
Drastic Changes in Interfacial Hydrodynamics due to Wall Slippage: Slip-Intensified Film
Thinning, Drop Spreading, and Capillary Instability

Ying-Chih Liao,1 Yen-Ching Li,2 and Hsien-Hung Wei2,*
1Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan

2Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
(Received 3 January 2013; published 26 September 2013)

We report that wall slippage can drastically change both steady and dynamic flow characteristics for a

wide class of free-surface thin film flows. This is demonstrated by (i) the breakdown of the 2=3 law and its

replacement by a new quadratic law for the deposited film thickness in the Landau-Levich-Bretherton

coating, (ii) the departure from de Gennes–Tanner’s cubic law for dynamic contact angles in drop

spreading, consequently resulting in much faster spreading than the classical Tanner law, and (iii) the

exaggerated capillary instability of an annular film where a fractional amount of wall slip can lead to much

more rapid draining and hence make the film more vulnerable to rupture. In (ii), the molecular precursor

film is shown to have a length varying like the �1=2 power of the spreading speed, producing an

anomalous 1=3 diffusion law governing its spreading dynamics. A variety of existing experimental

findings can be well captured by the new scaling laws we derive. All these features are accompanied with

no-slip-to-slip transitions, offering alternative means for probing slip boundaries.

DOI: 10.1103/PhysRevLett.111.136001 PACS numbers: 83.50.Lh

While the no-slip boundary condition is commonly used
in most practical flows, the apparent breakdown of this
condition can occur on a number of occasions such as
flowing polymer liquids over smooth surfaces [1], pumping
in hydrophobic microchannels [2], coating on chemically
decorated planes [3], and wetting on heterogeneous or
structured substrates [4]. Such wall slippage, intrinsic or
apparent, is often described by the Navier slip condition,
u ¼ �du=dy, with the slip length � measuring the amount
of slip through the ratio of the slip velocity to the local shear
rate on a surface [5]. Apparently, surfaces with large �
reduce viscous drag and hence enable the speed up of flow.

Perhaps the most frequent use of the Navier condition
appears in modeling interfacial flows involving moving
contact lines [6]. In most situations, � is much smaller
than the liquid thickness h. So slip effects are merely
important near the contact line to aid in relieving the stress
singularity, but do not change the macroscopic flow char-
acteristics (see Refs. [7–9] for more comprehensive
reviews). However, there might be situations, for instance,
like those involving polymer liquids [10], where slip
lengths could be so large that the influence of wall slip
can penetrate the entire bulk flow. In this case, the flows
will be speeded up by a factor of �=h. This flow amplifi-
cation would not only change flow characteristics, but also
dramatically modify how the fluid-fluid interfaces act both
temporally and spatially in response to the flows. In this
Letter we will demonstrate such effects on three closely
related interfacial flow problems: (i) Landau-Levich-
Bretherton coating, (ii) forced wetting and liquid spread-
ing, and (iii) capillary instability of annular films. As will
be shown, not only will many scaling laws based on the no-
slip condition be replaced by new ones due to strong wall

slippage, but also a variety of experimental findings can be
captured by these new laws.
Breakdown of the Landau-Levich-Bretherton law.—When

a long bubble displaces liquid in a small capillary tube, a thin
liquid film can be deposited on the interior wall of the tube.
This is the classical Bretherton problem [11]. The similar
film deposition can also be realized by pulling a plate out of a
bath of liquid, as studied long ago by Landau and Levich
[12]. This so-called Landau-Levich-Bretherton (LLB) coat-
ing possesses most of the features seen in many practical
coating flows [13]. The main feature of the LLB problem is
that the deposited film thickness h varies with the coating
speed U according to the well-known 2=3 law [11,12],

h=R� Ca2=3; (1)

where Ca ¼ �U=� (� 1) is the capillary number with �
being the surface tension, and R is the radius of the capillary
tube (or the round meniscus). This 2=3 law is obtained by
balancing the capillary pressure and viscous shear stress
under the no-slip condition. When wall slip exists, it tends
to increase the capillary draining out of the film and thereby
makes the film thinner. So when decreasing Ca in Eq. (1) to
the pointwhereh� �, the2=3 lawbreaks downat the critical
capillary number,

Ca c � ð�=RÞ3=2: (2)

Further decreasing Ca below Cac, a new coating law
must emerge to govern the behavior of h below � in this
strong slip regime. Therefore, Cac marks the transition
point from no slip to strong slip. The same transition point
has also been observed experimentally for dip coating over
textured surfaces [14].
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To derive the new coating law in the strong slip regime
(h < �), we start with the velocity scale of the capillary
draining: ucap � ðh=‘Þ3ð�=�Þ, obtained by balancing the

capillary pressure force p=‘� �h=‘3 to the viscous force
(per unit depth) �ucap=h

2 over the transition zone of size

‘� ðhRÞ1=2 between the uniform film and the round
meniscus [see Fig. 1(a)]. Wall slip amplifies the above
velocity to ð�=hÞucap and, hence, further thins the film.

Balancing this velocity to the coating speed U gives a new
quadratic law for h < � when Ca< Cac:

h=R� Ca2ðR=�Þ2: (3)

Note that in deriving Eq. (3), we require uyy � uxx to

ensure the standard lubrication approximation px ¼ �uyy
along the flow direction (where the subscripts denote spa-
tial derivatives in either the flow direction x, or the trans-
verse direction y). Since uxx � ð�=hÞucap=‘2 can be best

estimated from the plug flow, the above criterion yields
ucap=h

2 � ð�=hÞucap=‘2 (using px � �uxx and p�
�h=‘2). So the analysis here is only valid for

�h=‘2 � 1 or �=R � 1: (4)

To test the new scalings (2) and (3), we derive the
following lubrication equation and numerically determine

the deposited film thickness h1: (h3 þ 3�h2Þhxxx ¼
3Caðh� h1Þ with h ¼ h1 and hx ¼ hxx ¼ 0 as x !
�1, and hxx ¼ 1=R as x ! 1 [15]. The calculated h1
[Fig. 1(b)] and Cac [Fig. 1(c)] indeed confirm the scaling
laws shown above.
In fact, such slip-intensified film thinning can be best

explained by apparent viscosity: �app ¼ �h=ðhþ �Þ,
which can be defined through the ratio of the viscous stress
on a slippery surface �U=ðhþ �Þ to the shear rate U=h as
if the surface were no slip. Replacing� by�app in the LLB

law (1) leads to

h=R� ð�appU=�Þ2=3: (5)

This is actually the effective LLB law capable of unifying
both the 2=3 law (1) in the no-slip limit (h � �) and the
quadratic law (3) in the strong slip limit (h < �). As
indeed, all the data in Fig. 1(b) can be successfully col-
lapsed according to Eq. (5) [see Fig. 1(d)].
If slip effects are so strong that uxx � uyy in violation of

Eq. (4) due to either large � or small R, the film would
behave like a plug flow in which the pressure force can
only be dissipated by the lateral viscous force via px ¼
�uxx, giving �h=‘3 ��U=‘2 and thereby
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FIG. 1 (color online). (a) Flow geometry for bubble displacement in a slippery capillary. (b) Plot of the film thickness ratio
h1=h1ð� ¼ 0Þ against Ca for various values of �=R. Departure from the LLB 2=3 law (inset) is apparent when Ca is below some
critical value Cac (estimated at h1=h1ð� ¼ 0Þ ¼ 0:1). In the small Ca regime h1=h1ð� ¼ 0Þ / Ca4=3, giving h1 / Ca2 in agreement
with Eq. (3). (c) The dependence of Cac on �=R confirms Eq. (2). (d) All the data can be successfully collapsed according to the
effective 2=3 law (5). For comparison, the results for �=R ¼ 0:5 and 1.0 are also calculated, though the lubrication approximation
might not hold. Nevertheless, the actual results should not look qualitatively different from what we see here.
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h=R� Ca2: (6)

So in this super slippage regime, Eq. (6) again shows a
quadratic dependence on Ca but now is independent of �.

Modified wetting and spreading laws due to wall slip.—It
has been shown by Stone and others [13,16] that the LLB
scalings can be used to derive relevant scaling laws for drop
spreading problems in connection to the apparent dynamic
contact angle �d � h=‘, since these two problems are hydro-
dynamically similar [17]. Now consider a spreading droplet
of heighth and radius r under the perfectwetting condition. In
the no-slip limit (h � �), thewell-known deGennes–Tanner
law [7] and Tanner’s law [18] can be obtained by setting

�d � h=‘� ðh=RÞ1=2 using the LLB law (1) with ‘� r and
R� r=�d being the radius of the curvature of the droplet,

�3d � Ca; (7a)

r� ðt�3�=�Þ1=10: (7b)

Equation (7b) is due to the constant volume constraint � ¼
hr2 � �dr

3 and U� r=t, where t is time.
If a droplet is placed on a slippery surface and its

spreading starts with h > �, Eqs. (7a) and (7b) hold only
up to h� �. When the droplet spreads to the point where h
is smaller than �, we enter the strong slip regime and new
wetting and spreading laws can be derived from Eq. (3),

�2d � Caðr=�Þ; (8a)

r� ðt�2��=�Þ1=8: (8b)

Equation (8a) can also be obtained by balancing the
spreading force ��2d to the viscous drag ð�U=�Þr over �
for a liquid wedge near the contact line, similar to what
de Gennes did for the no-slip case [7]. The crossover
between Eqs. (7a) and (8a) gives the no-slip-to-slip transi-
tion point Ca� � ð�=rÞ3 below which Eq. (8a) governs the
spreading behavior in the strong slip regime. This transition
also agrees with the experimental data (see Fig. 2) reported
byChen [19] for spreading of a very viscous polymer liquid.
According to de Gennes and co-workers [7,10], � here can
be as large as 10 �m owing to high degree of polymeriza-
tion N � 103 used in Chen’s experiment [19]. For
r� 1 mm used in Chen’s experiment, we can use Ca� �
3� 10�5 to estimate the slip length as �� 10 �m, in
agreement with the value estimated by de Gennes. In terms
of spreading dynamics, compared to (7b) the droplet can
now spread according to the slightly faster 1=8 law (8b), in
good agreement with r / t0:13 in experiments using pico-
liter polydimethylsiloxane (PDMS) drops [20].

It is worth mentioning that a quite similar wetting law
like Eq. (8a) can also be found by incorporating the diffuse
interface theory into the moving contact line problem [21].
In this approach, fluid slip comes from the uncompensated
Young stress due to the deviation of the microscopic con-
tact angle �m to its equilibrium value �e. The resulting
contact angle relationship is found to be cos�e ¼ cos�m þ
�Ca=� (with � being the thickness of the interface), which

has been confirmed by extensive computer simulations
[22]. If �m and �e are small, the above relationship is
reduced to �2m � �2e þ 2�Ca=� [8] similar to Eq. (8a).
There is no surprise about this similarity because in both
cases the capillary forces are dissipated by the same vis-
cous stress �U=� across the slip length �.
If a much smaller droplet is used or � is large such that

� � R in violation of Eq. (4), the spreading in this super
slippage regime will be driven by a plug flow according to
Eq. (6), giving

�d � Ca; (9a)

r� ðt��=�Þ1=4: (9b)

Equation (9a) is again the result by balancing the spread-
ing force ��2d to the viscous force �ðU=rÞh on the lateral

side of the droplet around its periphery [23]. This leads to
the much faster 1=4 law (9b), as derived in Ref. [23] as well
as observed experimentally in Ref. [24] for drop spreading
over a less viscous film (of viscosity �s) where the appar-
ent slip length �� h�=�s is large [25]. The same 1=4 law
has also been observed in liquid spreading on micropillar
arrays [26]. The corresponding dynamic contact angle

behaves as �d / r�3 / t�3=4, as identified in similar
experiments by MacHale and his co-workers [27]. A
change from Tanner’s �3=10 law to the �3=4 law for
�d—an indication of the no-slip-to-slip transition—was
also observed in the same report [27].
As shown above, at the macroscopic level, droplets can

spread according to the new scaling laws (8) and (9) due to
strong wall slip. We should emphasize that these laws are
derived from the new LLB scalings (3) and (6) consistent
with de Gennes’s local dissipation approach [7]. Unlike
non-Tanner-like spreading due to other mechanisms [8],
various results seen in drop spreading experiments can now
bewell captured by these laws and explained solely by wall
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slip effects. At the meso- or microscopic level, we also
want to explore how wall slip modifies the structure of the
precursor film. It has been suggested that the disjoining
pressure in the spreading precursor film on a no-slip sur-
face can produce effects like wall slip to relieve the
contact-line singularity [16]. So when wall slip is present,
because of its coupling to disjoining pressure, the precursor
film might have a rather different structure than that with-
out slip. To see this, we restrict our attention to the strong
slip regime with h < �ð� RÞ, and examine the corre-
sponding inner flow behavior near the contact line. It can
be shown that the pertaining equation (in the frame moving
with the contact line) now reads

Ca h ¼ ��h2hxxx þ 3a2�hx=h
2; (10)

where a ¼ ðA=6��Þ1=2 is the molecular length to charac-
terize disjoining pressure

Q ¼ A=6�h3 with A being the
Hamaker constant [7]. At the macroscopic scale where
disjoining pressure is unimportant, Eq. (10) recovers scal-
ing (8a). The thickness hf and length Lf of the precursor

film can be estimated by balancing the terms in Eq. (10).
Balancing the surface tension hxxx term to the viscous Ca
term (i.e., matching �d given by Eq. (8a) to the microscopic
contact angle due to the film) gives ðhf=LfÞ2 � CaðLf=�Þ.
Together with ða=hfÞ2 � CaðLf=�Þ obtained by balancing

the disjoining pressure term to the viscous term, we find

hf � að�=aÞ1=4Ca�1=4 (11a)

and

Lf � að�=aÞ1=2Ca�1=2; (11b)

which are quite distinct from hf � a=Ca1=3 and Lf �
a=Ca2=3 found for perfectly wetting liquids on no-slip
surfaces [7,28]. It should be noted that while wall slip
can promote the film thinning due to capillary draining, it
also helps the film thickening due to disjoining pressure.
Because of this reason, both hf and Lf predicted by (11a)

and (11b) can be greater than those in the no-slip case if �

is sufficiently large such that ð�=aÞ3Ca> 1. This might
happen to spreading of polymer liquids. For instance, for

�� 1 �m, a� 1 �A, and Ca� 10�5, the estimated film
dimensions are hf � 20 nm and Lf � 3 �m, which might

be detectable in experiments. Perhaps the most distinctive
feature here is that the film, because of (11b), will propa-

gate like Lf / t1=3 in an anomalous diffusion manner, in

contrast to Lf / t1=2 for diffuse films commonly seen in

experiments [29]. A recent experimental study on spread-
ing of polymer droplets found Lf / tv with v varying from

0.31 to 0.42 [30], which can be well captured by Lf / t1=3

for strong slip and Lf / t2=5 from the no-slip scaling Lf �
a=Ca2=3 [7,28], respectively. The transition between these
two distinct spreading behaviors can then be interpreted as
a consequence of the no-slip-to-slip transition.
Exaggerated capillary instability of annular film.—If

coating occurs inside a small capillary or around a fiber
(of radius R), the film (of thickness h) might undergo
capillary instability and can be susceptible to rupture
[31]. Similar to Ref. [31], we derive the following equation
governing the interface’s dynamics:

ht þ ð�=3�Þ½ðh3 þ 3�h2Þðhx=R2 þ hxxxÞ	x ¼ 0: (12)

It is clear that the slip term can increase the linear growth
rate by a factor of 3�=h0, where h0 is the unperturbed film
thickness. It is also easily shown that the most unstable

wavelength L ¼ 23=2�R does not change with � in the
linear instability regime. But as interface deflections grow
with time due to capillary instability, the interface gradu-
ally develops into growing lobes alongside with shrinking
necks [see Fig. 3(a)], so the gap in between—the thinnest
part of the film hmin—can see more influence from the
slippery wall. Therefore, in the nonlinear regime, because
of the factor �=hmin amplification in the capillary flow, we
expect that the draining behavior here should differ quali-
tatively from the no-slip case.
Figure 3(b) shows how the calculated hmin decreases with

time t. For � ¼ 0, we find hmin � t�2=3 for intermediate
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FIG. 3 (color online). (a) Typical spatiotemporal evolutions for the film thickness h (normalized by the unperturbed value h0).
�=h0 ¼ 0:5. Time interval ¼ 1 in units of tfilm ¼ �R4=�h30. The initial perturbation has amplitude 0.5 h0 and wavelength L ¼
23=2�R. (b) Plot of hmin=h0 against t=tfilm. For �=h0 > 0:1, the thinning dynamics follow hmin / t�1:8 and hmin / t�0:84, much more
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times followed by hmin � t�1=2 for long times, in accor-
dance with Ref. [31]. Wall slip makes the draining much
more accelerated.With�more than 10%of the unperturbed
film thickness h0, the intermediate and long time behaviors
turn into hmin � t�1:8 and hmin � t�0:84, respectively. This
means that with a fraction of wall slip, the film might
become much more vulnerable to rupture than the no-slip
case. Although we are still not clear about how slip effects
lead to these power law changes, Fig. 3(c) shows that all the
data for �=h0 � 1 can be collapsed by stretching the time
scale by a factor of�=h0, suggesting that the slip term�h2 in
Eq. (12) does control the long-term draining behavior.

To sum up, we have demonstrated that wall slip can
significantly modify both steady and dynamic flow char-
acteristics for a broad class of thin film flows. A number of
existing experimental findings [14,19,20,24,26,27,30] can
be well captured by new scaling laws we derive, suggesting
that various phenomena can be universally interpreted in
terms of wall slip effects. Unique no-slip-to-slip transitions
can also be used to quantify the extent of wall slip, provid-
ing alternative means for probing slip boundaries.
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