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It is usually believed that wall slip contributes small effects to macroscopic flow
characteristics. Here we demonstrate that this is not the case for the thermocapillary
migration of a long bubble in a slippery tube. We show that a fraction of the wall
slip, with the slip length λ much smaller than the tube radius R, can make the bubble
migrate much faster than without wall slip. This speedup effect occurs in the strong-
slip regime where the film thickness b is smaller than λ when the Marangoni number
S = τTR/σ0 (� 1) is below the critical value S∗ ∼ (λ/R)1/2, where τT is the driving
thermal stress and σ0 is the surface tension. The resulting bubble migration speed is
found to be Ub∼ (σ0/µ)S3(λ/R), which can be more than a hundred times faster than
the no-slip result Ub ∼ (σ0/µ)S5 (Wilson, J. Eng. Math., vol. 29, 1995, pp. 205–217;
Mazouchi & Homsy, Phys. Fluids, vol. 12, 2000, pp. 542–549), with µ being the
fluid viscosity. The change from the fifth power law to the cubic one also indicates a
transition from the no-slip state to the strong-slip state, albeit the film thickness always
scales as b∼ RS2. The formal lubrication analysis and numerical results confirm the
above findings. Our results in different slip regimes are shown to be equivalent to
those for the Bretherton problem (Liao, Li & Wei, Phys. Rev. Lett., vol. 111, 2013,
136001). Extension to polygonal tubes and connection to experiments are also made. It
is found that the slight discrepancy between experiment (Lajeunesse & Homsy, Phys.
Fluids, vol. 15, 2003, pp. 308–314) and theory (Mazouchi & Homsy, Phys. Fluids,
vol. 13, 2001, pp. 1594–1600) can be interpreted by including wall slip effects.

Key words: interfacial flows (free surface), lubrication theory, thin films

1. Introduction
When a bubble is subjected to a temperature gradient, it can migrate due to

thermocapillary effects. Specifically, because the surface tension is lower (higher) at
the hot (cold) end, the resulting surface tension gradient can drive the surrounding
liquid towards the cold end, and the viscous opposition on the liquid side in turn
makes the bubble move towards the hot end (Young, Goldstein & Block 1959).
A similar effect can be used to drive liquid droplets on substrates along applied
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temperature gradients (Brzoska, Brochard-Wyart & Rondelez 1993; Smith 1995;
Pratap, Moumen & Subramanian 2008; Gomba & Homsy 2010; Nguyen & Chen
2010; Karapetsas, Sahu & Matar 2013). Such thermocapillary actuation also has
potential applications in microfluidics (Darhuber et al. 2003; Baroud et al. 2007;
Selva et al. 2010), because it not only provides an efficient means to drive fluids in
small scales but also enables flows to be manipulated without moving parts.

Here we are more interested in the thermocapillary motion of fluid particles in
confined geometries, as occurring in enhanced oil recovery and microfluidic devices.
In enhanced oil recovery, water is injected into hot porous rocks underground to
facilitate extraction of residual oil (Slattery 1974). Much like viscous fingering in
porous media (Saffman & Taylor 1958; Homsy 1987), a water slug can form in a
small capillary pore to displace more viscous oil, entraining oil to create a thin film
beneath the slug. The problem is closely related to the classical Bretherton problem,
in which a long bubble travels at a constant velocity in a closed tube (Bretherton
1961). But there is one important difference: the additional thermocapillary stress
on the bubble surface can render extra fluid entrainment into the film towards the
cold end, which can help the water slug gain more speed moving into the pore. A
similar situation can also occur in thermally actuated microfluidic devices, where fluid
particles can be transported under the action of thermocapillary forces (Jiao et al.
2008; Selva et al. 2010).

There are a number of studies addressing how confined boundaries affect
the thermocapillary motion of fluid particles. Wilson (1993) first analysed the
thermocapillary-driven motion of a large droplet in a closed tube subject to a constant
axial temperature gradient. In his later work, he showed, using lubrication analysis,
that the film thickness can grow quadratically with the Marangoni number M (i.e. S
in the present work), where M measures the strength of the applied thermocapillary
stress over the droplet surface. More importantly, he found that the droplet can migrate
at a speed proportional to M5 (Wilson 1995). The same results were rediscovered,
also using lubrication analysis, by Mazouchi & Homsy (2000), who studied the same
problem with a long bubble. Such a strong dependence of the droplet/bubble speed on
the driving thermal stress is actually a combined consequence of thermocapillary film
entrainment (in terms of (b/R)3/2 according to Bretherton’s law) and its conversion (of
a factor b/R, the ratio of the film thickness to the tube radius) into the droplet/bubble
displacement in the opposite direction due to fluid mass conservation (Mazouchi &
Homsy 2000; Stone 2010). It is worth noting that the shape of the tube cross-section
could have a strong impact on a problem of this sort. In an analysis extended to
a polygonal tube by Mazouchi & Homsy (2001), they found that a bubble actually
travels at a speed linearly proportional to the applied temperature gradient due to the
much greater thermocapillary flow through the corner regions of the tube.

In this work we extend previous studies by Wilson (1995) and Mazouchi & Homsy
(2000) to look at how wall slip influences the thermocapillary motion of a long bubble
in a cylindrical tube. In contrast to existing studies that assume the no-slip condition,
the problem here is relevant to a more realistic situation where considerable wall
slip can exist due to nanobubbles or gas pockets trapped on solid surfaces (Tyrrell
& Attard 2001), or due to chemical treatments or surface structures (Craig, Neto &
Williams 2001; Choi & Kim 2006). Because wall slip can reduce viscous drag, we
anticipate that a bubble should move faster than in the no-slip case. This immediately
raises two questions: (i) How much faster can the bubble move? (ii) How does the
bubble velocity depend on the applied temperature gradient and the tube size? In this
paper, we will address these questions by extending the previous no-slip analyses
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FIGURE 1. Schematic diagram for the thermocapillary motion of a long bubble in a
capillary tube. A temperature gradient produces an interfacial stress τT to pull the fluid
towards the cold end, making the bubble move towards the hot end. Here we look at the
film flow in the transition zone of size `∼ (bR)1/2, as indicated by the box.

mentioned above to see how the bubble speed varies with the extent of wall slip.
Below we briefly explain how the problem is motivated from a fundamental point of
view and why we expect to see new physics for this problem due to the breakdown
of the no-slip condition.

The effects of wall slip are often described by the Navier slip condition at a slippery
surface (y= 0),

u= λ∂u
∂y
, (1.1)

where the amount of slip is measured by the slip length λ, defined as the ratio
of the slip velocity u(y = 0) to the corresponding shear rate ∂u/∂y (Navier 1823).
Because λ typically ranges between 100 nm and 1 µm (Lauga, Brenner & Stone
2007), and most interfacial flows have much greater depths of the order of 100 µm,
one might think that wall slip merely contributes small effects. However, this might
be overshadowed by the fact that the liquid thickness b, especially in ultrathin film
flows, can sometimes be comparable to or smaller than λ, so that slip effects can
become strong enough to alter the flow characteristics qualitatively. To better elucidate
this point, let us consider the present problem, where a long bubble is moving in a
slippery capillary tube (of radius R� λ) (see figure 1), and imagine what happens
when the driving thermocapillary stress τT on the bubble surface is varied.

At large τT , because of strong fluid entrainment into the film, the film can be so
thick that b� λ. Much like the no-slip case, the film thickness in this case should
vary quadratically with τT (Wilson 1995; Mazouchi & Homsy 2000). As the film
gets thinner by lowering τT , the importance of wall slip grows progressively. When
the film thickness is down to the point where b ∼ λ, the departure from the no-slip
condition starts to become more apparent. Further lowering τT decreases b below λ,
and can lead the flow to be much amplified by slip effects. In fact, the Navier slip
condition (1.1) immediately implies that, when λ>b, the velocity scale in the film can
be amplified by a factor λ/b. So in this strong-slip regime, because λ must enter to
characterise the problem, we anticipate that the usual scaling laws based on the no-slip
condition will no longer be valid. New scaling laws must emerge to govern how both
the film thickness and the bubble speed vary with τT . This also implies that, when
decreasing τT from large to small values, there must exist a no-slip to slip transition
accompanied by such scaling law changes. In our recent study on the Bretherton
problem with wall slip, we show that the well-known 2/3 law can turn into a new
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quadratic law when slip effects become important (Li et al. 2014). In fact, we have
recently demonstrated that slip effects can substantially modify the hydrodynamics for
a wide range of free-surface film flows (Liao, Li & Wei 2013), as also revealed by a
number of previous studies (Sharma & Kargupta 2003; Kargupta, Sharma & Khanna
2004; Hu 2005; Münch 2005; Münch & Wagner 2005; Münch, Wagner & Witelski
2005). Here we will show that a similar flow characteristic change can also occur to
the stress-driven flows considered in the present study.

The paper is organised as follows. In § 2 we develop a scaling theory to identify
how the film thickness b and the bubble speed Ub are influenced by slip effects. To
test the theory, we will also carry out a formal lubrication analysis in § 3 to derive
the equations for determining b and Ub numerically. Calculated results are presented
in § 4, confirming the scaling results found in § 2. Extension to polygonal tubes and
connection to experiments will also be made in § 5. The paper is concluded in § 6.

2. Scaling analysis
Our goal here is to determine the unknown film thickness b and the bubble speed

Ub. Specifically, we seek how they vary with the following variables: the applied
thermocapillary stress τT , the tube radius R, the slip length λ, the bubble length
Lb, the liquid viscosity µ, and the surface tension σ0. From a purely dimensional
standpoint, we can scale b and Ub respectively by R and σ0/µ, and express them in
terms of dimensionless variables τTR/σ0, λ/R and Lb/R. We further assume that the
relationships take the power-law forms

b
R
= k1

(
τTR
σ0

)α1
(
λ

R

)β1
(

Lb

R

)γ1

, (2.1a)

Ub

σ0/µ
= k2

(
τTR
σ0

)α2
(
λ

R

)β2
(

Lb

R

)γ2

, (2.1b)

with k1 and k2 being numerical prefactors. Here we are more concerned with the
values of the exponents αi, βi and γi (i= 1, 2), which will be determined by how the
relevant effects are balanced according to physical laws. According to Wilson (1995)
and Mazouchi & Homsy (2000) for the no-slip case, the values of these exponents
are α1= 2, α2= 5, β1= β2= 0 and γ1= γ2= 0. But if λ is non-zero, especially when
slip effects are strong at low τT , we expect that the scaling relationships (2.1a) and
(2.1b) would differ from those in the no-slip case. As we shall demonstrate below,
the results actually depend strongly on the extent of wall slip, distinguished by three
distinct regimes: weak slip, strong slip and super slip.

2.1. Weak-slip regime
In the weak-slip regime, where b� λ at sufficiently high τT , the situation is dictated
by the usual no-slip scenario. Though this case has been studied previously (Wilson
1995; Mazouchi & Homsy 2000), it is worth while to review how to derive the scaling
laws physically. This will not only allow us to understand how relevant effects are
at play, but also provide us with hints about how the scaling laws are modified by
wall slip in the later analysis. Similar to the classical Bretherton problem (Bretherton
1961), all the relevant effects occur in the transition zone (of ` ∼ (bR)1/2 in length)
between the uniform film (of thickness b) and the meniscus region (of radius ∼ R).
Figure 2(a) sketches the basic flow mechanism. Because of the imposed temperature
gradient over the film, Gb ≡ |∂Tb/∂x| (across the bubble length Lb), the liquid can
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FIGURE 2. Thermocapillary liquid entrainment in the transition film region on (a) a
no-slip wall and (b) a slippery wall. While the thermocapillary stress tends to drive the
fluid into the film, the capillary pressure gradient tends to drain the fluid out of the film.
The flow rate imbalance between these two mechanisms sets the bubble in motion as a
consequence of no net flow rate across the tube diameter. When wall slip is present, both
thermocapillary and capillary flows are enhanced. But capillary draining becomes much
more intensified in the thicker part of the film, making the film thinner compared to the
no-slip case. Also because of this slip-enhanced capillary draining, the bubble will move
faster.

be entrained into the film under the action of the thermocapillary stress τT = Gbβ,
where β =−∂σ/∂T (>0) measures the susceptibility to lowering the surface tension
σ by raising the temperature T . By balancing τT to the viscous stress µuT/b, this flow
entrainment has a velocity scale given by

uT ∼ τTb/µ. (2.2)

On the other hand, this flow has to distort the round bubble meniscus that remains
almost hydrostatic everywhere except the portion near the wall (provided that the
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surface tension here is sufficiently strong). Because the thicker part of the film
has a greater interfacial curvature, this generates a more negative capillary pressure
p ∼ σ0b/`2 ∼ σ0/R to suck the fluid out of the film. The velocity scale ucap for this
capillary draining can be estimated by balancing the viscous force (per unit depth)
µucap/b2 to the capillary pressure gradient p/`∼ (σ0/R2)(b/R)−1/2, giving

ucap ∼ (b/R)3/2(σ0/µ). (2.3)

The film thickness can then be estimated by equating (2.2) to (2.3):

b
R
∼
(
τTR
σ0

)2

. (2.4)

The same result can be obtained by using Bretherton’s 2/3 law, b/R∼Ca2/3
f , with the

capillary number Caf = µuT/σ0 = (τTR/σ0)(b/R) based on the driving film velocity
uT given by (2.2) (Stone 2010). Because the entrainment flow rate 2πuTbR across the
film must be equal to the displacement flow rate πUbR2 across the tube, the resulting
bubble migration speed is then Ub ∼ uT(b/R) ∼ (τTR/µ)(b/R)2. Together with (2.4),
this becomes

Ub ∼
(
τTR
σ0

)5
σ0

µ
. (2.5)

Both (2.4) and (2.5) were first reported by Wilson (1995) and later rediscovered by
Mazouchi & Homsy (2000). These results have also been rederived by Stone (2010)
using the same scaling arguments as above.

It is worth pointing out that, while the driving stress here, τT = Gbβ, is given by
the temperature gradient Gb ≡ |∂Tb/∂x| over the film across the bubble length Lb, it
is often sustained by the prescribed global temperature gradient G ≡ |∂T/∂x| across
the tube length L. Because the total heat flow across the film must be equal to that
across the tube’s diameter, if L�Lb we can write 2πRbGb≈GπR2, so the temperature
gradient over the film Gb is actually steepened by a factor R/2b compared to the
global one G (provided that the heat transfer is dominated by heat conduction and
the thermal conductivity of the bubble is negligible). Hence, written in terms of G,
τT is also amplified by the same factor R/2b:

τT ≈ (R/2b)Gβ. (2.6)

Because of this, uT ∼ τTb/µ in (2.2) reduces to GβR/µ, which is independent of b.
Then (2.4) and (2.5) can be rewritten as

b
R
∼
(

GβR
σ0

)2/3

, (2.7)

Ub ∼
(

GβR
σ0

)5/3
σ0

µ
. (2.8)

Here GβR/σ0 is exactly the film capillary number Caf = µuT/σ0 mentioned earlier.
As a result, the film thickness follows Bretherton’s 2/3 law (2.7), leading the
bubble speed to obey the 5/3 law (2.8). Unlike the unbounded case, in which Ub ∼
(GβR/σ0)(σ0/µ) (wherein R is the bubble radius) (Young et al. 1959; Subramanian
1981), Ub given by (2.8) is not linear in G but is proportional to G5/3 because of the
factor R/b temperature steepening by the film. Alternatively, since the bubble motion
here is dissipated by much greater viscous forces over the film, the resulting bubble
speed (2.8) is slower by a factor of b/R∼ (GβR/σ0)

2/3 than in the unbounded case.
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2.2. Strong-slip regime
Now we discuss the effects of wall slip. Figure 2(b) shows how wall slip modifies the
picture compared to figure 2(a) without slip. How slip effects kick in can be pictured
by gradually lowering τT from the weak-slip regime. According to (2.4), the lower
τT , the thinner b. So if τT is lowered to the point where b is comparable to or below
λ, we enter the strong-slip regime in which all the no-slip results shown above will
cease to hold. The critical stress τ ∗T for this to happen can be estimated using (2.4)
with b∼ λ:

τ ∗T R
σ0
∼
(
λ

R

)1/2

. (2.9)

In this strong-slip regime, the thermocapillary velocity (2.2) is amplified to

u′T ∼ (λ/b)uT ∼ λτT/µ. (2.10)

The capillary velocity (2.3) is also amplified to the same extent: u′cap ∼ (λ/b)ucap. So
balancing these two velocity scales u′T ∼ u′cap gives exactly the same scaling (2.4) for
b as in the no-slip case. Note that this does not imply that the film thickness here is
the same as in the no-slip case, since the former has to be thinner than the latter, as
physically required here. This will also be confirmed later in § 4. But in terms of the
bubble speed, it does have a different scaling as shown below.

Using Ub ∼ u′Tb/R together with (2.10) and (2.4), the bubble speed scales as

Ub ∼
(
τTR
σ0

)3 (
λ

R

)
σ0

µ
. (2.11)

If a connection is made between the film thickness b/R and the film capillary
number u′Tµ/σ0 (via writing Ub ∼ u′Tb/R on the left-hand side and replacing τTR/σ0
by (b/R)1/2 using (2.4) on the right-hand side of (2.11)), we find that (2.11) can be
rewritten as

b
R
∼
(
µu′T
σ0

)2 (R
λ

)2

, (2.12)

which is essentially the new quadratic law for the Bretherton problem under the strong-
slip condition (Liao et al. 2013; Li et al. 2014).

Compared to the no-slip result (2.5), the bubble speed given by (2.11) is faster
by a factor (λ/R)(τTR/σ0)

−2 > 1 (because τT here is below the critical value (2.9)).
Also, Ub ∝ R2 has a weaker dependence on R, but can increase linearly with λ.
Written in terms of the global temperature gradient G, because τT ∼ (R/b)Gβ ∼
(GβR/σ0)

1/3(σ0/R) from (2.6) and (2.7), (2.11) can be re-expressed as

Ub ∼
(

Gβλ
σ0

)
σ0

µ
. (2.13)

In this way, the bubble speed grows linearly with G, but now is independent of
R. Interestingly, (2.13) takes a form quite similar to (GβR/σ0)(σ0/µ) found for the
unbounded case (Young et al. 1959) – they vary linearly with G. But compared to
the unbounded case, (2.13) for the confined case is of O(λ/R) slower. This O(λ/R)
velocity reduction can be attributed to the fact that, even in this strong-slip limit, the
bubble motion is still dissipated viscously by the film, with the dissipation not over
the film thickness but over the much greater slip length.
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2.3. Super-slip regime
In the above analysis, even in the strong-slip situation with λ> b, we have assumed
that the film velocity gradient in y is much greater than that in x, i.e. ∂u/∂y� ∂u/∂x,
so that the lubrication approximation can still hold. But if the film happens to
be ultrathin at very small τT such that the slip length λ is much greater than the
lateral length scale ` ∼ (bR)1/2 (while still kept �R), the flow in the film would
look like a plug flow. Much like the spreading of a droplet on a much less viscous
liquid (Brochard-Wyart, Debrégeas & de Gennes 1996), the film flow here will be
dissipated more on the lateral side of the film, µ∂u/∂x∼ µu/`, than on the vertical
side, µ∂u/∂y ∼ µu/λ. So in this super-slip regime, the driving stress τT has to be
balanced by the lateral viscous stress µu′T/`, giving the thermocapillary velocity
scale u′T ∼ τT`/µ in the film. Note that the film velocity scale here, because viscous
dissipation now takes place over the much larger length scale `, appears much lower
than the τTλ/µ given by (2.10) for the strong-slip case. Because of this, the resulting
bubble speed in this regime will also be slower than in the strong-slip case, as will
be shown later.

Similarly, the velocity scale u′cap for capillary draining can be found by balancing
the Laplace pressure gradient ∂p/∂x ∼ σ0b/`3 to the viscous stress gradient
µ∂2u/∂x2∼µu′cap/`

2 on the lateral side, giving u′cap∼ (σ0/µ)(b/`) (Liao et al. 2013).
Making u′T ∼ u′cap, we find τT ∼ σ0b/`2 ∼ σ0/R scaling like the Laplace pressure.
Therefore, the velocity in the film scales as

u′T ∼ τT`/µ∼ (σ0/µ)(b/R)1/2. (2.14)

By making a connection to the film capillary number µu′T/σ0, the above relationship
can also be written in the alternative form

b
R
∼
(
µu′T
σ0

)2

, (2.15)

which is actually the super-slip scaling for the Bretherton problem found by Liao et al.
(2013).

Now suppose that the bubble is moving in a much longer tube so that its motion
is driven by the much intensified driving stress τT ∼ (R/b)Gβ (see (2.6)). Balancing
it to τT ∼ σ0/R found earlier, the film thickness has a scale of

b
R
∼ GβR

σ0
. (2.16)

Making use of Ub ∼ u′T(b/R) and (2.14), the bubble speed is found to be

Ub ∼
(

GβR
σ0

)3/2
σ0

µ
. (2.17)

Compared to (2.7) and (2.13) for the strong-slip case, the film thickness is thinner by
a factor (GβR/σ0)

1/3 (recall that b for the strong-slip case has the same scaling as
in the no-slip case). The bubble, however, does not gain more speed because of the
super-slipping wall. Instead, it is slower by a factor (GβR/σ0)

1/2(R/λ)� 1 (owing
to the fact that GβR/σ0 � (λ/R)2 � 1, derived from the super-slip condition λ� `
and (2.16)), as it comes from the much slower film velocity scale (2.14) compared
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No slip Strong slip Super slip
b� λ b� λ� ` b� `� λ and λ� R

B= b/R S2 M2/3 S2 M2/3 M
Cab =Ubµ/σ0 S5 M5/3 (λ/R)S3 (λ/R)M M3/2

Caf = u′Tµ/σ0 B3/2 B1/2(λ/R) B1/2

TABLE 1. Summary of the various film thickness b and bubble speed Ub scalings found in
the three different regimes of (i) weak slip, (ii) strong slip and (iii) super slip, depending
on the size of the slip length λ relative to the film thickness b and to the lateral length
scale of the film ` ∼ (bR)1/2. In dimensionless form, this shows how B = b/R and the
bubble capillary number Cab = Ubµ/σ0 vary with different powers of S= RτT/σ0 (which
measures the strength of the thermocapillary stress τT), or of M=GβR/σ0 (which measures
the strength of the global temperature gradient G) if the bubble is moving in a much longer
tube. The last row highlights that these findings can be made exactly like the results for
the Bretherton problem (Liao et al. 2013) if they are re-expressed in terms of the film
capillary number Caf = u′Tµ/σ0 and the dimensionless film thickness B.

to (2.10) in the strong-slip case. Nevertheless, compared to (2.8) for the no-slip case,
(2.17) is indeed faster (by a factor of (GβR/σ0)

−1/6).
For even larger slip length, such as λ � R, there will be virtually no velocity

gradient at all in the film to generate viscous drag to slow down the bubble. In other
words, the wall of the tube will not have any influence on the bubble. So the bubble
in this case will move at speed Ub ∼ (GβR/σ0)(σ0/µ) as if it were in an unbounded
fluid (Young et al. 1959).

2.4. Summary of different scaling results and their connections
Table 1 summarises the various scaling results found above. These results are also
found to be equivalent to those for the Bretherton problem (Liao et al. 2013).

To get a better overall picture of how the results change from one regime to
another, below we summarise our findings and make connections in terms of how
the bubble speed Ub (reflected by the bubble capillary number Cab =µUb/σ0) varies
with the applied global temperature gradient G (reflected by the Marangoni number
M =GβR/σ0) as sketched in figure 3.

At a sufficiently high G, because b� λ, Ub follows the usual no-slip scaling (2.8)
Cab ∼ M5/3, with the film thickness obeying Bretherton’s law b ∼ RM2/3 from (2.7).
But (2.8) will only hold up to the point where b ∼ λ at M∗1 ∼ (λ/R)3/2 (which is
obtained by setting b∼ λ in the 2/3 law above and essentially (2.9) if writing M =
GβR/σ0 back into S = τTR/σ0 using (2.6)). Below this no-slip breakdown point, we
enter the strong-slip regime where b�λ at low G such as M�M∗1 . In this regime, Ub

follows the linear law (2.13): Cab∼M(λ/R) faster than in the no-slip case Cab∼M5/3,
and b still obeys the same scaling (2.7) as in the no-slip case.

At even lower G such that the film becomes ultrathin, like b� λ2/R, when the
film’s lateral length scale `� λ turns the film flow into a plug flow, we enter the
super-slip regime. The bubble in this regime can travel according to (2.17): Cab∼M3/2.
It still moves faster than in the no-slip case, Cab ∼M5/3, but at a speed slower than
in the strong-slip case, Cab ∼ M(λ/R). The film thickness here scales as b ∼ RM
from (2.16) and hence is thinner than the b ∼ RM2/3 found for both the no-slip
and strong-slip cases. This regime starts at around the value of G corresponding to
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M

Cab

5

3

1

1

3

2

M2* M1*

Weak slip

Strong slip

Super slip

FIGURE 3. Schematic sketch of how the bubble capillary number Cab = µUb/σ0 varies
with the Marangoni number M=GβR/σ0 (in a log–log scale) in weak-slip, strong-slip and
super-slip regimes. As slip effects gradually become strong by lowering M from large to
small values, the bubble speed Ub first follows Cab ∼M5/3 (weak slip) for M>M∗1 , then
Cab ∼ (λ/R)M (strong slip) for M∗2 < M < M∗1 , and finally Cab ∼ M3/2 (super slip) for
M < M∗2 , where M∗1 ∼ (λ/R)3/2 and M∗2 ∼ (λ/R)2 mark the transition points in between
these regimes.

M∗2 ∼ (λ/R)2, the crossover between the strong-slip scaling Cab ∼ M(λ/R) and the
super-slip scaling Cab ∼M3/2.

In short, as slip effects gradually become strong by lowering M from large to small
values, the bubble speed Ub first follows Cab ∼ M5/3 (weak slip) for M > M∗1 , then
Cab ∼ (λ/R)M (strong slip) for M∗2 <M <M∗1 , and finally turns to Cab ∼M3/2 (super
slip) for M<M∗2 , where M∗1 ∼ (λ/R)3/2 and M∗2 ∼ (λ/R)2 mark the transition points in
between these regimes.

Finally, we should emphasise that the above findings are closely connected to the
results for the Bretherton problem (Liao et al. 2013). If rewritten in terms of B =
b/R and the film capillary number Caf =µu′T/σ0 by noting that Caf =Cab/B due to
Ub ∼ Bu′T , all the results – namely, Cab ∼M5/3 (with B∼M2/3) for weak slip, Cab ∼
M(λ/R) (with B∼M2/3) for strong slip, and Cab ∼M3/2 (with B∼M) for super slip
– turn out to become exactly like those for the Bretherton problem (Liao et al. 2013):
Caf ∼ B3/2, Caf ∼ B1/2(λ/R) and Caf ∼ B1/2, respectively, which are also summarised
in table 1.

3. Lubrication analysis
In this section we extend the lubrication analysis by Mazouchi & Homsy (2000)

to derive the relevant equations for determining b and Ub numerically. In addition to
confirming their no-slip results, we would mainly like to test the strong-slip scalings
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(2.4) and (2.11) that we find in the preceding section (the super-slip scalings (2.16)
and (2.17) will be tested in future work since the usual lubrication theory is not
applicable to this case). In a fixed frame, we first solve µ∂2u/∂y2= ∂p/∂x (along the
bubble’s moving direction x) to determine the velocity profile in the transition zone,

u= 1
2µ

∂p
∂x
(y2 − 2h(y+ λ))+ 1

µ

∂σ

∂x
(y+ λ), (3.1)

which satisfies the slip condition (1.1) at the wall y= 0 and µ∂u/∂y= ∂σ/∂x≡−τT at
the air–liquid interface y= h. The pressure p can be approximated as the axial Laplace
pressure across the interface:

p=−σ0
∂2h
∂x2

. (3.2)

The flow rate (per unit width) across the film is then

q= 1
3µ

(
−∂p
∂x

)
(h3 + 3λh2)− τT

2µ
(h2 + 2λh). (3.3)

Taking a mass balance over the zone, at steady state q has to be equal to the net flow
rate qnet =Ub(h− b)− (τT/µ)(b2/2+ λb) coming from the bubble’s sweeping and the
thermocapillary flow (in the opposite direction) towards the uniform film region. Note
that, in the film flow part, we have taken into account the contribution (τT/µ)λb from
the slippery wall. Substituting (3.2) into q= qnet, we can obtain a differential equation
describing how the interface varies with position. Non-dimensionalised by H = h/R,
X = x/R, Λ= λ/R and B= b/R, the equation takes the form

1
3 HXXX(H3 + 3ΛH2)− 1

2 S(H − B)(H + B+ 2Λ)=Cab(H − B). (3.4)

Here S = τTR/σ0 is the Marangoni number in terms of the thermocapillary velocity
τTR/µ over the bubble scale. In connection with the global temperature gradient G=
2τTBβ−1 (see (2.6)), S should read as S = 1

2(GβR/σ0)/B. Here Cab = µUb/σ0 is the
capillary number based on the (unknown) bubble speed Ub.

Note that in (3.4) both Cab and B need to be determined in order to find the
unknowns Ub and b. As in Mazouchi & Homsy (2000), the relationship between Ub
and b can be established by the global mass balance, in that the flow injection into
the uniform film region, (τT/µ)(b2/2 + λb)2πR, is equal to the flow rate generated
by the bubble displacement, πUbR2. In terms of the dimensionless form, this global
mass balance reads

Cab = S(B2 + 2ΛB), (3.5)

providing a coupling between the unknowns Cab and B when coming to solve (3.4).
Similar to previous studies (Bretherton 1961; Mazouchi & Homsy 2000), to solve the
problem the following boundary conditions are required:

H→ B, HX→ 0, HXX→ 0 as X→−∞, (3.6a)
HXX→ 1 (or H→ X2/2) as X→∞. (3.6b)

Prior to taking (3.4)–(3.6) for solving the problem, it is instructive to inspect
whether they reveal the features in both the no-slip and strong-slip limits shown
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in § 2. In the no-slip limit (Λ � B), equations (3.4) and (3.5) reduce to those
obtained by Mazouchi & Homsy (2000):

1
3 HXXXH3 − 1

2 S(H2 − B2)=Cab(H − B) and Cab = SB2. (3.7a,b)

In (3.7a), taking H ∼ B and balancing the terms on the left-hand side, B4/X3 ∼ SB2

gives B2 ∼ SX3. Also, because X ∼ B1/2 from H(X→∞)→ X2/2 due to (3.6b), we
arrive at B ∼ S2, which is (2.4). Equation (3.7b) then immediately gives Cab ∼ S5,
which is (2.5). But a simple balance between the terms on both sides of (3.7a) will
not give the correct scaling for Cab, which seems inconsistent. The reason is that,
while the terms on the left-hand side are of the same order of magnitude SB2, their
difference is not SB2 and actually goes an O(B) higher like SB3. This slight flow-rate
mismatch balances the Cab term; so SB3 ∼ CabB gives the correct scaling Cab ∼ SB2

in accordance with (3.7b). Physically, the interface has to adjust its shape in such a
way that the capillary flow H3HXXX/3 just slightly exceeds the thermocapillary flow
S(H2−B2)/2 to generate a little net flow to set the bubble in motion under the global
conservation condition (3.7b).

In the strong-slip limit (Λ� B), (3.4) and (3.5) reduce to

ΛH2HXXX − SΛ(H − B)=Cab(H − B) and Cab = 2ΛBS. (3.8a,b)

Following similar arguments to those above, we find B∼ S2 again and Cab∼ΛS3, and
the latter is essentially (2.11). The crossover between the no-slip result Cab ∼ S5 and
the strong-slip one Cab ∼ΛS3 occurs at S∼Λ1/2, which is actually (2.9).

In terms of how to obtain the actual solution, we use (3.5) to replace Cab in
terms of S and B in (3.4) and then solve (3.4) numerically with boundary conditions
(3.6). Specifically, for a given S, we guess a value for B and then solve (3.4) subject
to the initial conditions (3.6a) by shooting using the fourth-order Runge–Kutta
method. We repeat the above procedures until the solution satisfies the far-distance
condition (3.6b).

While the above solution procedures seem straightforward, we sometimes require
a very accurate initial guess to obtain a correct solution behaviour, especially for S
below 10−2. The reason is that, for small S, not only is the film thickness H very
small but also its slope HX has to be very steep as it approaches the bubble cap in
order to match the curvature of the cap via (3.6b): HXX→ 1 as X→∞. Therefore, any
small deviation of H might cause a significant overshooting or undershooting. From
this point of view, we also seek a way to better lock on to the solution. To do so,
noting that H ∼ S2 in both the no-slip and strong-slip limits, we rescale H and X in
(3.4) as η=H/S2 and Z=X/S (because X∼H1/2 from (3.6b)), respectively, similar to
previous studies on the same problem without slip (Wilson 1995; Mazouchi & Homsy
2000). Further, letting B̃= B/S2 and Λ̃=Λ/S2, (3.4) can be transformed into

1
3ηZZZ(η

3 + 3Λ̃η2)− 1
2(η− B̃)(η+ B̃+ 2Λ̃)=C(η− B̃), (3.9)

with C≡Cab/S3= S2(B̃2+ 2Λ̃B̃). The boundary conditions (3.6) in the rescaled form
remain unchanged. So in solving (3.4), H is small but X is kept O(1). To have the
solution behaviour correctly matched to (3.6b), B needs to be carefully adjusted with
little errors allowed in the shooting. In contrast, in the rescaled form (3.9), we stretch
both η and Z as O(1). Since ηZ is now O(1), the solution should be easily sought by
simple shooting without any difficulty in matching ηZZ→ 1 as Z→∞. In other words,
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because everything is kept O(1), this allows us to ensure the solution behaviour by
preventing possible inaccuracy from overshooting or undershooting. We have verified
that it is indeed much easier to get an accurate solution by solving (3.9). As they
should be, the results by solving the rescaled (3.9) are identical to those by solving
(3.4), which is also confirmed.

4. Results and discussion
Figure 4(a) plots the film thickness B against the driving stress S for various values

of Λ. At Λ= 0, we find that B scales like S2, recovering the no-slip result (2.4) found
by Mazouchi & Homsy (2000). When wall slip exists, even with a fractional amount
like Λ= 0.001, we can clearly see that B starts to become lower than the no-slip case
at S∼ 10−2, which is about the critical stress S∗ ∼Λ1/2 (see (2.9)) below which B is
smaller than Λ and slip effects become important. With further lowering of S, this
decrease in B becomes even more pronounced. Yet, when S reaches 10−3 or smaller,
the decrease becomes saturated, making B again approach like S2 but with its value
approximately 1/3 smaller than in the no-slip case. For larger values of Λ, the results
basically follow the above trend, but the transitions take place at larger values of S.

Figure 4(a) basically reveals that, even though B with wall slip is smaller than
that without, its value in the very small S regime still scales like S2, which confirms
our scaling B ∼ S2 (2.4) in both the no-slip and strong-slip limits. For this reason,
to make the transition from no slip to strong slip look more apparent, we plot B/S2

against S in figure 4(b). It clearly shows that the curves basically vary in between the
two horizontal asymptotes associated with the no-slip and strong-slip limits. Taking
a closer look at the curves of Λ = 0.0001, 0.001 and 0.01, they have inflection
points at S ≈ 2 × 10−3, 10−2 and 2 × 10−2, marking the corresponding crossover
points between no-slip and strong-slip results. Taking the inflection points for various
values of Λ in the range 10−4–10−2 and plotting the corresponding S values against
Λ in figure 5, we find that these values exactly scale like Λ1/2, which confirms the
crossover scaling (2.9).

Having obtained B as a function of S, we can readily determine Cab for finding
the bubble speed using (3.5). The results with various values of Λ are displayed by
plotting Cab against S in figure 6(a). At Λ = 0, we see that Cab scales like S5, in
accordance with the no-slip result (2.5) found by Mazouchi & Homsy (2000). At Λ 6=
0, we find that Cab can be increased by wall slip in such a way that Cab ∝ S5 can
turn to Cab∝ S3 when deceasing S from large to small values, clearly demonstrating a
transition from the no-slip state to the strong-slip state. What is more striking is that,
even with 1 % of wall slip (Λ = 0.01), the bubble speed for S < 10−3 can be more
than two orders of magnitude faster than without slip. It is also evident that the larger
Λ, the faster the bubble moves. Plotting Cab/Λ against S in figure 6(b) collapses all
the data in the small S regime perfectly, confirming the strong-slip scaling Cab∼ΛS3

predicted by (2.11).

5. Extension to polygonal tubes and connection to experiments
While the present work is based on the cylindrical tube geometry, we also seek

an extension to other geometries as well as a connection to experiments. It is not
difficult to anticipate that, for the present Bretherton-type problem, our findings can be
equally applied to two-dimensional channels, except with different coefficients. But for
other geometries such as polygonal tubes, Mazouchi & Homsy (2001) showed in their
no-slip theory that the bubble speed can behave in a quite different way compared to
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FIGURE 4. (a) Calculated film thickness B= b/R as a function of S= τTR/σ0 for various
values of the slip length Λ= λ/R. At Λ= 0, B is found to scale as S2. At a given value
Λ 6= 0, the curve starts to deviate from the no-slip one at some S on decreasing S from
large to small values. In the very small-S regime like S< 10−3, although wall slip effects
are strong, all the curves show B∼ S2 but with magnitude slightly smaller than the no-slip
case. (b) The result of plotting B/S2 against S, clearly showing that B ∼ S2 in both no-
slip and strong-slip limits. Note that inflection points seem to exist at S≈ 2× 10−3, 10−2

and 2× 10−2 for the curves of Λ= 0.0001, 0.001 and 0.01, marking transitions from the
no-slip state to the strong-slip state.
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S*
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10–1

10–4 10–3 10–2

FIGURE 5. Plot of S∗, the transition point from the no-slip state to the strong-slip state,
against Λ, showing S∗ ∼ Λ1/2 in agreement with (2.9). Here the values of S∗ are taken
from the inflection points seen in figure 4(b) for Λ= 10−4–10−2.

that in a circular tube. They found that, instead of (2.5), the bubble speed, in our
notation, takes the form

µ

σ0
Ub = c1

aτT

σ0
+ c2

(
aτT

σ0

)5

, (5.1)

where aτT/σ0 is roughly like our S, with a being the characteristic dimension (e.g. the
radius of the mean curvature of the bubble surface around a corner sector), and c1 and
c2 are dimensionless coefficients that depend on the shape of the tube cross-section.
They identified that the bubble speed mainly comes from the O(aτT/σ0) term due to
the thermocapillary flow through the corner regions of the tube, plus the O((aτT/σ0)

5)
correction due to the neighbouring thin films. Note that the O((aτT/σ0)

5) correction
is exactly (2.5). In the subsequent experimental study using rectangular channels,
Lajeunesse & Homsy (2003) found that the measured bubble speed roughly grows
linearly with the applied temperature gradient, as described by the first term of (5.1).
So the geometry of the tube cross-section seems to play an important role in the
movement of the bubble.

When wall slip is present, we expect that more terms should be added to (5.1) to
account for slip effects. Here we do not intend to solve this problem. Instead, we make
some rational guesses about how (5.1) is modified. As explained in the Appendix,
we postulate the following expression for the bubble speed in a slippery polygonal
tube:

µ

σ0
Ub = c1

aτT

σ0

(
1+ d1

(
λ

w

))
+ c2

(
aτT

σ0

)5
(

1+ d2

(
λ

a

)(
aτT

σ0

)−2
)
. (5.2)
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FIGURE 6. (a) Calculated bubble capillary number Cab against S for various values of
Λ. Here Cab is evaluated using (3.5) using the calculated values of B shown in figure 4.
The no-slip case Λ = 0 shows Cab ∼ S5. At Λ 6= 0, Cab can be increased by wall slip
in such a way that Cab ∝ S5 can turn to Cab ∝ S3 when decreasing S from large to
small values, clearly demonstrating a transition from the no-slip state to the strong-slip
state. (b) The data in the small-S regime can be collapsed by plotting Cab/Λ against S,
confirming Cab ∼ΛS3 shown by (2.11).

Here two additional slip terms, λ/w and (λ/a)(aτT/σ0)
−2 (with O(1) coefficients d1

and d2), are added to the c1 and c2 terms, respectively, where w (< a) is the gap size
between the bubble surface and the wall in the corner region. Note that the actual c1
value can be hundreds or thousands of times smaller than c2, depending on the tube
geometry (Mazouchi & Homsy 2001). Since aτT/σ0 is typically small, the inclusion
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of the slip terms might change the relative importance between the c1 and c2 terms
when slip effects are important.

In terms of experiments, we take the conditions in the study of Lajeunesse &
Homsy (2003) to estimate the parameters involved and to identify how wall slip
changes the relative importance between the terms in (5.2). In their study, the tube
size is a ∼ 1 mm. The fluid viscosity is µ ≈ 10−4–10−3 Pa s. The surface tension
is σ0 ≈ 10−2 N m−1 with the temperature coefficient β ≈ 10−5 N m−1 K−1. The
temperature gradient across the bubble is Gb≈ 102 K m−1. Using the above data, we
have τTa/σ0 = βGba/σ0 ≈ 10−4. For the channels that they used, c1 ≈ 10−2–10−3 and
c2 ≈ 1–10. As also shown in the Appendix, we find that the bubble speed, with and
without wall slip, is always dominated by the c1 term. In the absence of wall slip, the
bubble speed can be estimated using the c1 term of (5.1), giving Ub≈ 1–100 µm s−1.
If wall slip exists especially when a polymeric liquid is used (de Gennes 1985), the
slip length can be as large as λ∼ 1 µm (which is much larger than the film thickness
b estimated by b∼ a(τTa/σ0)

2 according to (2.4)). If the liquid thickness in the corner
sectors w happened to be comparable to or smaller than λ, it is possible to increase
the bubble speed according to the c2 term of (5.2).

It is worth pointing out that in the above discussion, we assume that τT is a
constant by taking the temperature gradient across the bubble Gb to be roughly the
global temperature gradient G so that the bubble speed can always be described
by (5.2). However, if we use this way and apply b ≈ 10a(βGba/σ0)

2 obtained by
Mazouchi & Homsy (2001) to estimate the film thickness in the experiments of
Lajeunesse & Homsy (2003), we find that b is of the order of angstroms, which
is actually unphysically too thin compared to the film thickness (whose thinnest
part is estimated to be of the order of micrometres) seen in their experiments.
Perhaps a way to resolve this is to assume that the bubble is nearly insulated and
its length is much shorter than the channel length, so that a much thicker film can
be rendered by the much greater driving stress τT ∼Gbβ ∼ (a/b)Gβ due to the much
intensified temperature gradient over the bubble surface Gb ∼ (a/b)G (see § 2.1).
By doing so, the film thickness will scale like Bretherton’s law, b ∼ a(βGa/σ0)

2/3

(see (2.7)), giving b of the order of micrometres under G ≈ 102 K m−1. Using
aτT/σ0=βGba/σ0∼ (βGa/σ0)

1/3 based on Bretherton’s law, (5.2) is transformed into

µ

σ0
Ub = c1

(
Gβa
σ0

)1/3(
1+ d1

(
λ

w

))
+ c2

(
Gβa
σ0

)5/3
(

1+ d2

(
λ

a

)(
Gβa
σ0

)−2/3
)
,

(5.3)

which makes the dependence of Ub on G less strong. In the c2 term, the slip term
can become important when

βGa/σ0 < (λ/a)3/2. (5.4)

In this case, even if the c1 term is dominated by the no-slip term, the c2 term can still
win because its ratio to the c1 term, (c2/c1)(λ/a)(βGa/σ0)

2/3 ∼ 10(λ/a), can become
greater than unity with c2/c1= 104 (using channels with large aspect ratios or circular
tubes) and βGa/σ0 ∼ 10−4. The resulting bubble speed is then governed by

µ

σ0
Ub ≈ c2d2

(
Gβa
σ0

)(
λ

a

)
, (5.5)

which is essentially (2.13). More importantly, the bubble speed still varies linearly
with the applied temperature gradient. Perhaps for this reason, the bubble speeds
measured in the study by Lajeunesse & Homsy (2003) can sometimes display slightly
higher values than those predicted by the no-slip model (see their figure 6).
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6. Concluding remarks
We have demonstrated that wall slip can have a profound impact on the

thermocapillary motion of a long bubble in a closely fitting tube. We find that,
although the film thickness does not change much with the extent of wall slip, the
bubble can be significantly speeded up by slip effects. As shown in figure 6(a), at
sufficiently low driving thermal stress S= τTR/σ0 like 10−3 or smaller, a mere 1 % of
wall slip (Λ≡λ/R= 0.01) can make the bubble travel more than 100 times faster than
in the no-slip case. This is attributed to the fact that the bubble speed Ub∼ (σ0/µ)ΛS3

in the strong-slip state is ΛS−2 greater than the Ub ∼ (σ0/µ)S5 in the no-slip state.
Therefore, with the help of wall slip, bubbles can quite easily be driven by small
temperature gradients. In other words, to reach the same bubble speed, the required
temperature with slip will be considerably smaller than that without slip gradient.
For instance, to have the bubble speed at a level like Cab = 10−10, the driving stress
S ≈ 10−3 at Λ= 0.01 is approximately four times smaller than that at Λ= 0. If the
bubble length is much shorter than the tube length, the actual temperature gradient
across the bubble will be amplified by a factor R/b. In this case, written in terms
of the global temperature gradient G, since G ∝ S3 due to S = 1

2(GβR/σ0)/B (see
the remark after (3.4)) and B∼ S2, the required global temperature difference can be
reduced by more than 100 times!

Moreover, we find that there exists a super-slip regime (see § 2.3) where the bubble
can also be speeded up by slip effects in a different manner but cannot be captured by
the standard lubrication analysis. Specifically, this happens in the situation where the
film is ultrathin such that its lateral size ` becomes much smaller than the slip length
λ. In this case, the bubble speed is found to scale as (2.17). It is somewhat surprising
that (2.17) is actually slower than the strong-slip case (2.13) (while it is still faster
than the no-slip case (2.8)). The reason is that the bubble motion here is dissipated
viscously not over the film thickness but over the much longer lateral side of the film.
For much larger slip length like λ� R, the wall of the tube has no influence on the
bubble, thereby making the bubble migrate as if it were in an unbounded fluid.

While our analysis is based on a circular tube geometry, it should also be applicable
to slit-like channels (Mazouchi & Homsy 2001). So our findings also hold for this
geometry. For other geometries, we extend our analysis to polygonal tubes by adding
slip terms to the expression for the bubble speed derived by Mazouchi & Homsy
(2001) (see § 5). We find that, as long as the bubble is nearly insulated and its length
is much shorter than the length of the tube, it is possible to increase the bubble speed
by slip effects in the manner similar to what Mazouchi & Homsy (2001) observed
in their experiments. As the flow is basically controlled by the film, we also expect
that our results should also be applicable to a liquid droplet provided that its thermal
conductivity is much lower than that of the continuous phase. On the other hand, if
one would like to conduct an experiment to see whether the drop speed U can change
its dependence on the applied temperature gradient G due to wall slip, perhaps it can
be achieved by: (i) the use of a cylindrical tube or a shallow microchannel having a
large width-to-depth ratio for eliminating corner sector effects, and (ii) choosing the
drop phase to be thermally conductive so that the temperature gradient across the drop
can be made comparable to that across the length of a tube/microchannel.

In terms of microfluidic applications, it might also be desirable to utilise slip
effects to enhance fluidic transport (such as pumping and mixing) in thermally
actuated devices. As apparent wall slip can be generated much more easily by
surface functionalisation or textures, our results might provide useful guidance for
designing such devices.
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In a broader perspective, we have previously demonstrated that wall slip can
drastically modify flow characteristics and give rise to no-slip to slip transitions for
a number of free-surface flows (Liao et al. 2013). We show that the same things
can also happen to stress-driven flows as considered here. In particular, we find that
our findings for the present thermocapillary problem are equivalent to those of the
Bretherton problem (Liao et al. 2013) (see § 2.4), meaning that, though driven by
different mechanisms, the essential physics of these two problems are basically the
same. As the features of such Bretherton-type problems can also be used to describe
other processes such as dip coating and drop spreading (Stone 2010; Liao et al. 2013),
we believe that the impact of wall slip could be quite universal to a wide class of
interfacial flows – all are sensitive to the amount of wall slip. As the transition from
no-slip to strong slip always occurs when the film thickness is comparable to the slip
length (b ∼ λ), the associated scaling at the transition point would provide not only
a criterion to evaluate the importance of slip effects, but also a direct link between
the microscopic slip length and the macroscopic length scales. Also because such a
crossover scaling is unique for a given flow system, it might offer a more reliable
means to quantify the amount of slip experimentally. As slip effects would manifest
most when b < λ, molecular effects (e.g. disjoining pressure) between the bubble
surface and the tube wall might come into play to mediate flow characteristics at
the scale of 100 nm or smaller (de Gennes, Brochard-Wyart & Quéré 2003). So it
would be interesting to see how such effects influence the bubble speed found in the
present work, which will be pursued in our future study.
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Appendix. Effects of wall slip on the thermocapillary speed of a long bubble in
a polygonal tube

This appendix is to provide plausible conjectures about how wall slip effects modify
the no-slip result (5.1) found by Mazouchi & Homsy (2001). Because of the slip
length λ, there must be additional terms involving λ/a (like our Λ) in (5.1). First
consider the c1 term in (5.1). This term accounts for the thermocapillary flow through
the corner sectors enclosed by the tube walls and the bubble surface. Since the bubble
surface in these regions is always kept hydrostatic (in the small-capillary-number
regime) (Mazouchi & Homsy 2001), its shape will not change at all. In other words,
the total cross-sectional area in such regions remains unchanged. So the associated
flow rate can be increased by a factor of O(λ/a) due to wall slip. As for the c2
term from the thin-film correction, wall slip can make the film thinner. But such film
thinning should not be too sensitive to the shape of the tube cross-section (which has
already been reflected by c2). So we expect that this term should be modified into
the form like (3.5) with B ∼ S2. Combining the above reasonings, we modify (5.1)
by adding the respective slip terms to both the c1 and c2 terms as

µ

σ0
Ub = c1

aτT

σ0

(
1+ d′1

(
λ

a

))
+ c2

(
aτT

σ0

)5
(

1+ d2

(
λ

a

)(
aτT

σ0

)−2
)
. (A 1)

But a closer inspection of the slip term in the c1 term reveals that the actual
magnitude of this term is not necessarily O(λ/a) because the coefficient d′1 could
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be large, depending on the gap size between the wall and the bubble surface of a
corner sector, w. Because w is no more than O(a), we can consider two situations:
(i) w ∼ O(a) and (ii) w � O(a). In (i), d′1 ∼ O(1), so the slip term is merely a
correction. But in (ii), the fluid now is confined by a much smaller gap, so it may
see more influence from the slippery wall when w < λ. In this case, the flow is
speeded up by a much larger factor λ/w, giving d′1∼O(a/w). So in any case we can
always set d′1 = (a/w)d1 with d1 = O(1) for the c1 term. Hence, the c1 term can be
rewritten as

c1

(
aτT

σ0

)(
1+ d1

(
λ

w

))
. (A 2)

Combining (A 1) and (A 2) thus yields (5.2).
As the inclusion of the slip terms might change the relative importance between the

c1 and c2 terms, we use the ratio Ω of the c2 term to the c1 term to see which term
dominates in (A 1).

In the no-slip limit, Ω(λ= 0)∼ (c2/c1)(aτT/σ0)
4. So even though c2/c1 can be as

large as 104, aτT/σ0 is typically 10−4 or smaller (Lajeunesse & Homsy 2003). This
leads to Ω(λ= 0)∼ 10−12 and hence the bubble speed is dominated by the c1 term.
This explains why Ub is roughly linear in τT in the study of Lajeunesse & Homsy
(2003).

When wall slip is present, even with a fraction of wall slip like λ/a∼ 10−2, one can
have aτT/σ0<(λ/a)1/2 to make the c2 term dominated by the slip term (λ/a)(aτT/σ0)

3.
In this case, because the c1 term is also increased due to the λ/w term, Ω(λ 6= 0)
ranges between Ω ∼ (c2/c1)(λ/a)(aτT/σ0)

2 for w> λ and Ω ∼ (c2/c1)(w/a)(aτT/σ0)
2

for w < λ. Even if the largest values c2/c1 ∼ 104 and aτT/σ0 ∼ 10−4 are used
(Lajeunesse & Homsy 2003), Ω(λ 6= 0) is still much smaller than unity. So we
conclude that the bubble speed, with and without wall slip, is always dominated by
the c1 term.

Note that the dominance of the c1 term in (A 1) shown above is based on the
assumption that τT is a constant by taking the temperature gradient across the bubble
Gb to be roughly the global temperature gradient G. However, this assumption will
no longer hold if the bubble is moving in a much longer channel in which Gb is
amplified like Gb ∼ (a/b)G to give τT ∼ (a/b)Gβ (see (2.6)). In this case, the bubble
speed can be dominated by the slip part of the c2 term, as seen in the discussion at
the end of § 5.
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