bretherton problem with slip walls: scaling theory
Figure 1 shows the flow geometry of the problem. A closely fitting, long air bubble

is moving at constant velocity U in a two-dimensional channel of depth 2b. The
liquid is an incompressible Newtonian fluid of viscosity µ. The air–liquid interface
is assumed to be clean and has uniform surface tension σ . The bubble displacement
leads to a deposition of thin films of yet to be determined thickness h∞(� b) on the
channel walls. There also exists a non-uniform transition zone of length `∼ (h∞R)1/2
between the uniform film and the round bubble front having radius of curvature R(≈
b). The goal here is to investigate how h∞ varies with both the bubble speed U and
the slip length λ.

2.1. Dimensional analysis
We start with a dimensional/scaling analysis to gain some insights prior to solving the
problem in detail. We restrict our attention to viscosity-dominated flow with negligible
inertial effects, so that the problem here is independent of the fluid density. As a result,
the problem can be characterized by six independent variables: h∞, R, λ, U, µ and
σ . A simple dimensional analysis reduces them to three dimensionless parameters and
suggests the following form for h∞ in terms of the remaining variables:

h∞
R
= f

(
µU
σ
,
λ

R

)
, (2.1)
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where µU/σ , the ratio of viscous to surface tension effects, is often called the
capillary number Ca and typically very small compared to unity. Note that we do not
include `∼ (h∞R)1/2 in (2.1) in view of its purely geometric connection to h∞ and R.

As we expect that h∞ should grow with U (because of much stronger flow
injection into the film) but become thinner due to λ (because of much stronger
capillary draining out of the film), we postulate that (2.1) follows the power law

h∞
R
= c1Can

(
R
λ

)m

, (2.2)

with c1 being a numerical factor. The values of n ( > 0) and m ( > 0) depend on
the size of h∞ relative to λ, which can be controlled by U (via Ca). In the no-slip
(h∞� λ) limit, we should recover the well-known Bretherton law with n= 2/3 and
m= 0.

In the strong slip limit (h∞ � λ) at a very low U, although both n and m are
not yet known, we can at least obtain some information about their values based
on the following physical judgements. First of all, because the slip condition imparts
additional fluid drainage (Vinogradova 1995), we expect the film thickness with slip to
be thinner than that without slip. Moreover, because Ca� 1 and R/λ> 1, the film for
the slip case should undergo more rapid thinning than the no-slip case as Ca decreases.
This ensures that for Ca� 1 the film thickness in the former is always thinner than
that in the latter, which requires n> 2/3. Alternatively, as λ gets smaller, a transition
from no-slip to slip should occur at smaller Ca because we expect a much thinner film
to see slip effects. The capillary number at the transition point Ca∗ can be estimated
by setting the Bretherton scale h∞/R∼Ca2/3 equal to (2.2),

Ca∗ ∼
(
λ

R

)m/(n−2/3)

, (2.3a)

which necessitates n> 2/3 to ensure the smallness of Ca∗. In fact, Ca∗ can be found
by simply setting h∞ ∼ R Ca2/3 to be λ without having to resort to actual scaling in
the strong slip regime, giving Ca∗ ∼ (λ/R)3/2 (see (2.11)) and hence

m= 3
2 n− 1. (2.3b)

Below we will carry out a scaling analysis to determine n and m by deriving the
scaling law for h∞ in the strong slip regime.

2.2. Flow mechanisms and new scaling laws
Next, we explain flow mechanisms and carry out a scaling analysis to estimate
physical quantities involved. To better understand how the film thickness is determined,
it is instructive to first review the classical Bretherton problem in the no-slip limit.
This will provide some physical perspective for the derivation of scalings in the
strong slip limit.

2.2.1. No-slip limit (h∞� λ)

This limit can be considered when the film is much thicker than the slip length.
Most of the discussion here closely follows the book by de Gennes, Brochard-Wyart
& Quéré (2003) or the recent review by Stone (2010). Figure 2 depicts the basic
flow mechanism. Here we focus on the transition region where the film thickness h
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Gas
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(a)

x
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U

FIGURE 2. Flow mechanism for the Bretherton problem with no-slip walls. (a) The
fixed frame, showing that capillary draining can develop out of the film during bubble
displacement. (b) The frame moving with the bubble, showing fluid entrainment into the
film because of the net flow injected by the bubble’s sweeping.

has magnitude h∞ and varies slowly with position. The very first idea begins with
the following picture. While the fluid is drawn into the film due to the bubble’s
displacement, because the thicker part of the film has a greater interfacial curvature
than the thinner part, this creates a negative capillary pressure p ∼ σh∞/`2 to drain
the fluid out of the film. Note here that the transition region has size ` ∼ (h∞R)1/2
because the interface’s curvature in this region h∞/`2 has to match that of the bubble
meniscus 1/R.

The velocity ucap of such capillary draining can be estimated by balancing the
capillary pressure to the viscous stress along the flow direction, p/` ∼ µucap/h2

∞
,

yielding

ucap ∼

(
σ

µ

)(
h∞
`

)3

. (2.4)

This capillary velocity must be of the same order of magnitude as the bubble velocity
U. So we arrive at (

h∞
`

)3

∼Ca. (2.5)

If the fluid is allowed to flow in and out of the film continuously, the above condition
will guarantee a uniform film deposition over the channel walls due to a slight
mismatch between the capillary flow rate (per unit width) q∼ ucaph and the uniform
sweeping Uh by the bubble displacement. It is also worth mentioning that in the
context of forced wetting, (2.5) is essentially the Hoffman–Tanner law for perfectly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

56
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

at
io

na
l C

he
ng

 K
un

g 
U

ni
ve

rs
ity

, o
n 

21
 Ju

l 2
02

0 
at

 0
5:

07
:2

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2013.562
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


206 Y.-C. Li, Y.-C. Liao, T.-C. Wen and H.-H. Wei

wetting liquids, θ 3
d ∼ Ca (Hoffman 1975; Tanner 1979), where θd ≈ h∞/` is the

apparent dynamic contact angle (de Gennes 1985; Stone 2010). Using ` ∼ (h∞R)1/2,
(2.5) then reduces to the well-known Bretherton law:

h∞
R
∼Ca2/3. (2.6)

Therefore it follows that the length of the transition region is `∼ R Ca1/3.
It is tempting to determine the dynamic pressure difference 1p across the bubble so

that one can know how much force is required to push the bubble at a given speed.
This can be achieved by a macroscopic force balance. But it is not done over the
entire bubble. Rather, it should be made over the transition region, which makes most
of the contribution here. This is because the fluid around the two menisci are deemed
to be virtually hydrostatic for small Ca and there is no viscous drag at all in the long
uniform film region (Bretherton 1961). So the force balance over the transition region
1pRW ∼ (µU/h∞)`W (with W being the channel width) together with (2.6) gives

1p∼
σ

R
Ca2/3. (2.7)

This can actually be viewed as an O(Ca2/3) correction to the capillary pressure around
the bubble cap due to the film, namely, 1p∼ (σ/R)(h∞/R). Independence of 1p of
the bubble length in (2.7) is a direct consequence of the dominant contribution of the
transition region to the macroscopic force balance.

2.2.2. Strong slip limit (h∞� λ)

The Bretherton law (2.6) indicates that h∞ can be decreased by lowering Ca. So
when Ca is decreased to the value (see (2.11)) where h∞ is comparable or below the
slip length λ, the Bretherton law breaks down and we enter the strong slip regime.
Similar to the no-slip case discussed above, what happens in this regime can be
pictured below. As depicted in figure 3, wall slip can promote capillary draining,
making the film thinner. This is why the slip condition is often used to describe the
water repelling effect on hydrophobic surfaces (Vinogradova 1995). When this effect
is strong and the bubble speed is sufficiently low, the film can become so thin that it
starts to see slip effects within λ. In this case, the capillary velocity can be amplified
by a factor of λ/h∞ according to (1.1):

u′cap ∼ λ
ucap

h∞
. (2.8)

It is worth remarking that such slip-induced flow amplification is realized for stress-
free interfaces as considered here. The situation here is somewhat similar to pressure-
driven flow in a slippery capillary tube in which the maximum velocity along the
centreline can be increased due to wall slippage (Lauga & Stone 2003). A similar
idea can also work to increase the effective slip velocities in diffusio-osmosis and
electro-osmosis (Ajdari & Bocquet 2006).

Following (2.8), we again take u′cap ∼U to estimate h∞, yielding(
h∞
`

)3

∼Ca
(

h∞
λ

)
or

(
h∞
`

)2

∼Ca
(
`

λ

)
. (2.9)

Compared to (2.5) in the no-slip limit, the dynamic contact angle relationship is
modified by lowering Ca by a factor of h∞/λ. As will become clear later in § 4,
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(a)

(b)

FIGURE 3. Flow mechanism for the Bretherton problem with slip walls. Here wall slip
promotes capillary draining out of the film, and hence tends to make the film thickness
thinner than in the no-slip case. (a) The fixed frame, (b) the frame moving with the
bubble.

this additional factor h∞/λ can actually be interpreted as a reduction of the apparent
viscosity. Equation (2.9) also indicates that the apparent dynamic contact angle now
varies like θd ≈ h∞/`∝Ca1/2, implying a different law for drop spreading on slippery
surfaces. How this impacts drop spreading dynamics will be discussed in § 5.2.

Using (h∞/`) ∼ (h∞/R)1/2, (2.9) then leads to a new quadratic law for the film
thickness:

h∞
R
∼Ca2

(
R
λ

)2

. (2.10)

Note that because h∞ < λ, the above scalings only hold when Ca is below the
breakdown point of the Bretherton law Ca∗ ∼ (λ/R)3/2 (see also (2.11) below).

Compared to Bretherton’s 2/3 law (2.6), the new scaling law (2.10) shows rather
distinct ways in which h∞ can vary with U, together with relevant length scales:
(i) h∞ ∝ U2 varies at a much faster rate than U2/3; and (ii) instead of being
linearly proportional to R, h∞ varies like R3/λ2. More importantly, (2.10) crosses
over Bretherton’s 2/3 law at

Ca∗ ∼
(
λ

R

)3/2

, (2.11)

which also marks the breakdown point of the Bretherton law at h∞ ∼ λ. It is clear
that Ca∗ must vanish as λ→ 0. The significance of this crossover is that it provides
a critical bubble speed U∗ below which the film can see slip effects by following
the new quadratic law (2.10). It is worth emphasizing that although (2.11) is derived
specifically for the Bretherton problem, a similar result can be found in dip coating
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over textured surfaces (Seiwert et al. 2011, see also § 5.1) and forced dewetting on
porous substrates (Devauchelle, Josserand & Zaleski 2007).

The new quadratic law (2.10) also modifies the dynamic pressure drop 1p ∼
(σ/R)(h∞/R) across the bubble:

1p∼
σ

R
Ca2

(
R
λ

)2

. (2.12)

Unlike the no-slip case, whose 1p varies like 1/R (see (2.7)), 1p here now grows
linearly with R.

To sum up, (2.10) and (2.11) are the main results in this paper and indeed follow
the respective scaling forms (2.2) and (2.3) postulated earlier. More importantly, they
all involve λ, thus allowing us to relate these macroscopic quantities in terms of the
amount of wall slip. Finally, we should point out that these new scaling results are
derived from the standard lubrication approximation px = µuyy, which holds only if
uyy� uxx (where the subscripts denote spatial derivatives in either the flow direction
x or the transverse direction y). Because the transverse part scales at least as uyy ∼

ucap/h2 while uxx∼ (λ/h)ucap/`
2 can be best estimated from the plug flow on the lateral

side, uyy� uxx leads to the following criterion under which our analysis holds:

λh/`2
� 1 or λ/R� 1. (2.13)

Below we carry out the formal lubrication analysis to calculate the film thickness h∞
as a function of Ca and λ, as well as to test whether the results follow the new
scalings derived above.

3. Lubrication theory
Following Bretherton’s approach, we look at the transition region to derive the

relevant lubrication equation for determining the film thickness. In a fixed frame, the
fluid motion is governed by ∂p/∂x = µ∂2u/∂y2 with the slip condition u = λ∂u/∂y
at the wall y = 0 and the free-stress condition ∂u/∂y = 0 at the air–liquid interface
y= h(x). The velocity profile can be easily solved as

u=
1

2µ
∂p
∂x
(y2
− 2h(y+ λ)), (3.1)

in which the pressure varies with h(x) according to the linearized Young–Laplace
equation at the interface:

p=−σ
∂2h
∂x2

. (3.2)

Integrating (3.1) over the film gives the flow rate (per unit width):

q=
h3

3µ

(
1+

3λ
h

)(
−
∂p
∂x

)
. (3.3)

Finally, fluid mass conservation requires q to be equal to the flow rate generated by
the bubble’s sweeping U(h− h∞). This leads to the modified Bretherton equation

h3 ∂
3h
∂x3

(
1+

3λ
h

)
= 3Ca(h− h∞). (3.4)
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FIGURE 4. Dependence of the calculated film thickness h∞/R on Ca for various values
of λ/R. To better demonstrate effects of λ, the data are shown up to Ca = 2, although
they are more appropriate for Ca< 0.1 because Ca is assumed small here. For small λ/R,
the data closely follow the 2/3 power of Ca. Increasing λ/R makes the data deviate more
from the 2/3 law, and the deviations become more apparent in the very small Ca regime
where the data show h∞/R∝Ca2, as predicted by (2.10).

Boundary conditions are h= h∞, ∂h/∂x= 0, ∂2h/∂x2
= 0 as x→−∞, and ∂2h/∂x2

=

1/R as x→∞. The unknown h∞ can be found by integrating the above equation
numerically using the shooting method. Because a more accurate solution is needed
to capture the transition between the no-slip limit and the strong slip limit, we take
the arclength approach developed by Ratulowski & Chang (1989) to solve the problem.
The detailed formulation and numerical procedures are given in appendix A.

Prior to showing our results, we remark that (3.3) and (3.4) reveal a number of
characteristic differences between the no-slip limit and the strong slip limit. The
scaling results found in the preceding section can also be formally justified. In
the no-slip limit, (3.3) says q ∝ h3 and thus allows (3.4) to recover the Bretherton
equation:

h3 ∂
3h
∂x3
= 3Ca(h− h∞). (3.5)

Balancing the terms on the two sides of this equation gives the cubic law (2.5) for
the apparent dynamic contact angle. But in the strong slip limit, because of the factor
λ/h increment in the flow rate, q ∝ h2λ, (3.4) ends up with a completely different
equation:

h2λ
∂3h
∂x3
=Ca(h− h∞). (3.6)

This gives a modified scaling relationship (2.9) for the apparent dynamic contact
angle.

Figure 4 plots the calculated h∞/R against Ca for various values of λ/R. It clearly
shows that Bretherton’s 2/3 law no longer holds in the range of Ca( < 1). For a
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FIGURE 5. The critical capillary number Ca∗ and the critical film thickness h∗
∞
/R against

λ/R at the breakdown point of the Bretherton law. For a given λ/R, the breakdown point
is at the interception point formed by extrapolating the 2/3 law (from high to low Ca)
and the quadratic law (from low to high Ca) in figure 4. In (a), the data can be captured
by (2.11) according to Ca∗ = 0.281 (λ/R)1.5 (solid line). The best fit curve (dashed line)
Ca∗= 0.195(λ/R)1.35 is also not far from the above. In (b), the data can be best described
by h∗

∞
= 0.10λ, verifying h∞ ∼ λ at the breakdown point of the Bretherton law.

given λ, the curve shows an apparent deviation from the 2/3 law for Ca below some
critical value Ca∗. If Ca is sufficiently small, h∞ scales like Ca2 as predicted by (2.10).
The transition from the 2/3 law to the quadratic law takes place at a larger Ca∗ as λ
is increased. Plotting Ca∗ against λ/R in figure 5(a), we find that Ca∗ exactly follows
the 3/2 power of λ/R as predicted by (2.11). The corresponding critical film thickness
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FIGURE 6. The data in figure 4 can be collapsed according to either (a) or (b). In (a), all
the data for Ca<0.4 can be best fitted by f =0.73Ca with f = (h∞/R)3/2+ (h∞/R)1/2(λ/R).
In (b), much better data collapsing can be achieved in terms of the 2/3 power of the
effective capillary number Caeff = Ca h∞/(h∞ + λ), with the viscosity µ replaced by the
apparent viscosity µh∞/(h∞ + λ).

h∗
∞

is also plotted against λ in figure 5(b), showing h∗
∞
= 0.1λ and hence verifying

h∞ ∼ λ at the breakdown point of the Bretherton law.
We also attempt to collapse the data and find that this can be done using a single

master curve as shown in figure 6(a):(
h∞
R

)3/2

+

(
λ

R

)(
h∞
R

)1/2

= 1.37 Ca. (3.7a)
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As is also shown in figure 6(b), it turns out that much better data collapse can be
achieved by the alternative form of (3.7a):

h∞
R
= 1.23

(
h∞

λ+ h∞

)2/3

Ca2/3. (3.7b)

This is essentially the Bretherton law (2.6) with µ replaced by µh∞/(λ+ h∞), which
can be interpreted as the consequence of reduction in the apparent viscosity due to
wall slippage. This effective 2/3 law appears to be universal, as will be shown later
in § 4 when we extend the analysis to coating over structured/uneven surfaces.

The above findings have the following implications. When lowering the bubble
speed U from high to low values under the small Ca condition, the film first shrinks
like U2/3 according to the Bretherton law. But this trend will no longer hold when
U is lowered to the point where the film thickness is comparable to the slip length
λ. As the film becomes thinner below λ by further decreasing U, it will undergo
much more rapid thinning at the rate of U2 due to much stronger capillary draining
facilitated by wall slip. Because the bubble velocity at the transition point behaves
like U ∝ (λ/R)3/2 from (2.11) and λ/R is typically small, one will need a very low
U to see slip effects kick in. Also because h∞ ∝ U2 from (2.10), the film in this
case would become so thin that it would almost be in contact with the channel wall
and hence susceptible to rupture. Our recent study has demonstrated that the film is
indeed more vulnerable to rupture due to intensified capillary draining produced by
wall slip (Liao et al. 2013). So the no-slip-to-slip transition here could be relevant
to the wetting-to-dewetting transition seen in flows over structured hydrophobic
surfaces (Sbragaglia et al. 2006) or the transition in gas–liquid slugs running from
the hydrophilic section to the hydrophobic section in a composite microchannel
(Oskooei & Sinton 2010).

4. Extension to textured surfaces: simple two-fluid models
It is well known that apparent slip can arise from surface roughness or structures

(Lauga et al. 2007). Such slip often exists on uneven hydrophobic surfaces due to
trapped vapour films or nanobubbles (Tyrrell & Attard 2001; Choi & Kim 2006; Ybert
et al. 2007). In terms of wetting, because liquid tends to minimize its contact to such
surfaces (Cassie & Baxter 1944), it is possible to create air pockets near the fluid–
solid interface and hence apparent wall slippage (Quéré 2008). Note that it is generally
difficult to completely wet hydrophobic surfaces. So to realize the Bretherton coating
on such surfaces, it could be better achieved by having the walls pre-wetted by another
fluid (e.g. Bico & Quéré 2002). In other words, the coating in this case can be thought
to occur on a fluid surface, which can also produce apparent slip. A similar situation
can also occur in spreading of polymer melts, in which large apparent slip can exist
due to the less viscous layer near a surface (de Gennes 1979). De Gennes (1979) and
Vinogradova (1995) introduced the concept of ‘extrapolation length’ to show that the
apparent slip length can be much larger than the thickness of a thin film layer because
of the abrupt reduction in viscosity near the surface.

Apparent slip can also occur for perfectly wettable, no-slip surfaces that have
sizable pores or surface structures (Bonaccurso, Butt & Craig 2003). In this case,
wetting liquid can penetrate into the interstitial spaces of a surface structure, shifting
the effective slip plane into the liquid to resemble Beavers–Joseph-type slippage
(Beavers & Joseph 1967). In terms of wetting, this favours decreasing the dynamic
contact angle on a hydrophilic surface in that the surface energy can now be increased
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by causing the wetting liquid to have more contacts with the surface (Wenzel 1936;
Shirtcliffe et al. 2010).

So if a liquid film is deposited onto either type of textured surface, we anticipate
that it should be thinner than that on a no-slip surface. Instead of using the more
formal analysis to determine effective slip lengths (Feuillebois, Bazant & Vinogradova
2009; Belyaev & Vinogradova 2010; Asmolov & Vinogradova 2012), in appendix B
we extend the extrapolation length approach of de Gennes and Vinogradova to
derive the apparent slip length and viscosity for both textured hydrophobic and
hydrophilic surfaces. To better illuminate the effects of apparent slip, we assume
that whatever surface inhomogeneity arises from a textured surface can be somewhat
coarse-grained or homogenized into an effective thin layer adjacent to the surface.
With this homogenization, the averaged influence on flow due to surface structures
can be represented by this layer with very distinct properties from the bulk. In
other words, we use simple two-fluid models to capture the essential physics without
looking at detailed surface microstructures. The results can then be used to elicit the
features of the Bretherton coating for these surfaces.

We first consider the coating on a textured hydrophobic surface covered by a liquid
film of thickness h. In this case, the averaged flow behaviour can be represented by
a flow over a less viscous lubricating layer of thickness δ(� h) on the bottom, with
viscosity µδ much lower than the bulk value µ. Under the constant pressure gradient
condition, both the apparent slip length λapp and viscosity µapp (given respectively by
(B 4) and (B 7)) are found to be

λapp ≈ δ

(
µ

µδ
− 1

)
, (4.1a)

µapp ≈

(
h

3λapp + h

)
µ. (4.1b)

Equation (4.1a) agrees with the result of Vinogradova (1995) and that of de Gennes
(1979) when µ�µδ.

For a similar film flowing over a textured hydrophilic surface, the bottom layer is
now taken to be a porous one having permeability Kp that reflects fluid permeation
effects in the interstitial spaces. The Darcy law is employed to model the flow within
this layer, whose viscosity is taken to be the same as the bulk viscosity. The resulting
apparent slip length and viscosity (given respectively by (B 10) and (B 12)) read as

λapp ≈
Kp

h
− δ, (4.2a)

µapp ≈

(
h

3λapp + h

)
µ. (4.2b)

Equation (4.2a) indicates that apparent slip can result if the permeability of the porous
layer is sufficiently large in the sense that Kp > δh. It also suggests that as long as
Kp/δh> 2, λapp can be greater than the thickness of the porous layer, δ.

Although the apparent slip lengths (4.1a) and (4.2a) take different forms, they all
reduce viscosity by the same factor of h/(3λapp + h) (wherein the factor 3 comes
from the flow rate due to pressure forcing). Perhaps the simplest way to see this
viscosity reduction can be derived from a simple shear flow over a slippery surface.
By writing the bulk viscous stress µV/h in terms of the apparent one µappV(λapp+ h)
(with V being the shearing velocity), one can obtain a similar viscosity reduction ratio
µapp/µ= h/(λapp + h).
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In any case, we can write µapp = µh/(cλapp + h) with c being a numerical factor.
Replacing µ by µapp above in the Bretherton law (2.6) gives

h∞
R
∼

(
h∞

cλapp + h∞

)2/3

Ca2/3. (4.3)

This is essentially (3.7b) (by taking c = 1 in (4.3)). Obviously, for both λapp � h∞
and λapp � h∞, (4.3) recovers Bretherton’s 2/3 law and the quadratic law (2.10),
respectively. Hence, it allows us to capture the transition between these two laws in
a unified manner. This also explains why (3.7) can successfully collapse the data in
the entire range of Ca < 1 in figure 6. We also find that data collapse here is not
sensitive to the value of c chosen (as long as c= O(1)). As such, the effective 2/3
law (4.3) can be considered universal. Therefore, all the new scalings found in § 3
should be equally applicable to textured surfaces.

It is worth mentioning that (4.3) can also be applied to the situation where the
apparent slip length λapp becomes negative. This can happen either to (4.1a) with
µδ>µ when the surface layer is more viscous than the bulk, or to (4.2a) with Kp<δh
when the porous layer is less permeable. In general, this negative slip occurs on a
no-slip, uneven surface of small undulation amplitude ε when one would like to derive
the effective boundary condition on the averaged plane of the surface. Specifically,
the effective boundary condition can be derived by taking a Taylor expansion around
the plane y = 0, i.e. u(y = ε) ≈ u(y = 0) + ε∂u/∂y|y=0 + · · · = 0, giving u(y = 0) ≈
λapp∂u/∂y|y=0 with λapp =−ε < 0. Note that the above derivation is more applicable
for h∞� ε. So for coating on such a surface, because µapp =µ/(1− cε/h∞) is now
greater than the bulk value, the deposited film thickness h∞ given by (4.3) will be
thicker than the Bretherton law by a factor of (1− cε/h∞)−2/3. That is,

h∞
R
∼

(
1

1− cε/h∞

)2/3

Ca2/3. (4.4)

This thickening effect would become gradually stronger as h∞ is decreased by
lowering Ca, which might explain slightly thicker films seen in the experiment by
Krechetnikov & Homsy (2005). Equation (4.4) also indicates that its validity can only
hold before h∞ reaches O(ε). Hence, it starts to break down when Ca is around the
critical value Ca∗ ∼ (ε/R)3/2, similar to (2.11). For Ca< Ca∗, the film thickness can
only be O(ε) as the liquid has to fill into the grooves of the surface before forming
a continuously wetting film.

5. Connections to dip coating and drop spreading
To the best of our knowledge, we have not seen any Bretherton-type experiment that

allows us to make direct comparison with our theoretical predictions. Perhaps this can
be carried out by displacing a liquid with a gas bubble in a hydrophobic microchannel
like the experiment by Oskooei & Sinton (2010), or by applying a similar setup to
generate a large apparent slip by depositing a liquid film onto the channel wall pre-
wetted by another immiscible fluid layer (e.g. Bico & Quéré 2002).

Despite the lack of direct experimental evidence to support our theory, there exist
two closely related problems, dip coating and drop spreading, which are known
to share common features with the Bretherton problem (de Gennes et al. 2003;
Stone 2010; Liao et al. 2013) and provide many experiments with which we can
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make comparisons. So it might be more desirable to make connections with these
two problems in order to take a broader look at the role played by wall slip. We
emphasize that here we do not use such connections as a rigorous test of our theory
by making quantitative comparison with experiments. Rather, such connections are
made qualitatively in a scaling sense. As we will demonstrate below, this approach
not only provides a more lucid way to look at how wall slip modifies interfacial
flow characteristics but also offers plausible accounts for apparent departures from
no-slip predictions seen in experiments. More importantly, this might provide feasible
alternatives to assessing wall slip effects experimentally.

5.1. Dip coating over structured/uneven surfaces
The connection to dip coating is obvious, as it belongs to the same class as
Landau–Levich–Bretherton flow. Seiwert et al. (2011) performed dip coating over
a plate textured with micropillars. In their experiment, the coating is carried out by
pulling the plate from a bath of liquid in the range 10−4 < Ca < 10−2, where Ca
is based on the withdrawal velocity V. At high V, the deposited film thickness hd
is found to increase with V such that it approximately follows the Bretherton law
(wherein R is taken as the capillary length (σ/ρg)1/2 ∼ 1 mm with ρ being the fluid
density and g the gravitational acceleration). At low V, on the other hand, hd is
thickened by strong viscous dissipation imparted by the pillars and tends to approach
the pillar height hp independent of V. As discussed at the end of § 4, the pillar height
here in fact acts like a negative slip length, tending to thicken the film according
to (4.4). It also marks the point around which (4.4) starts to break down when hd
is close to hp. The critical capillary number found in their study is Ca∗ ∼ (hp/R)3/2,
which is exactly the breakdown point of (4.4).

In a related study, Krechetnikov & Homsy (2005) found in their experiment on dip
coating over roughened substrates that the measured film thickness for Ca=10−4–10−2

is slightly thicker than Bretherton’s 2/3 law such that the deviations become
diminished as the film gets thicker at larger Ca. The observed film thickening seems
to roughly follow (4.4) and, again, can be interpreted in terms of negative slip length.

5.2. Drop spreading
Concerning drop spreading, its connection to the Bretherton problem is rooted in the
fact that the flow in the transition region of the Bretherton problem can be used
to describe the outer wedge flow away from the contact line: both simply involve
the balance between surface tension and viscous forces from a purely macroscopic
viewpoint (de Gennes et al. 2003; Stone 2010; Liao et al. 2013). Because of this, the
apparent dynamic angle relationship in the Bretherton problem can be used to derive
wetting and spreading laws in drop spreading (Stone 2010; Liao et al. 2013) without
having to include detailed molecular wetting effects in the inner precursor film region
(Kalliadasis & Chang 1996).

Perhaps a better way to see how the Bretherton problem is connected to drop
spreading is to look at the outer film equation in the latter (in the frame moving with
the contact line) under the perfectly wetting condition (Eggers 2004)

3Ca h=−(h3
+ 3λh2)hxxx, (5.1)

where the subscripts indicate the derivatives with respect to x. One can clearly see that
(5.1) is identical to (3.4) with h∞ = 0. At λ= 0, a simple balance between Ca h and
h3hxxx immediately leads to the well-known Hoffman–Tanner law θd= hx∼ h/`∼Ca1/3
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FIGURE 7. Apparent dynamic contact angle data (symbols) found in the drop spreading
experiment by Chen (1988). For Ca > 3 × 10−5, the data can be roughly fitted by θd =

201.3Ca0.33 (long-dashed line) in accordance with the no-slip Hoffman–Tanner law θd ∼

Ca1/3. For Ca< 3× 10−5, however, the data can be best described by θd = 1674.3Ca0.54

(pink solid line), as predicted by θd ∝ Ca1/2 according to (5.2). The apparent departure
from the Hoffman–Tanner law can be attributed to large apparent wall slip existing in the
polydimethylsiloxane (PDMS) liquid used in Chen’s experiment.

for the apparent dynamic contact angle, identical to (2.5) obtained from the Bretherton
problem (Kalliadasis & Chang 1994, 1996; Stone 2010). It is worth mentioning
that the Hoffman–Tanner law can also be derived using the local viscocapillary
energy argument of de Gennes for the wedge flow near the contact line (de Gennes
1985). Therefore, we believe that our new scaling results for the Bretherton problem
should enable us to elicit some physics in drop spreading on slippery surfaces,
especially under the perfect wetting condition or for the spreading of a droplet over
a pre-existing film.

Having the outer film equation (5.1) in connection to the Bretherton problem, we
find that some drop spreading experiments can be interpreted in terms of wall slip.
Chen (1988) conducted a drop spreading experiment on glass substrates and measured
how the apparent dynamic angle θd varies with Ca. In his experiment, the fluid is
silicone oil made of polydimethylsiloxane (PDMS), a typical polymeric liquid that can
impart a large apparent slip (de Gennes 1979). According to Brochard-Wyart et al.
(1994), the apparent slip length for such a liquid can be estimated as λ ∼ amN3/N2

e ,
strongly depending on the number of polymerization, N, and the degree of chain
entanglement Ne, where am is the monomer size of ∼0.1 nm. For N ∼ 103 used in
Chen’s experiment and Ne ∼ 102, λ can be as large as 10 µm.

With the above in mind, let us take a look at Chen’s data shown in figure 7. For
Ca > 3 × 10−5 his data roughly follow the Hoffman–Tanner law θd ∼ Ca1/3, as is
commonly seen in drop spreading on no-slip surfaces. For Ca < 3 × 10−5, however,
the data show a systematic departure from the Hoffman–Tanner law. We find that θd
in this regime actually exhibits much stronger dependence on Ca: θd ∝Ca1/2. In fact,
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this 1/2 law can be obtained using (5.1) with h� λ (or (2.9)) by setting θd ∼ h/` to
be the ratio of the drop height h to the spreading radius r:

θd ∼Ca1/2(r/λ)1/2. (5.2)

Equation (5.2) is also consistent with the result using the local energy dissipation
argument of de Gennes, in which the surface tension energy σθ 2

d U is balanced to
the viscous dissipation energy µU2r/λ, similar to what he did for liquid spreading
on no-slip substrates (de Gennes 1985). The successful capture of Chen’s data by the
1/2 law in the very small Ca regime strongly implies the existence of wall slip in his
experiment.

It should be pointed out that in most drop spreading experiments, a droplet usually
starts with its height h much greater than λ. So for short times, its spreading behaviour
should still follow the Hoffman–Tanner 1/3 law until h∼ λ. If the droplet can keep
spreading after this point, the slightly greater 1/2 law should govern the long-term
spreading behaviour. In other words, a no-slip-to-slip transition should occur during
the spreading, which is exactly what Chen’s data display. Because θd given by (5.2)
has be to be smaller than θd ∼ Ca1/3 for the no-slip case, slip effects would become
important for Ca<Ca′∼ (λ/r)3. Given that the data start to depart from the Hoffman–
Tanner law at Ca≈ 3× 10−5, we can set this Ca to be Ca′ to estimate the slip length
as λ∼ 10−2r. For r∼ 1 mm used in his experiments, λ is of the order of 10 µm. It
is not only comparable to the film thickness in the late stage of the spreading seen in
his experiments, but also in agreement with the value estimated earlier based on the
report by Brochard-Wyart et al. (1994).

In terms of spreading dynamics, (5.2) also implies a new spreading law governing
how the drop spreading radius r grows with time t, which can be derived from (5.2)
by writing the spreading speed U ∼ r/t under the constant volume constraint Ω ≈
(Π/2)hr2

∼ θdr3:

r∼ (tΩ2λσ/µ)1/8. (5.3)

This 1/8 law was first reported by Brochard & de Gennes (1984) for spreading of
polymeric droplets. As expected, the spreading is faster than the classical Tanner 1/10
law r∼ (tΩ3σ/µ)1/10 (as a direct consequence of the Hoffman–Tanner law θd∼Ca1/3)
for the no-slip case (Tanner 1979). It is worth mentioning that a similar 1/8 law can
occur in gravity-driven spreading (Lopez, Miller & Ruckenstein 1976), which is more
appropriate for large droplets. So if a small drop is used and its spreading is found
to obey Tanner’s 1/10 law followed by the new 1/8 law (5.3), this might imply the
existence of wall slip on the surface. The no-slip-to-slip transition should also occur
at the crossover time between these two spreading laws:

t∗ ∼ (Ω2/λ5)(σ/µ)−1. (5.4)

Since it decays very rapidly, like λ−5, if λ is too small, the time required to see
this transition would be prohibitively long. This explains why Tanner’s law is always
observed in most of the drop spreading experiments. In contrast, if (5.3) or (5.4) can
be observed, wall slip effects might no longer be negligible. In fact, we do find such
experimental evidence. Similar to Chen (1988), Albrecht, Otto & Leiderer (1992) also
employed PDMS liquid to conduct their drop spreading experiment. In their study, the
liquid has a much lower molecular weight. So the slip length might be smaller than
that in Chen’s study. However, the droplets they used are picolitre-sized, with radius
r ∼ 1 mm and much smaller thickness h∼ 10 nm. Since the latter could be smaller
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than the slip length, the spreading might be dominated by slip effects. Indeed, their
data do show r∼ t0.13, close to r∼ t0.125 predicted by (5.3).

6. Connection between slip length and molecular length, and their coupling
The connection to drop spreading we made above is based on the hydrodynamic

resemblance between the outer wedge flow and Bretherton film flow at the
macroscopic level. In the inner region, where the stress singularity becomes inevitable
when approaching the contact line, one often either introduces an additional slip length
or molecular disjoining pressure effects to relieve the contact line singularity (Bonn
et al. 2009). Since one can also produce some sort of cutoff length to prevent the
blowing up of the contact-line force, this implies that, at the micro/mesoscopic level,
the slip length might be somewhat connected to the molecular length created by
disjoining pressure. So in this section, we will look more into this connection. In
addition, to link to the outer film flow described by (5.1), we will also look at how
these two effects intervene to modify the film structure in the inner region near the
contact line.

We begin with the work of Denkov et al. (2005), who studied the wall slip
phenomenon in foams or concentrated emulsions. They considered the sliding motion
of foam bubbles over a no-slip wall and determined the wall friction force Fw as
a function of the bubble sliding velocity U under a constant pressure forcing 1P.
Because there is a wetting film between the bubbles and the wall, the slip effect here
can be said to be an apparent one. By assuming that most of the viscous dissipation is
concentrated on the film, these authors showed that if bubble surfaces are tangentially
immobile, Fw is found to vary like U1/2, as opposed to Fw ∝ U commonly seen in
viscous flows. This result also differs from Fw ∝ U2/3 based on the Bretherton law
for mobile bubble surfaces. Their result Fw ∝ U1/2 actually arises from the fact that
the viscous shearing essentially takes place over the entire film (of length L). Since
the film thickness scales as h ∼ (µUL/1P)1/2 ∝ U1/2 using a simple force balance,
this gives the wall viscous stress τw ∼µU/h∝U1/2 and hence Fw ∝U1/2. But if wall
slip is included and the effects are assumed to be strong (λ� h), the wall viscous
stress will turn to τw ∼ µU/λ ∝ U, independent of h which scales as µUL/(1Pλ)
using 1Ph∼ τwL. Therefore, the dependence of τw on U will change from U1/2 to U
when no-slip turns to strong slip. This transition again occurs at h∼ λ, corresponding
to U ∼1Pλ2/µL.

In a related work, Saugey, Drenckhan & Weaire (2006) reconsidered the problem
of Denkov et al., but allowed bubble surfaces to be fully mobile. Further, taking
disjoining pressure into account, they found in their simulations that Fw can vary with
U (via Ca) in different powers ranging from 0.5 to 1. Specifically, Fw∝U for low U
whereas Fw ∝ Un with n= 0.5–0.6 for large U (but still in the small Ca regime). It
is somewhat surprising that this power law change is similar to that for the immobile
bubble case when no-slip turns to strong slip, implying that disjoining pressure might
produce effects similar to wall slip.

Indeed, as disjoining pressure tends to thicken films and hence to reduce viscous
drag, it does produce effects similar to wall slip. This pressure is often written as
Π = σa2/h3 characterized by the molecular length a = (A/6πσ)1/2 ∼ 1 Å, where
A is the Hamaker constant of the order of 10−20–10−19 J (de Gennes 1985). The
connection between disjoining pressure and wall slip can be seen by considering a
film flow at a quasi-static state where disjoining pressure is balanced to the Laplace
pressure ∼σ/R (arising from the bubble meniscus). The resulting film thickness scales
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as h1∼ R(a/R)2/3 and hence the wall stress τw∼µU/h1∼µU/(a2R)1/3. Compared to
τw∼µU/λ for the strong slip situation, the effects produced by disjoining pressure are
essentially equivalent to those by the slip length λ ∼ (a2R)1/3. This equivalence can
also be established by setting the crossover capillary number with wall slip, Ca∗ ∼
(λ/R)3/2 (i.e. (2.11)), to be equal to the capillary number Ca1∼ a/R corresponding to
h1 ∼ R Ca2/3 when the Bretherton 2/3 law ceases to hold (Teletzke, Davis & Scriven
1988). A similar equivalence can also be found in the context of dynamic wetting,
showing that both wall slip and disjoining pressure (in the precursor film) give a
virtually identical logarithmic correction to the dynamic contact angle relationship in
relieving the contact line stress singularity (Kalliadasis & Chang 1996; Yeo & Chang
2006; Savva & Kalliadasis 2011).

We should remark that the usual equivalence between wall slip and disjoining
pressure can only be established by comparing their effects when each exists alone.
In common drop spreading problems, either wall slip or disjoining pressure merely
manifests locally near the contact line — both are unimportant in the bulk away
from the contact line. However, if slip effects prevail throughout a spreading drop
whose height is within the slip length, the precursor film might have a structure rather
different to the usual one, since both slip and disjoining pressure effects are now
coupled. The situation here might be relevant to the spreading of a small polymeric
drop whose apparent slip length could be large (Brochard-Wyart et al. 1994).

Based on the above reasoning, it would be interesting to see how both wall slip
and disjoining pressure together determine the structure of the precursor film under
the strong slip condition. The common approach to a problem of this sort involves
three steps: (i) solve the outer macroscopic flow away from the contact line, which is
exactly governed by the Bretherton-type equation (see (5.1)); (ii) solve the inner flow
problem for the precursor film; and (iii) match the solutions of (i) and (ii), which
yields the dynamic contact angle relationship (Kalliadasis & Chang 1994). Here we
do not intend to solve the entire problem, which is beyond the scope of this paper.
Instead, we follow the spirit of matched asymptotics to elicit qualitative features of
the precursor film in connection with our results given in §§ 2 and 3.

It is more convenient to work on the problem in the frame moving with the contact
line. Similar to (5.1), we begin with the equation px(h3

+ 3λh2) = 3µUh, where the
pressure is modified as p = −σhxx −Π(h) = −σhxx − σa2/h3 (Bonn et al. 2009) by
including disjoining pressure in terms of the molecular length a= (A/6πσ)1/2. When
slip effects prevail (i.e. λ� h), the equation can be reduced to pxλh2

=µUh, giving

Ca h=−λh2hxxx + 3a2λhx/h2. (6.1)

To the best of our knowledge, (6.1) is the first equation that takes into account
both wall slip and disjoining pressure effects in determining the precursor film
structure, as derived in our recent report (Liao et al. 2013). As is also demonstrated
in the same report, several features below can be obtained in the scaling sense from
this equation, and these are worth reiterating here. For the macroscopic flow, the
disjoining pressure term is negligible, and hence (6.1) recovers a form similar to
(3.6). So the balance between the capillary term λh2hxxx and the viscous term Ca h
in (6.1) yields the apparent dynamic angle relationship (2.9). The same balance in
the inner precursor film region is equivalent to matching the macroscopic contact
angle θd to the microscopic one, providing a connection between the characteristic
thickness hf and length `f for the precursor film,

(hf /`f )
2
∼Ca(`f /λ). (6.2)
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Balancing the viscous term and the disjoining pressure term provides an additional
relationship between hf and `f ,

(a/hf )
2
∼Ca(`f /λ), (6.3)

or hf ∼ (a`f )
1/2 by eliminating Ca because of (6.2). Combining (6.2) and (6.3), the

thickness and length of the precursor film are found to be

hf ∼ a(λ/a)1/4Ca−1/4 and `f ∼ a(λ/a)1/2Ca−1/2. (6.4a,b)

These results are quite different from hf ∼ a Ca−1/3 and `f ∼ a Ca−2/3 for liquid
spreading over a no-slip surface (Hervet & de Gennes 1984; Kalliadasis & Chang
1996; Eggers & Stone 2004). Also compared to the above no-slip scalings, both
hf and `f predicted by (6.4) can be greater if λ is sufficiently large such that
(λ/a)3Ca > 1. Such large wall slip might occur in spreading of polymeric liquids.
For instance, for λ∼ 1 µm, a∼ 1 Å, and Ca∼ 10−5, the estimated film dimensions
are hf ∼ 20 nm and `f ∼ 3 µm, which might be detectable in experiments. Moreover,
because `f ∝ Ca−1/2

∝ (`f /t)−1/2 from (6.4b), the film will spread like `f ∝ t1/3 in
an anomalous diffusion manner, in contrast to `f ∝ t1/2 for diffusive films commonly
observed in experiments (Heslot, Cazabat & Levinson 1989; Xu et al. 2004). Note that
in the no-slip case, `f ∼ a/Ca2/3 leads the precursor film to spread like `f ∝ t2/5, which
is not diffusive either. In the recent experimental study by Mate (2012) on spreading
of polymeric droplets, the measured spreading exponent is found to range between
0.31 and 0.42, fairly close to the 1/3 law at the strong slip state and the 2/5 law at
the no-slip state, respectively. So the transition between these two distinct spreading
dynamics can be interpreted as a consequence of the no-slip-to-slip transition.

Given (6.4) as well as the experimental support by Mate (2012), a new precursor
film structure might actually exist due to combined effects of wall slip and disjoining
pressure. Also guided by (6.4), one can then apply the matched asymptotic techniques
to determine the detailed precursor film structure and hence amend (5.2) to give a full
account of how θd depends on a, λ, r, and Ca. These tasks will be left to a future
study.

7. Concluding remarks
We have demonstrated that the features of the Bretherton problem can be

significantly modified by wall slip effects. A slippery wall is somewhat similar
to a free surface in the sense that a fluid can run with less viscous resistance. But
the difference here is that the residual viscous stress on the wall in the former can
impart an additional slip length λ to change flow characteristics qualitatively. This is
manifested by the fact that flow resistance at the strong slip state varies like h−2, as
opposed to h−3 in the usual no-slip case. Because of this, the presence of wall slip
can lead to the following changes to the Bretherton problem.

(i) Bretherton’s 2/3 law h∞ ∼ R Ca2/3 breaks down at Ca∗ ∼ (λ/R)3/2, below which
a new quadratic law h∞ ∼ R Ca2(R/λ)2 emerges to govern the behaviour of film
thickness smaller than λ. The film in this strong slip regime also becomes much
thinner than that predicted by the 2/3 law for the no-slip case.

(ii) Both the 2/3 and the quadratic laws can be unified as h∞/R∼Ca2R2/(λ+ h∞)2.
This universal coating law can be re-expressed as the effective 2/3 law, h∞/R∼
Ca2/3

eff , with the viscosity µ replaced by the apparent viscosity µapp = µh∞/(λ+
h∞) in Caeff = µappU/σ . Since a similar viscosity reduction factor can occur in
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coating over textured surfaces whose apparent slip lengths could be large, our
findings should also be applicable to such surfaces.

The above results also imply that even a fraction of wall slip can have profound
effects on the Bretherton problem. To better illustrate this point, we consider a bubble
displacement in a microchannel of R ∼ 100 µm. Assume the slip length to be λ ∼
1 µm, which is merely 1 % of the channel depth. So the Bretherton law only holds
for Ca>Ca∗ ∼ (λ/R)3/2 ∼ 10−3. But for Ca<Ca∗, the film thickness is described by
the quadratic law h∞ ∼ R Ca2(R/λ)2. For Ca∼ 10−4, this gives h∞ ∼ 10−4R∼ 10 nm.
The Bretherton law with the same Ca gives h∞ ∼ R Ca2/3

∼ 0.02R ∼ 2 µm. So the
film thickness on slip walls is thinner by two orders of magnitude compared to that
without slip. Given that the amount of slip here is merely 1 % of the channel depth,
the impact is quite remarkable. In other words, the coating will be very sensitive to
the amount of wall slip. If the coating speed is not sufficiently high to make the film
much thicker than the slip length, more rapid thinning can occur in the film, making
it more vulnerable to rupture.

To gain more insights into the role played by wall slip, we also make connections
to both dip coating and drop spreading. For drop spreading, in particular, the
quadratic law from the Bretherton problem implies a new 1/2 law for the apparent
dynamic contact angle, θd ∝ Ca1/2 (see (5.2)). This not only successfully captures
the experimental data reported by Chen (1988) but also explains why his data in
the small Ca regime show an apparent departure from the classical Hoffman–Tanner
law, θd ∼Ca1/3. The success in capturing Chen’s data thus provides indirect evidence
supporting our results for the Bretherton problem. An immediate consequence of
this new wetting law is that, instead of Tanner’s 1/10 law, the spreading radius can
grow with time at a slightly faster rate of r∝ t1/8, which is close to the experimental
observation by Albrecht et al. (1992). At the microscopic level, we suggest a new
precursor film structure described by (6.4) due to the combined effects of wall slip
and disjoining pressure. This leads to the anomalous 1/3 diffusion law governing the
spreading dynamics of the film, which is observed in the recent experimental study by
Mate (2012). We emphasize that all these experiments are carried out using polymeric
liquids whose apparent slip lengths can be large. So it is likely that the apparent
departures from the no-slip scalings seen in these experiments can be attributed to
strong wall effects.

Since all these findings are very sensitive to the amount of wall slip, it might be
advantageous to apply them to quantify slip effects. For instance, if one would like
to measure the slip length for a surface, one can apply the Bretherton-type bubble
displacement or the Landau–Levich-type coating to look at how the film thickness
varies with the coating speed and how the result deviates from Bretherton’s 2/3 law.
In particular, the critical capillary number Ca∗∼ (λ/R)3/2, at which the 2/3 law turns
to the quadratic law, can be used to determine the amount of slip. For a planar surface,
perhaps the simplest way to identify whether wall slip exists is to place a tiny droplet
on it. By observing how the droplet spreads with time and looking at whether there is
any transition from the 1/10 law to the 1/8 law, one might be able to estimate the slip
length of the surface. Because all these approaches utilize distinctive no-slip-to-slip
transitions, they should be more accurate than conventional surface force apparatus in
determining the amount of slip experimentally.

Our findings can also be useful in coating and microfluidic applications. In coating,
there is often the need to deposit thin layers on chemically decorated or textured
surfaces. If the slip length is known, one can always apply the effective 2/3 law (3.7b)
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to control the deposited film thickness. As for microfluidic applications, the same law
can be used to control the formation of wetting films in gas–liquid slug flows.
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Appendix A. Arclength approach to solving (3.4) numerically
This appendix describes how to implement the arclength approach of Ratulowski

& Chang (1989) to solving (3.4), to determine the film thickness h∞ numerically. It
is an approach that enables us to determine h∞ directly without having to assume its
scaling, as was done by Bretherton (1961) in his analysis. More importantly, as shown
by Ratulowski & Chang (1989) for the no-slip case, not only is this approach more
accurate than Bretherton’s, but also the calculated film thickness is found to be in
excellent agreement with that from direct numerical simulations (Reinelt & Saffman
1985) up to Ca=O(10−1).

Now consider the motion of a long bubble in a slit-like channel of depth 2b. We
non-dimensionalize the problem by rescaling length, velocity, and time with b, σ/µ,
and bµ/σ , respectively. Since the bubble moves at a constant dimensionless velocity
Ca, we solve the problem in a moving frame, ζ = x − Ca t. Because of fluid mass
conservation, the flow rate within the film qf in the stationary frame reads

qf (r, r0)=Ca(r− r0), (A 1)

where r is the distance from the centreline of the channel to the air–liquid interface
and becomes a constant r0 in the flat part of the bubble. From lubrication theory, qf
can be related to the Laplace pressure (3.2) on the air–liquid interface according to

qf =−K
dp
dζ
, (A 2)

with the mobility coefficient K given by

K(r)=
η3

3

(
1+

3Λ
η

)
, (A 3)

where η = 1− r is the dimensionless film thickness and Λ= λ/b is the ratio of the
slip length to b. For no-slip surfaces (Λ= 0), (A 3) reduces to K = η3/3, as used in
the study by Ratulowski & Chang (1989).

Writing the force balance along the bubble in terms of the arclength variable s
pointing toward the front of the bubble, we solve the following set of equations for
determining the bubble shape:

dζ
ds
= cos θ, (A 4a)

dr
ds
= − sinθ, (A 4b)

dr
ds
=−

cos θ
K(r)

qf (r, r0), (A 4c)

dθ
ds
=−p, (A 4d)
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where θ is the tangential angle at a given point along the bubble surface. We integrate
these equations by starting from the flat portion of the bubble where a unique fixed
point exists (Ratulowski & Chang 1989). The initial conditions for this numerical
integration are

ζ = 0, r= r0, p= 0, θ = 0. (A 5)

Because the film thickness 1− r0 is unknown, we guess a value for r0 and integrate
(A 4) with (A 5) using the fourth-order predictor–corrector method to determine the
interface profile. The value of r0 is then corrected using the symmetric condition at
the bubble tip:

θ =π/2, r= 0. (A 6)

At a given Ca, we employ the Newton–Raphson method to find r0 iteratively until
(A 4)–(A 6) are satisfied completely.

Appendix B. Simple two-fluid models for flows past textured surfaces
Extending the extrapolation length approach by de Gennes (1979), Vinogradova

(1995), we employ simple two-fluid models to determine the apparent slip length and
viscosity for flows past textured surfaces. A liquid film of thickness h consists of
a bulk free layer of viscosity µ and a much thinner lubricating layer of thickness
δ (� h) on the bottom wall. The lubricating layer can be either fluid or a porous
medium. Let u(y)(δ 6 y 6 h) and uδ(y)(0 6 y 6 δ) denote the velocity profiles for the
bulk free layer and the lubricating layer, respectively. The entire film is subjected to
a constant pressure gradient −dP/dx≡G> 0.

B.1. Textured hydrophobic surface
To model an interfacial flow past a textured hydrophobic surface, the lubricating layer
has viscosity µδ much lower than the bulk value µ. The top surface y=h is stress-free:
du/dy= 0. The bottom wall y= 0 is kept no-slip: uδ = 0. At the interface y= δ, both
the velocity and viscous stress are continuous: u= uδ and µ du/dy=µδ duδ/dy.

The velocity profiles that satisfy the above boundary conditions are given by

u=−
G
2µ
(y2
− 2yh)+ ũ, uδ =−

G
2µδ

(y2
− 2yh), (B 1)

with

ũ=
G
2µ

(
1−

µ

µδ

)
(δ2
− 2δh). (B 2)

The apparent slip length λapp can be found from the ratio of the ‘apparent slip’
velocity us ≡ [u− δdu/dy]y=δ (extrapolated from the interface to the bottom wall) to
the shear rate of the free layer du/dy|y=δ, giving

λapp =

(
u

du/dy

)
y=δ

− δ. (B 3)

The slip length defined by (B 3) is also similar to the effective slip length defined by
Belyaev & Vinogradova (2010) for pressure-driven flow past stripes. Applying (B 1)
to the above definition gives

λapp = δ

(
µ

µδ

(
1− δ/2h
1− δ/h

)
− 1

)
≈ δ

(
µ

µδ
− 1

)
. (B 4)
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This leads to (4.1a) in agreement with that given by Vinogradova (1995). It is worth
remarking that (B 4) gives a correct limit λapp→ 0 as µδ→µ. De Gennes (1979) took
λapp to be the ratio of the interfacial velocity u(y = δ) to the wall shear rate du/dy,
and found λapp= (µ/µδ)δ. But this only holds for µ/µδ� 1, which of course agrees
with (B 4) in that limit.

Writing the flow rate q (per unit width) across the entire film in terms of the
equivalent form q = Gh3/3µapp as if the lubricating layer were absent, the apparent
viscosity µapp can be determined as

µapp =
Gh3

3q
. (B 5)

Integrating (B 1) from y= 0 to y= h and neglecting the terms higher than O(δ/h), q
is given by

q≈
Gh3

3µ

(
1+ 3

(
µ

µδ
− 1

)
δ

h

)
. (B 6)

The resulting apparent viscosity can then be found by substituting the above into (B 5):

µapp ≈
h

3δ
(
µ

µδ
− 1

)
+ h

µ, (B 7)

which leads to (4.1b) after replacing δ(µ/µδ − 1) by λapp using (B 4).

B.2. Textured hydrophilic surface
The lubricating layer here is a porous medium of permeability Kp and has the
same viscosity as the bulk value µ. The flow in this layer behaves like a plug flow
characterized by the Darcy law, uδ =KpG/µ, which has to match the velocity of the
free layer at the interface y= δ. The top surface y= h is again stress-free: du/dy= 0.

The resulting velocity profiles are

u=−
G
2µ
(y2
− 2yh)+ ũ, uδ =

Kp

µ
G, (B 8)

with
ũ=

G
2µ
(δ2
− 2δh)+

KpG
µ
. (B 9)

Using (B 3), the apparent slip length is found to be

λapp =
Kp

h− δ
− δ ≈

Kp

h
− δ, (B 10)

which is (4.2a). The flow rate q based on the velocity profiles (B 8) is

q=
G
3µ

(h− δ)3 +
KpG
µ

h≈
Gh3

3µ

(
1−

3δ
h
+

3Kp

h2

)
. (B 11)

The apparent viscosity can then be found using (B 5):

µapp ≈
hµ

3
(

Kp

h
− δ

)
+ h

. (B 12)

This is (4.2b) in terms of λapp using (B 10).
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