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The use of low-frequency travelling wave fields in electrophoretic stretching of charged polymer chains

is investigated theoretically. We find, using a simple elastic dumbbell model, that the stretching

behavior with and without fluctuations can show a number of distinctive features that cannot be seen in

usual steady or alternating current electric fields. In the deterministic study without fluctuations, we

show that an end-tethered charged polymer chain can be pulled by asymmetric strokes generated by

a travelling wave field and kept extended along the wave. It is found that while the averaged chain

extension can be increased by raising the field strength, it can be decreased by increasing the wave speed.

This is a new example that stretching a polymer chain can be realized in a time periodic field with zero

mean. As the free energy landscape here acts like a vibrating harmonic oscillator having double or

multiple wells, a stretched chain trapped in an energy groove created by a travelling wave field can hop

back to the lower energy coil state due to fluctuations. In this stochastic study, we develop a theory and

carry out Brownian dynamics simulations to show that as long as the wave speed does not exceed the

damping threshold and fluctuations do not prevail to diminish stretching, increasing the wave speed can

help the chain maintain its stretch by preventing it from hopping to the coil state. In addition, two

distinct hopping kinetics, Arrhenius and Kramers modes, can exist to govern the respective coil–stretch

transitions in the double-well and multiple-well scenarios, depending on the extent of stretching. These

features are the results of cooperative effects of travelling wave fields and fluctuations, and further

manifested by tongue-like coil–stretch phase diagrams. Applications of the present stretching to

dynamic molecular probing are also illustrated by monitoring and regulating the molecular transport

over a cyclically stretching polymer chain at the nanoscale or single-molecule level.
I. Introduction

Stretching of a single polymer chain not only provides an

understanding of how it responds mechanically to external

forcing, but also spurs new research and technological develop-

ments. Many of these developments involve manipulation of

DNA, through utilizing its basepair matching and ability to bind

other molecules along its backbone, for realizing molecular

probing and detection at the single molecule level. For instance,

one can stretch out an entire DNA molecule to perform more

direct reading and mapping of the encoded genetic information

along the chain.1,2 By analyzing the stretching response of DNA,

its interactions with protein or other ligand molecules can be

detected and quantified in an ultrasensitive manner.3 This single

molecule force spectroscopy technique has been further exploited

to monitor the replication of a single DNA polymerase along

single stranded DNA.4
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In addition to biological relevance, the control of folding/

unfolding of a polymer chain is essential in many contexts of

polymer science and technology. One of the issues is often con-

cerning self-assembly of polymer chains. Whether chains are

coiled or stretched is crucial to how they interact with neigh-

boring molecules and hence to how their assembly is shaped. For

instance, a stretched charged polymer chain, because of the ln (r)

dependence on its electrostatic potential, is capable of attracting

oppositely charged ions distantly, where r is the polymer-ion

distance. This is the well-known counterion condensation,5,6

which can lead to more compact self-assembled structures due to

non-trivial interactions between the chain and condensed coun-

terions.7 In contrast, the coiled form can only arrest nearby ions

due to the much rapid 1/r decay in its potential, resulting in much

weaker electrostatic interactions. This geometry-sensitive feature

in molecular interactions could be further utilized to enhance

molecular sensing or to facilitate formation of ordered structures

under the influence of external fields. For instance, by stretching

DNA that contains target-specific probes along its backbone, it is

possible to capture more target molecules for increasing the
Soft Matter, 2012, 8, 1977–1990 | 1977
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Fig. 1 (a) Schematic diagram for a device setup for stretching a tethered

polymer chain in a travelling wave field. Travelling wave signals are

generated by an array of microelectrodes subject to sequentially phase-

shifted voltages on the upper surface of a microchannel. The electrodes

have equal width and separation of size l much larger than the channel

depth h. The chain can be pulled by unidirectional strokes generated by

a travelling field, as illustrated by schematic figure (b).
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detection efficiency. It has also been observed that DNA mole-

cules can crumple into mesoscale bundles when they are stretched

in dense surfactant brushes.8

There are many approaches to stretching polymer chains.

Perhaps the most efficient way is to pull a polymer chain at one

end while having the other fixed at a surface. One advantage of

this approach is that it provides a direct way for assessing how

the chain extension varies with applied stretching forces at the

single molecule level, as demonstrated by using optical tweezers,9

magnetic pulling,10 hydrodynamic flows,11 electric fields,12 etc.

Since most situations involve manipulations of polyelectrolytes

such as DNA, we restrict our attention to stretching of a charged

polymer chain under electric fields and seek a new strategy for

controlling its stretching behavior.

In this work we propose the use of travelling wave electric

fields in stretching a tethered polymer chain. Why we are inter-

ested in such stretching is motivated by our recent study on

electrophoretic trapping of charged particles in travelling wave

fields.13 In that study, we found that a charged particle can

exhibit a net displacement after a cycle under the influence of

travelling wave fields, as opposed to the zero time-averaged

movement in a purely sinusoidal field. In particular, particles

could fall into one of the stable fixed points created by the field

and then move alongside with it. In other words, a travelling

wave field can create a moving trap array to lock and ship

charged particles simultaneously. Therefore, if a charged poly-

mer chain was placed in such a field, it would undergo similar

synchronized trapping and get extended with the help of holding

one end. As such stretching can be further mediated by the wave

speed, this might provide an additional means for controlling the

extent of stretching. Moreover, because the free energy landscape

here constantly changes with time, this could affect how a chain

changes from the stretched state to the coil state due to fluctu-

ations. In other words, new impacts on coil–stretch transition14

could emerge due to combined effects of travelling wave fields

and fluctuations.

Motivated by the above, we would like to theoretically

examine how an end-tethered polymer chain gets extended under

the actions of travelling wave fields. Here we focus on the

stretching in the low frequency regime, so that it is driven solely

by electrophoresis but not by dielectrophoresis that dominates at

high frequencies.15 We also do not intend to study detailed chain

conformational changes, which could involve complicated

folding and unfolding dynamics. Instead, we employ a simple

elastic dumbbell model to reveal how a polymer chain responds

to travelling wave fields as well as to illuminate essential physics

underlying the stretching. In this work, both deterministic and

stochastic dynamics will also be examined respectively without

and with fluctuations. In the deterministic study, we will identify

the stretching mechanism and how the chain extension is deter-

mined by the strength and speed of an applied traveling field

(Sections V and VI). After understanding how the stretching is

determined by travelling wave fields, in the stochastic study

(Section VIII) we will then explore how fluctuations play roles in

the coil–stretch transition so as to see how the effects compete

with those found in the deterministic study. As will be demon-

strated shortly, the features of the stretching in both determin-

istic and stochastic studies differ significantly compared to those

in steady or simple sinusoidal fields. In addition, we will also
1978 | Soft Matter, 2012, 8, 1977–1990
illustrate the use of traveling-wave stretching in molecular

probing and detection (Section IX).
II. Modeling of chain dynamics

We first describe how to realize stretching of a polymer chain

using travelling wave fields. Travelling wave signals can be

generated by an array of microelectrodes subject to sequentially

phase-shifted voltages on the upper surface of a microchannel

(see Fig. 1). In this setup, the electrodes have equal width and

separation of size l much larger than the channel depth h. The

resulting electric field, because of this length scale disparity, can

generate nearly unidirectional strokes13 to pull a polymer chain

tethered at the bottom surface of the channel.

The chain is modeled as a simple elastic dumbbell in which two

charged beads are connected by a Hookean spring with the

spring constant, k. Further assume that these beads have the

same electrophoretic mobility m and drag coefficient z.

The applied travelling wave field, for simplicity, can be taken as

a simple harmonic form: E ¼ E0sin (b(x � ct)), where x is the

position in reference to the fixed end of the chain, E0 the field

strength, b ¼ (p/4)l�1 the wave number, and c the travelling

speed of the field. In addition to the drag force zdx/dt, elastic

restoring force �kx and electric stretching force zmE0sin (b(x �
ct)), we also include fluctuation effects by adding a random force

x(2zkBT/Dt)
1/2 at the free end of the chain, where kBT is the

thermal energy and x ˛ (�1,1) the randomly distributed

displacement. Balancing all these forces, we derive the equation

governing the stretching as zdx/dt¼�kx + zmE0sin (b(x� ct)) +

x(2zkBT/Dt)
1/2. Let X ¼ bx and s ¼ t/t0 be the dimensionless

length and time rescaled respectively by the spatial periodicity b�1

and the associated time scale t0 ¼ b�1/U0 in terms of the elec-

trophoretic velocity U0 ¼ mE0. By writing 3(X � as) h sin (X �
as), the equation can be re-written in the following dimensionless

form:

dX

ds
¼ � 1

De
X þ 3ðX � asÞ þ b

x

ðDsÞ1=2
: (1)

There are three dimensionless parameters characterizing the

stretching. The first one is the Deborah numberDe¼ zU0b/k that

measures how strong the applied stretching force is compared to

the elastic restoring force. This number can also be interpreted as
This journal is ª The Royal Society of Chemistry 2012
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the ratio of the chain’s elastic relaxation time srelax ¼ z/k to the

stretching time b�1/U0. The second one is a¼ c/U0. It reflects how

fast a field travels relative to the chain’s electrophoretic speed.

The last one is b ¼ (2kBT/zU0b
�1)1/2 which measures the size of

fluctuations relative to the applied field.

Several remarks are worth making concerning our model.

First, this model only involves a single Hookean spring. The

model better holds in the small extension regime in which chain

extensions usually do not go beyond 30% of the contour

length.16,17 In fact, the applicability of this model can be better

justified by inspecting stretching of long polymer chains such as

DNA in the absence of fluctuations. In a typical setup, a travel-

ling wave field of E0 z 102 to 103 V cm�1 and c z 102 to 103 mm

s�1 can be generated by applying several phase-shifted voltages of

�1 V at 1–10 Hz in an array of microelectrodes of size lz 10 to

100 mm. The typical mobility of DNA is m z 104 mm2 V�1 s�1,

giving the electrophoretic velocity U0 ¼ mE0 z 102 to 103 mm s�1.

Consider stretching of T4 DNA (165 kbps with contour length ¼
56 mm) whose coil size Rg z 1 mm and relaxation time srelax z
1 s. These data giveDe¼ srelax/(l/U0)z 1 to 10 and a¼ c/U0z 1

to 10. Because the extent of stretching is either lDe or lDe/a (see

Section VI), the DNAmolecules can be extended to about 10 mm

under the conditions mentioned above. This is not more than

20% of the contour length, which is within the validity of the

model. Also because fluctuations tend to reduce the chain

extension, the model could even better describe the stretching in

more realistic situations.

Although the actual stretching behavior can be better captured

by a more sophisticated model with more than one spring (for

instance, using the bead-spring chain model), our single-spring

model provides the following advantages. First, this simplified

model allows us to obtain simple scaling relationships in terms of

De, a, and b for qualifying how stretching is influenced by the

field strength, the wave speed and the size of fluctuations (see

Sections VI and VIII). Second, it saves a lot of computational

efforts in the stochastic study for determining the fate of a poly-

mer chain, in which both ensemble and time averages have to be

evaluated (see Section VIII). In other words, it suffices to capture

the essence of the stretching with minimum efforts. In addition,

the results of the present study might be useful for more in-depth

studies using more sophisticated models.
III. Numerical methods

We employ an ordinary differential equation solver (the Liver-

more solver for ordinary differential equations, LSODE)18 to

integrate eqn (1) numerically. In the absence of fluctuations (b ¼
0), eqn (1) is solved using the predictor-corrector Adams–Bash-

forth method. The chain displacement X is updated every time

interval Ds¼ 10�4 and within a relative error not more than 10�11

(the relative error here is defined as the difference of the calcu-

lated X compared to that obtained from the previous iteration

using the Adams–Bashforth method). Typically, it takes about

2–50 cycles to reach a steady oscillation state, depending on De,

a, and the initial value of X. After reaching a steady oscillation

state, the time average value of X is taken from the data of the

last cycle.

When fluctuations are present, we implement Brownian

dynamics simulations according to the following procedures.
This journal is ª The Royal Society of Chemistry 2012
Similar to the approach based on the simple Euler method, we

first evaluate X, say, X0, by solving the deterministic part of eqn

(1) using the same numerical method above within a relative

error of 10�4. This not only ensures consistency, but also allows

us to obtain a more accurate value of X0 than that using the

Euler method. We then add up the random force contribution bx

(Ds)1/2 for updating X according to X(s + Ds) ¼ X0(s + Ds) + bx

(Ds)1/2. In most situations, we take Ds ¼ 2.5 � 10�3 (2p/a)

(equivalent to 400 time steps during a cycle) to speed up the

simulations without sacrifice of the accuracy.

In each run, we take a set of different values of x (˛(�1,1)

converted from the same number of seeds generated by a random

number generator with each seed standing for one value of x) to

represent uniformly distributed random noises, and use each for

calculating X every time step (viz., the number of seeds is equal to

that of the total time steps). For a given initial condition and a set

of noises, we have also integrated eqn (1) using the Euler method

and confirmed that both approaches essentially give an identical

result. In addition, to ensure statistics we take different sets of

random noises to repeat the simulation a number of times, say,

N. This is equivalent to tracking N trajectories of X subject to

different sets of random noises. In typical simulations, we take

N ¼ 300–1000 to ensure that the ensemble average at each time

step, hXi, does not change significantly with N. In terms of

temporal response, it takes about 5–17 cycles for hXi to reach

a steady value in the time averaged sense. The time average of hXi
is taken from the ensemble-averaged data of the last two cycles.

In the study on coil–stretch transition, sometimes we have to take

N as high as 10 000 to assert the boundaries for the transition.

Below we begin with the deterministic study in Sections V and

VI. The stochastic study will then be conducted later in Section

VIII to see how fluctuations influence the stretching in competing

with the effects found in the deterministic study.

IV. Asymmetric pulling and compression by
travelling wave strokes

At first glance, it seems impossible to keep a polymer chain

stretched in a travelling wave field because the field here is time

periodic and has a zero mean. In fact, this is not the case. Similar

to the motion of a charged particle in travelling wave fields,13

a chain can exhibit an extension due to asymmetric strokes

generated by a travelling wave field. Fig. 2 displays typical chain

dynamics during a cycle, involving stretching, recoiling,

contraction, and flipping as the chain sees different portions of

a travelling wave field. When the chain sees a ‘‘hill’’ of the wave, it

can be extended by the forward pulling if the stretching force is

strong enough to oppose the elastic force (see stages I and II). As

the chain further extends, the elastic restoring force could

become so strong to exceed the electric pulling (viz., the chain

extends so fast that the field is not able to catch up with it). So the

chain must retract (stage III). Right after this elastic recoil that

only lasts for very short time, a ‘‘valley’’ of the wave emerges to

reverse the field and then to compress the chain (stage IV).

Adding up the pre-existing elastic force acting in the same

direction, the compression will be further speeded up to cause

a dramatic decrease in the chain extension. Such a compression

sometimes could be so strong that the chain is flipped to against

the wave (stage V). In this case, the chain could be slightly
Soft Matter, 2012, 8, 1977–1990 | 1979
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Fig. 2 Illustrated responses of a tethered polymer chain in a travelling

wave field at De ¼ 2 and a ¼ 0.5 in the absence of fluctuations. The

chain can have different responses during a cycle, depending on the

electric force FE (indicated by a sinusoidal curve with a triangle mark

that shows the travelling-wave movement), the elastic force Fk (indi-

cated by a straight line), and how they exert to the chain. These

responses include stretching (I & II), recoiling (III), contraction (IV),

and flipping (V).
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extended by the short-lived backward pulling before the suc-

ceeding wave arrives. As the next wave front strikes, the chain

will soon be flipped back and then re-extended again along the

wave.

As such, even though a polymer chain undergoes cyclic pulling

and compression in a travelling wave field, it appears that pulling

is more dominant than compression. In fact, such pulling is

generated by the travelling-wave action—it is this asymmetry

responsible for the observed stretch during a cycle.
Fig. 3 Temporal evolutions of the chain displacement for various values of

enlarged by increasing De, increasing a tends to decrease stretching.

1980 | Soft Matter, 2012, 8, 1977–1990
V. Distinct stretching responses due to stretching–
damping competition

To see how the stretching is determined by the strength and

travelling speed of an applied field, we plot X against s/2p for

various values of De and a in Fig. 3. For De � 1, since the

stretching force is insufficient to pull the chain by overcoming the

elastic recoil, the chain can hardly be extended by fields regardless

of a. It is clear that increasingDewill promote stretching with the

help of a stronger stretching force. However, the chain would lose

its ability to stretch if a was too large. In this case, the chain will

undergo very rapid pulling and compression. Even though the

chain can be extended by forward pulling, it will soon be

compressed by the reversed electric field coming from behind (see

stage III in Fig. 2). Thereby, in such rapid wave strokes the chain

would hardly gain an apparent extension, unless a sufficiently

largeDe is applied to compensate for the shortage of stretching for

a[ 1. In other words, a travelling wave field poses two opposite

effects: electric pulling that tends to stretch the chain, and wave

undulation that tends to damp the stretching.

It is worth pointing out that the long-term stretching behavior

is independent of the sign of the chain’s mobility (or charge). This

is because the electric force on a polymer chain constantly

changes its direction back and forth—the sign here will only

introduce a phase difference and this will not change the long-

term chain dynamics. So if a polymer chain can be kept stretched

without flipping, its orientation will only point toward the wave

propagation direction.

While De > 1 suffices to stretch out a polymer chain, it is not

always to be able to keep the chain stretching without being

flipped by periodic stroking of a travelling wave field. This

implies that for a given a there must exist a critical Deborah

number, Decrit, above which a polymer chain can always be kept

extended with X > 0 along a wave. By plotting the dependence of
De and a in the absence of fluctuations (b ¼ 0). While stretching can be

This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 The dependence ofDecrit on a in the absence of fluctuations. Here

Decrit is the critical Deborah number beyond which the chain can always

be kept extended with X > 0 along the propagation direction of a trav-

elling wave field, as illustrated in the upper inset at De ¼ 4 and a ¼ 2. If

De < Decrit, the chain can be flipped to against the field (X < 0) during

a cycle, as seen in the lower inset at De ¼ 1.5 and a ¼ 0.01.

Fig. 5 Classification of stretching characteristics: weak stretching (De�
1), strong stretching (De [ 1), slow stretching (a � 1), and fast

stretching (a [ 1). In each regime, how the chain displacement X and

oscillation amplitude d scale in terms of De and a is also given.
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Decrit on a in Fig. 4, we find that Decrit starts from 4.55 in the

limit of a / 0, drops very rapidly for a < 1, and reaches

a constant �2 for a > 2. The rapid decrease of Decrit seen for a <

1 implies that it is harder to maintain the stretching along a wave

when the stretching is slow. This is because at small a the chain

has time to be over compressed by a slowly travelling field when

the field reverses its polarity. This could make the chain more

susceptible to flipping and hence require a greater field to keep

the chain stretched along a wave. In contrast, if the stretching is

fast, the chain will not have time to be flipped by a fast moving

field. So the least field required to prevent flipping will be smaller

and remain unchanged as a is increased.

As the chain is constantly stretched and compressed during

a cycle, we define the cycle average ð$ÞhT�1
u

Ðs
0 þTu

s0
ð$Þds to

measure the averaged extent of stretching, where Tu¼ 2p/a is the

oscillation period. There are several choices to do this. The first

obvious choice is to take the mean extension

jX jhT�1
u

Ðs
0 þTu

s0
jX jds to measure the averaged end-to-end

distance of a chain. However, it cannot tell which way the chain

will orient. This question can be better answered by looking at

the mean displacement �X which measures the net displacement

of the free end of the chain during a cycle. �X > 0 (<0) indicates

that the chain is stretched along (against) a wave in the averaged

sense. One might also be interested in the root mean square

displacement Xrmsh
ffiffiffiffiffiffi
X 2

p
, as it can be used to measure the mean

elastic restoring energy X 2=De. All these different measures are

found to be nearly identical and basically display the same

feature: the averaged stretch extent is increased as De is

increased, but decreased as a is increased. In fact, we find that �X

is always positive. Taking a cycle average for eqn (1) with b ¼ 0,

we find that the stretch is actually sustained by the averaged

electric force through the balance with the averaged elastic force

on the chain (because the net drag force is zero as a consequence

of the reversibility of Stokes flow):

X

De
¼ 3ðX � asÞ: (2)
This journal is ª The Royal Society of Chemistry 2012
So one can immediately recognize that �X > 0 is a direct

consequence of 3ðX � asÞ. 0 resulted from the more dominant

forward pulling by travelling wave fields.

It is worth pointing out that the present travelling wave

stretching is very different from stretching in purely oscillatory

fields. In the latter case, it can be easily shown, by setting a purely

oscillatory uniform field 3 ¼ sin (as) in eqn (1), that �X is iden-

tically zero, as the chain merely undergoes symmetric stretching

and contraction back and forth during a cycle. This implies that

spatial variations of an applied field are necessary for sustaining

the stretch of a polymer chain. For a vibrating but non-traveling

sinusoidal field such as 3 ¼ sin (X)sin (as), we find that X will

rapidly decay toward zero as time proceeds. This observation,

together with that in a simple sinusoidal field, suggests that to

stretch a polymer chain, if not done by a stationary field, the field

not only has to be non-uniform, but also has to move for creating

a ratchet-like effect.
VI. Characterization of stretching responses

In this section we would like to quantify how the stretching is

determined by the strength and speed of a travelling wave field.

Here we categorize the stretching into four different scenarios:

weak stretching (small De), strong stretching (large De), slow

stretching (small a), and fast stretching (large a), as illustrated in

Fig. 5.
(i) Weak stretching (De � 1)

For De� 1, the extent of stretching is expected to be small since

the electric field is too weak to pull the chain. This is becauseXz
De � 1 as a result of balancing the driving travelling field term

sin (X � as) z O(1) with the elastic force term X/De in eqn (1).

Since the variation of the chain extension dX is also comparable

to X in magnitude and the chain oscillates with time period s z
1/a, the drag force term in eqn (1) scales as dX/dsz aDe. So this

term is negligible compared to the other two O(1) terms unless

a is comparable or larger than 1/De.
Soft Matter, 2012, 8, 1977–1990 | 1981
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Fig. 6 Dependence of time-averaged extension on De and a in the

absence of fluctuations (b¼ 0). (a) Plots of jX j vs. De for various values of

a. For a # 0.1, jX j virtually grows linearly with De. In this regime, the

curve does not change significantly with a. For a$ 10, jX j remains small

and nearly unchanged withDe until someO(1) value ofDe beyond which

the chain regains its stretch according to jX jzDe. (b) Plots of jX j vs. a for

various values of De. jX j with small a remains unchanged at the level of

De, whereas it decays at the rate of 1/a in the large a regime. The

crossover occurs at a z 1/De.

Pu
bl

is
he

d 
on

 2
3 

D
ec

em
be

r 
20

11
. D

ow
nl

oa
de

d 
by

 N
at

io
na

l C
he

ng
 K

un
g 

U
ni

ve
rs

ity
 o

n 
7/

21
/2

02
0 

6:
11

:2
5 

A
M

. 
View Article Online
(ii) Strong stretching (De [ 1)

When De is large, the chain can be readily extended by a strong

field and exhibit a large extension. At a steady oscillation state,

the electric force will be nearly balanced by the elastic force,

giving the averaged extent of stretching: Xsteady z De [ 1.

Because there is a small mismatch between the electric force and

the elastic force at a steady oscillation state, the stretched chain

will be accompanied with small variations of size dX z d �
Xsteady. Thereby, the drag force term has a scale of dX/ds z ad,

which is small compared to the remaining terms in eqn (1), except

for a sufficiently large a.

(iii) Slow stretching (a � 1)

When a is small, the chain is stretched by a nearly stationary

field. Its extension again follows X z De because of the

balance between the electric force and the elastic force. In fact,

we find that the maximum chain extension in this case is

precisely equal to De, as a result of the exact balance between

these two forces.

(iv) Fast stretching (a [ 1)

For a[ 1, the chain is simply pulled back and forth very rapidly

by a fast moving field. As the elastic force will not have time to

support the stretching, the driving electric force can only be

balanced by the drag generated by the rapid swaying of the chain:

dX/dsz sin (X � as) with sz 1/a, giving dXz dz 1/a. As the

chain extension X is as small as its variation d, the elastic force X/

De scales as 1/aDe � 1 and indeed is negligible.

To sum up, in order to get the chain extended, the electric

force must be balanced by the elastic force to give X z De.

When the stretching is slow, the chain will have time to develop

its stretch. On the other hand, if the field strikes too fast, the

elastic force will not have time to hold the extension against

rapid electric strokes, thereby decreasing the extension

according to X z 1/a. If the stretching is both strong and fast,

we expect X z De/a by combining X z De for large De and X

z 1/a for large a. Written back in the dimensional form, the

actual chain extension in this particular case turns out to be x

z zU0
2/(kc) f E0

2—the stretch can be increased quadratically

with the field strength.

The above scaling results can be seen more clearly in Fig. 6

that displays how the averaged chain extension jX j varies with
De and a. Here varying a by keeping De fixed means that we

vary the wave speed c independently under a fixed field strength

E0 (or U0). On the other hand, varying De at a fixed a means

that we change the electrode size b�1 or the chain’s relaxation

time srelax ¼ z/k while keeping the field strength E0 and wave

speed c fixed. Fig. 6a plots jX j against De for various values of

a. For a # O(1), the extension grows like jX jzDe, regardless

of the value of a. For large a (>10), the extension is small and

remains nearly unchanged for small De. It starts to rise at De

z 1, and then grows again according to jX jzDe for even

larger De.

Fig. 6a also reveals that at a given De, the larger the a, the

smaller the jX j. Such a damping becomes more evident as plot-

ting jX j against a in Fig. 6b. At a givenDe, the extension remains

unchanged for small a, but decays as jX jz1=a for large a.
1982 | Soft Matter, 2012, 8, 1977–1990
However, the transition point, a*, between these two trends

depends on the magnitude of De. For De # 1, because X z De

for small a andXz 1/a for large a, the transition occurs at a*z
1/De. On the other hand, for De [ 1 we find a* z 1 as a result

of the crossover between X z De/a in the large-a limit and X z
De in the small-a limit.

Based on the results of the deterministic study above, we can

say that the present travelling-wave stretching is quite different

from those using AC fields reported previously. Ueda and his

coworkers did experimentally demonstrate the use of low-

frequency sinusoidal electric fields in stretching DNA mole-

cules in concentrated polymer solutions.19,20 In their studies,

the stretching appeared in a repetitive manner through

successive hooking/releasing of DNAs with/from the

surrounding polymer matrix. Recent computer simulations also

revealed that polymer chains can exhibit conformational

transitions in simple sinusoidal electric fields due to polariza-

tion effects.21–23 In contrast to these studies, the present

stretching is driven purely by electrophoresis via asymmetric

pulling created by travelling wave fields. It neither involves the

entanglement of a chain with the surrounding medium nor

charge polarization along the chain.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 7 Conformational hysteresis under the actions of a traveling wave

field, as illustrated by plotting the net force on the chain Fnet ¼ dX/ds
against the chain displacement X at De ¼ 2.5 and a ¼ 0.1. Fnet > 0 (<0)

corresponds to stretching (compression). Inset shows howX varies with s.
Yellow circles denote the chain’s states at different times. Note that the

magnitude of Fnet during stretching is smaller than that during

compression, because the electric force and the elastic force act in the

same direction in the latter.

Fig. 8 Illustrated free energy landscape at De ¼ 4 and a ¼ 0.5. Yellow

circles with different numbers are used to trace how the chain’s free end

moves during a cycle. During stretching (a), the chain stays along an

energy downslope or in a shallow well levitated by a travelling wave field,

whereas it is located at an uphill rapidly moved down by the field during

compression (b). (c) Schematic diagram showing how the chain’s free

energy change is evaluated in terms of its infinitesimal changes due to

position and time.
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VII. Hysteresis in chain dynamics and free energy
landscape

Because of asymmetric pulling and compression during a cycle,

the chain would follow different paths to stretch and contract,

giving rise to a hysteresis in the chain dynamics, as shown in

Fig. 7. Since this irreversibility must acquire an additional work

for sustaining the stretch and the work here is done by the net

stretching force fnet, which is simply the drag force zdx/dt along

the chain displacement, the stretching work wstretch can be eval-

uated by # fnetdx ¼ Ð 2p=bc
0

ðdx=dtÞ2dt. Written in the dimension-

less form, it is

Wh
wstretch

zU0b�1
¼ #FnetdX ¼

ðTu

0

�
dX

ds

�2

ds: (3)

It is clear that the stretching work is always positive, as

the chain extension must change in the direction of the net force

Fnet ¼ dX/ds—this has nothing to do with whether the chain is

pulled or compressed by an electric field. Fig. 7 also reveals that

the work during contraction is much greater than that during

stretching. This can be understood by the fact that both electric

and elastic forces during contraction act in the same direction

and hence produce a much larger net force dX/ds for com-

pressing the chain.

An alternative view for understanding how a chain deforms in

a travelling wave field can be seen by inspecting the chain’s free

energy landscape. The reasons for doing this are twofold. First, if

fluctuations are absent as considered here, the hysteresis seen in

Fig. 7 suggests that how the free energy landscape varies during

stretching might behave differently compared to that during

compression. It is this spatial difference in the free energies

between these two opposite processes contributing to the

stretching work discussed above, as will be identified shortly.

Second, when fluctuations are present, because of the asymmetry

between stretching and compression in the free energy, the ability
This journal is ª The Royal Society of Chemistry 2012
to maintain the stretch would qualitatively differ from those in

usual steady fields, which will be elaborated in more detail in

Section VIII.

Now we derive and examine the free energy landscape as

follows. Define the function F(Z,s) h �Z/De + 3(Z � as) to
describe how the net force at a given positionZ (with Z¼ 0 being

the fixed end of the chain) varies with time s. The corresponding
free energy F(Z,s) can be found by integrating F ¼ �vF/vZ with

respect to Z. For convenience, we set F(Z ¼ 0,s) ¼ 0 at the

chain’s fixed end (where F is the lowest when the chain is at rest).

Then the free energy reads

Fh
f

zU0b�1
¼ Z2

2De
�
ðz

0

3ðZ � asÞdZ; (4)

whose dimensional form f has units of zU0b
�1. Fig. 8a and

b show typical spatiotemporal evolutions for F during a cycle

when the chain undergoes apparent stretching by a strong trav-

eling wave field. As seen in these figures, during stretching the

chain’s free end is situated in a moving energy downslope (F > 0)

that is uplifted by the field (Fig. 8a), whereas it is quickly brought

down by a descending upslope (F < 0) during contraction

(Fig. 8b). In addition, how F changes with position and time can

be better understood by considering an arbitrary differential

change of F evaluated at the chain’s free end Z ¼ X(s):

dFjX ¼ vF

vs

����
X
dsþ vF

vZ

����
X
dZ: (5)

As can be seen more clearly in Fig. 8c, this energy change is the

sum of two parts: the time varying part

vF

vs

����
X

ds ¼ að3ðX � asÞ � 3ð�asÞÞds can be recognized as the
Soft Matter, 2012, 8, 1977–1990 | 1983
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lifting/descending work done by travelling wave strokes, and the

spatial difference part comes simply from the stretching work by

the chain
vF

vZ

����
X

dZ ¼ �FðXÞdX .

Taking an integral over a cycle for both sides of eqn (5), and

recognizing that # dFjX ¼ 0 and

ðT
0

vF

vZ

����
x

�
dX

ds

�
ds ¼ �W from

eqn (3), we find

W ¼ a

ðTu

0

3ðX ðsÞ � asÞds: (6)

Thereby, the stretching work, which is done by the net

stretching force on the chain, is actually equal to the stroking

work by a travelling wave field on the chain. As this stroking

action also generates a net stretch via eqn (2), a direct relation-

ship between W and averaged displacement �X can then be

established:

W ¼ 2p
X

De
: (7)

It thus follows that the identical work is also restored into the

chain through its elasticity, as it is needed for keeping the chain

extended in a traveling wave field. We have also verified eqn (7)

numerically, confirming the results derived in this section.
VIII. Noise-activated hopping and coil–stretch
transition in a vibrating harmonic oscillator

So far we have examined the deterministic behavior of the

stretching in the absence of fluctuations. When fluctuations are

present, however, they can influence the dynamic stability of

a polymer chain and hence modify the features seen in the

deterministic study. Specifically, inevitable random thermal

fluctuations could activate unraveling of a polymer coil by an

external field via overcoming the energy barrier toward the

stretched state, provided that the stretched state has a lower

energy than the coil state due to the additional work done by the

field on the chain (i.e. the last term of eqn (4)). The effects could

equally reduce the extent of stretching or even make the chain

shrunk back to the coiled form if the stretched state has a higher

energy level with the energy barrier comparable to or less than

the thermal energy kBT. This is the well-known coil–stretch

transition14—a kinetically trapped polymer chain can undergo

hopping from one well to another by surmounting the barrier in

between. This problem is actually well understood in steady

fields.24,25 In a traveling wave field, however, because the free

energy landscape can vary with both position and time, whether

hopping can occur would depend on if the chain has time to jump

to a lower energy state before the landscape moves due to the

travelling wave actions. The situation here can be thought of as

a vibrating harmonic oscillator whose shape varies in such a way

thatDe affects the depths of local energy minima and a describes

how the shape oscillates with both position and time.

Prior to carrying out our analysis in detail, we should briefly

discuss how the free energy profile influences the stability of

a polymer chain. For De < 1, the free energy is dominated by the

parabolic elastic well (i.e. the De term in eqn (4)) with a single
1984 | Soft Matter, 2012, 8, 1977–1990
minimum around the bottom. Since the chain extension X z De

< 1 is small, the chain actually stays around the bottom of the

well and is slightly swayed back and forth by it due to the rela-

tively weak travelling-wave field. Therefore, when fluctuations

are present, we expect that the chain would tend to stay like

a coil. In other words, hopping is impossible unless a sufficiently

strong sinusoidal field is applied to generate more than one

energy minimum, which demands De > 1 and hence an apparent

stretch.

For De > 1, not only do the traveling-wave undulations (i.e.

the last term in eqn (4)) become more important to produce

multiple wells in the free energy landscape, but also the chain

extension is large enough to make across between these wells so

that hopping from one well to another now becomes possible. A

closer inspection reveals that how the shape of the free energy

landscape determines hopping seems to have something to do

with whether the chain can keep extended along the wave during

a cycle. That is, the situation would depend if De is smaller or

larger thanDecrit (see Fig. 4). So there are two scenarios. The first

is when 1 < De < Decrit. While the chain in this case can show an

extension in the averaged sense, it can be flipped by the field

during a cycle (see the inset of Fig. 4). The corresponding free

energy landscape looks like a bistable potential in which the

chain sways in a seesawing manner. For De > Decrit, the chain

can always keep extended without being flipped by the field. In

this case, the free energy landscape can exhibit multiple wells

over which the chain spans. As will be shown below, the hopping

kinetics in these two scenarios can be governed by different laws.
A. Arrhenius hopping for a slightly stretched chain in double

wells (1 < De < Decrit)

We first consider the case of 1 < De < Decrit. In this case,

a somewhat extended chain is periodically moving up and down

in between two alternately rising wells on the bottom of the

landscape. As displayed in Fig. 9a and b, the situation here looks

as if the chains were swinging in a seesaw (but in a somewhat

asymmetric manner due to the slightly dominant pulling toward

the right). While the chain is trapped and stretched around the

shallow well at the right, it could happen that the left well has

a slightly lower energy level during a cycle, as illustrated in

Fig. 9c. This allows the chain to escape from the right to the left

well due to fluctuations and hence reduces the chain extension (in

the ensemble averaged sense). Such a noise-activated escaping

process typically occurs if the barrier height Dfbarrier is an order

of kBT or smaller. However, since the free energy landscape

constantly changes with time, the chain must jump sufficiently

fast before it feels any significant change in the landscape. In

terms of time scale, this demands that the hopping time thopping is

much shorter than the cycling period tcycle ¼ 2p/(bc) as if

hopping occurred in a stationary landscape. Conversely, one

requires thopping > tcycle to keep the chain extended without

hopping back to the left well. As the chain here is only slightly

stretched around the bottom of the landscape, it must first

undergo elastic recoil before escaping toward the left well in this

double-well situation. In terms of probability (which is inversely

proportional to the time scale of a process), the probability for

the whole hopping process is the joint probability of elastic

recoiling (f1/srelax) and escaping (fexp (�Dfbarrier/kBT)), where
This journal is ª The Royal Society of Chemistry 2012
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Fig. 10 Free energy landscape at De ¼ 10 (>Decrit) and a ¼ 0.1. (a) 3d

plot showing how the landscape varies with position and time. (b) Cor-

responding snapshots during a cycle. Yellow circles with different

numbers are used to trace the sequential movement of the chain’s free end

during a cycle. The landscape here can possess multiple maxima and

minima. In this case, the chain trapped at a higher groove could hop to

a lower one due to fluctuations at any moment during a cycle, as illus-

trated in (c).

Fig. 9 Free energy landscape atDe¼ 2 (<Decrit) and a¼ 0.1. (a) 3d plot

showing how the landscape varies with position and time. (b) Corre-

sponding snapshots during a cycle. Yellow circles with different numbers

are used to trace the sequential movement of the chain’s free end during

a cycle. The landscape can exhibit double wells during a cycle, as seen in

(b). At stage 4 near the maximum chain extension, the chain could hop

from the right well to the left well due to fluctuations if the dimensional

barrier height Dfbarrier ¼ zU0b
�1Fbarrier is comparable to or less than the

thermal energy kBT, as illustrated in (c).
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srelax ¼ z/k is the chain’s relaxation time. Therefore, the hopping

time can be estimated by the simple Arrhenius law:

thoppingzsrelaxexp

�
Dfbarrier

kBT

�
; (8)

wherein Dfbarrier/kBT ¼ 2Fbarrierb
�2 with Fbarrier being the cor-

responding dimensionless barrier height in terms of F by

rescaling f with zU0b
�1. Since the double wells here are created

by a sinusoidal field and only appear sometimes during a cycle

(see Fig. 9c), the magnitude of Fbarrier should never exceed the

free energy associated with the field, namely, Fbarrier # 1. By

treating Fbarrier ¼ 1 in eqn (8) for the estimate of thopping, the

condition thopping > tcycle for keeping the chain stretched is

reduced to

a > gDe�1exp (�2b�2). (9)

Here we introduce g as a numerical pre-factor to capture the

actual hopping probability exp (�2 Fbarrierb
�2) due to the occa-

sional appearance of the double wells, as the approximated form

exp (�2b�2) with Fbarrier ¼ 1 is used here. So this pre-factor
This journal is ª The Royal Society of Chemistry 2012
somewhat measures the effectiveness of hopping in such a time-

varying landscape. The actual value of g, which should be less

sensitive to De, a and b, will be determined by Brownian

dynamics simulations. Note that the above criterion can only be

used to reflect the ability to keep the chain stretched; it does not

necessarily suggest that the extent of stretching will be large.

B. Kramers hopping for a highly stretched chain in multiple

wells (De > Decrit)

For De > Decrit, the chain can be greatly extended by a travelling

wave field without being flipped to the other side. In this case, the

undulating electric energy posed by a travelling wave field

dominates to create a rippling basin of width �(2De)1/2 beyond

which the elastic ladder begins to emerge. Also because De is

large, not only does a highly stretched polymer chain span over

a number of undulating grooves, but also it is upheld by cycli-

cally lifting and descending by a travelling wave field, as dis-

played in Fig. 10a and b. So the chain during stretching is

actually trapped around a local minimum rising up alongside

with an energy barrier toward the neighboring minimum at

a lower energy level, as illustrated in Fig. 10c. In this case, the
Soft Matter, 2012, 8, 1977–1990 | 1985
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chain could either escape to a lower-energy stretched state or

even fall all the way back to the coil state.

As the hopping here actually takes place in multiple wells

created by a more dominant sinusoidal electric field, the proba-

bility for a chain jumping from one well to another would depend

on the shape of the local free energy profile. So in this multiple-

well situation, the hopping time is better described by the

Kramers rate theory:26,27

thoppingz
‘1‘2
D exp

�
DFbarrier

kBT

�
: (10)

Here l�1
1 and l�1

2 are the respective radii of the curvatures of the

local energy minimum and maximum around the barrier.

Alternatively, l1 and l2 measure the lateral length scales over

which the free energy changes by the size of kBT around these

concave and convex places. Since the grooves here vary sinu-

soidally in space, these length scales are of an order of the spatial

periodicity b�1. D ¼ kBT=z is the diffusion coefficient of the

chain, measuring the mobility for the chain to cross energy wells

and hills. Again, by setting Fbarrier z 1, the barrier has a size of

about Dfbarrier/kBT z 2b�2. Using the above estimates, the

condition thopping > tcycle for maintaining the stretch can be re-

written as

a > lb2exp (�2b�2), (11)

where l is a numerical pre-factor for capturing the actual changes

in l1 and l2 in eqn (10) and its value is again determined by

Brownian dynamics simulations. Note that because the left hand

side of eqn (11) approaches to lb2 as b/N, the associated coil–

stretch boundary would be insensitive to the actual value of

Fbarrier, as is confirmed by our simulations.
Fig. 11 Schematic illustration of coil–stretch phase diagrams under the

influence of both travelling wave fields and fluctuations. The stretch

region is enclosed by a � De, b � De, and the curve determined by the

hopping kinetics. For the double-well scenario with 1 <De <Decrit in (a),

the hopping kinetics is of Arrhenius type, whilst Kramers-type hopping

governs for the multi-well scenario with De > Decrit in (b). (c) Combined

view to illustrate how the coil–stretch phase diagram changes as De is

increased. Here we use dashed lines to connect different phase boundaries

to indicate smooth transitions between them.
C. Other constraints due to the wave speed and the size of

fluctuations

While a stretch can be better held by increasing a according to

eqn (9) or (11), a too large a would suppress stretching according

toXzDe/a, making the chain more inclined to return to the coil

state. Hence, an additional criterion for maintaining a stretch

must be imposed by setting X > 1:

a < n1De, (12)

with n1 being an O(1) numerical pre-factor. This criterion can be

thought of as the damping threshold at the critical wave speed

c* ¼ zU2
0b/k below which the apparent stretch can be realized.

Therefore, eqn (12) together with eqn (9) or (11) provides a range

of a within which stretching can be seen in the presence of fluc-

tuations. If fluctuations are small (b � 1), the smallest a needed

for maintaining the stretch, a> ¼ gDe�1exp (�2b�2) or lb2exp

(�2b�2), vanishes according to eqn (9) or (11), so the chain can

always be kept extended by travelling wave fields at any a below

a< ¼ n1De, as in the deterministic study. For De > Decrit, since

a> ¼ gDe�1 from eqn (9) in the large b limit is below a<,

stretching can be observed in the window of a> < a < a<. For

1< De < Decrit, however, a> ¼ lb2 from eqn (11) in the large

b limit could exceed a<. In this case, even though stretching can

be made more favorable with larger a, it has been already beyond
1986 | Soft Matter, 2012, 8, 1977–1990
the ability to see apparent stretching because of damping by too

large a.

While the chain would tend to return to the coil state through

hopping activated by noises, the extent of stretching could also

be reduced due to random Brownian displacements of the free

end. Thus, we expect that the apparent stretch can be seen only if

X z De is greater than the Brownian displacement b(Ds)1/2 z b.

This yields

b < n2De, (13)

where n2 is an O(1) numerical pre-factor. This criterion limits the

size of fluctuations below which stretching can occur. It also

provides the minimum field needed for the stretching by over-

coming Brownian fluctuations. In terms of the electrophoretic

velocity, it occurs around U*
0 ¼ (kBTz

�3k2b�1)1/3. Further making

use of the chain’s relaxation time srelax ¼ z=kzR2
g=D that links

the diffusion coefficient D ¼ kBT=z and the coil size Rg, we find

that U*
0 is actually equal to the chain’s self-diffusion velocity
This journal is ª The Royal Society of Chemistry 2012
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D=Rg times (bRg)
�1/3, consistent with the need in overcoming

Brownian fluctuations.
Fig. 13 Calculated coil–stretch phase diagrams for (a) De ¼ 2 and (b)

De ¼ 10 corresponding to 1 < De < Decrit and De > Decrit scenarios,

respectively. Results basically resemble those sketched in Fig. 11. In both

scenarios, despite different hopping kinetics, their phase diagrams are

confined by the same horizontal and vertical phase boundaries a ¼
0.85De and b ¼ 0.85De.
D. Predicted coil–stretch phase diagram and confirmation with

Brownian dynamics simulations

Fig. 11 sketches the predicted coil–stretch phase diagrams in the

a–b domain according to the criteria mentioned above. For 1 <

De < Decrit stretching can be seen in the region enclosed by eqn

(9), (12), and (13), whilst for De > Decrit the stretch region is

bound by eqn (11)–(13). It is obvious that the stretch region in

the latter is larger than that in the former, as stretching can be

better maintained with larger De. It also follows that the stretch

region expands as De is increased.

Now we test our theory using Brownian dynamics simulations.

In our simulations, the stretched state is defined if the time

average of the ensemble-averaged displacement hX i. 0:5. (Here

we do not use the root mean square (rms) hX2i1/2 to evaluate the

extent of stretching. This is because, at a sufficiently large b, hX i
is very small but the rms value can actually turn to be very large

due to large Brownian random walks.) We have confirmed (not

shown) that increasing the size of fluctuation b can diminish

stretching by lowering both the maximum and minimum exten-

sions of a chain during a cycle. If fluctuations are too large,

whatever the stretch it will soon be disrupted by intense Brow-

nian fluctuations, making the chain return to the coil state (in the

ensemble-averaged sense). The numerical pre-factors in eqn (9),

(11)–(13) have also be determined by the simulations for

capturing precise boundaries of the coil–stretch transition.

In Fig. 12, we show our simulation results for De ¼ 2 and 10

corresponding to the double-well and multi-well scenarios illus-

trated in Fig. 9 and 10. ForDe ¼ 2, it is found from Fig. 12a that

the minimum of hXi can be increased by raising a from 0.1 to 0.5
Fig. 12 Long-term temporal responses of ensemble-averaged displace-

ment hXi at De ¼ 2 and De ¼ 10 in the presence of fluctuations. (a) With

De ¼ 2 and b ¼ 1.2, the minimum of hXi can be increased by raising

a from 0.1 to 0.5 while the maximum does not drop significantly, giving

rise to an increase in the time average hXi. But further increasing a > 2

can decrease hXi due to damping by much rapid travelling wave strokes.

(b) With De ¼ 10 and b ¼ 5, the level of hXi is found to be increased by

increasing a from 0.1 to 5, but decreased when increasing a > 10. These

results suggest that the stretch can be better maintained by increasing

a (but not beyond the damping threshold), confirming our speculation

that the decrease in the extent of stretching due to fluctuations can be

prevented by diminishing the tendency of hopping via increasing the

travelling speed. Here we use colored curves changing from red to blue

for indicating the transition from the coil state to the stretched state. The

insets plot the calculated hXi as a function of a.

This journal is ª The Royal Society of Chemistry 2012
while the maximum does not drop significantly, leading to an

increase in the time average hX i (see the inset). Such an increase

in hXi becomes more evident forDe¼ 10, as revealed by Fig. 12b

in which the level of hXi is found to be increased by increasing

a from 0.1 to 5. For both cases, further increasing a will decrease

hXi due to damping by much more rapid travelling wave strokes.

These results confirm our speculation that stretching can indeed

be better held by preventing hopping via increasing the travelling

speed below the damping threshold. The calculated coil–stretch

phase diagrams are displayed in Fig. 13. Just like Fig. 11, they are

basically portrayed as a tongue-like shape in accordance with the

criteria found in the preceding subsections.
IX. Applications of travelling wave stretching to
dynamic molecular probing

In this section, we put forth to explore the use of travelling-wave

stretching in dynamic molecular probing. Similar to single

molecule force spectroscopy, a simple molecular detection can be

realized by taking a tethered polymer chain as a flying ‘‘kite’’ for

capturing target molecules and then monitoring how the chain

responds to changes in its mobility and/or elasticity. In addition

to molecular detection, one can also apply the stretching to

actively regulate adsorption/desorption of extraneous molecules

on a stretched polymer. Below we will give two examples to

illustrate how to realise these probing and regulation processes.

As our focus here is to show the effects at work, we exclude

fluctuations for better illuminating the features of the stretching

dynamics. While fluctuations tend to reduce the stretch, we

anticipate that the results obtained in this section should not

change qualitatively.
Soft Matter, 2012, 8, 1977–1990 | 1987
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Fig. 15 Stretching responses when subjected to consecutive step changes

in both the chain’s mobility and elasticity. The stretch is amplified when

|3m/3k| > 1, whereas it is suppressed when |3m/3k| < 1. De ¼ 0.1. a ¼ 0.01.
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A. Dynamic stretching under molecular bombardment

We first demonstrate the use of a stretching polymer chain in

capturing and sensing target molecules through their specific

binding onto the chain. According to our previous study,13 if

these molecules were charged, they would soon be trapped into

an array of ionic clouds moving along with an applied travelling

wave field, creating a periodic molecular bombardment onto the

chain. Assume that the binding of these target molecules onto the

chain happens so fast that its mobility m and elasticity k undergo

abrupt changes upon sweeping by a cloud of target molecules.

Hence, both m and k actually vary with time in a stepwise and

accumulative manner according to (m,k) ¼ (m0,k0) + (Dm,Dk)n,

where the subscript ‘‘0’’ denotes the chain’s native state, Dm and

Dk stand for the respective changes in the mobility and elasticity,

and n ¼ [(s � s1)/Tu] is the number of target-molecule clouds

passing through the chain after an injection of these molecules at

time s1. Note here that Dm can be either >0 or <0 due to

adsorption of like or unlike charges, whilst Dk is always >0 since

the chain would be getting stiffer and stiffer due to the buildup of

extraneous molecules on the chain. If such adsorption persists

and fluctuation effects are negligible, then the stretching

dynamics can be described by the modified equation:

dX

ds
¼ � 1

De
ð1þ n3kÞX þ ð1þ n3mÞ3ðX � asÞ; (14)

with 3k ¼ Dk/k0 and 3m ¼ Dm/m0 measuring the sizes of the two

step changes relative to the values at the native state.

We first look at effects of 3m by letting 3k¼ 0. Several stretching

dynamics are displayed in Fig. 14. For 3m > 0, because of the

progressive increase in the electric force, the chain can keep

gaining an extension of �3mDe every cycle, and the larger the

a the faster the growth (Fig. 14a). Even if the chain starts with

a little stretch with large a or small De, the increasing electric

force will eventually outweigh the elastic force, making the

extension grow with time (see Fig. 14b and c). On the other hand,

diminishing the chain’s mobility with 3m < 0 will lead the stretch

to fall off for the first few cycles until the isoelectric point (i.e. m¼
0) at n z 1/3m, as seen in Fig. 14d. If the chain is allowed to be
Fig. 14 Various stretching dynamics when subjected to consecutive step

changes in the chain’s mobility while keeping the chain’s elasticity

unchanged (3k ¼ 0). (a) 3m ¼ 0.5, De¼ 2. (b) 3m ¼ 0.5, De¼ 0.1, a ¼ 1. (c)

3m ¼ 0.5, De ¼ 2, a ¼ 10. (d) 3m ¼ �0.1, De ¼ 10, a ¼ 0.1.
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overcharged by absorbing more countercharged molecules

beyond the isoelectric point, it can be re-stretched and extended

indefinitely by the outgrowing electric force due to the continual

buildup of the molecules. In this case, the result will be similar to

Fig. 14b or c. As for the case where the chain is only subject to

a constant increase in its elasticity, it is clear that it will lose the

ability to stretch and hence shrink with time due to the gradually

increasing elastic restoring force (not shown).

When both 3m and 3k are present, since the former tends to

increase the stretching (at the steady oscillation state) but the

latter tends to ease it off, how their combined effects determine

the behavior of the stretching would depend on the ratio 3m/3k. As

shown in Fig. 15, if |3m|/3k > 1, the chain’s final extent will grow

larger than its initial value because the stretch can be amplified

more by raising the electric force against elastic retraction

(despite the fact that 3m/3k < �1 will decrease the stretch in the

beginning). In contrast, |3m|/3k < 1 will decrease the stretch due to

the stronger elastic retraction setup by the greater increment in

the elastic force. We also observe (not shown) that changing

a only changes the time required to reach a steady oscillation

state, but it does not affect the magnitude of the chain’s final

extent. A close inspection of eqn (14) reveals that the final extent

of stretching is controlled by the effective Deborah number, the

ratio of the electric force to the elastic force in the n / N limit:

Deeff ¼ j3mj
3k

De: (15)
Fig. 16 Long-term maximum chain extensions (symbols) found under

various molecular bombardment conditions. All of the data can be

collapsed into a single master curve:X¼Deeff (line) withDeeff¼De|3m/3k|.

This journal is ª The Royal Society of Chemistry 2012
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Tracking how the final chain extensions change under various

conditions in Fig. 16, we find that they all collapse according to

X z Deeff. (16)

As a result, the stretching with De < 1 (>1) will eventually be

enlarged (suppressed) withDeeff > 1 (<1) if the mobility change is

greater (less) than the elasticity increment. Since X z De or De/

a at the native state (see Section V), the chain’s extent is actually

changed by a factor of |3m|/3k or a|3m|/3k in this molecular

bombardment process.
B. Use of cyclic stretching in regulating molecular adsorption

and desorption

In the second example, we would like to demonstrate that cyclic

stretching of a polymer chain can also be used to regulate the

adsorptive transport of extraneous solute molecules on the chain.

The following assumptions are made to demonstrate this idea.

First, we assume that these molecules are irresponsive to electric

fields and uniformly distributed over the chain upon adsorption.

Second, their transport is assumed not to change the chain’s

properties and therefore the stretching dynamics. Third, the

sorption process here is assumed to be governed by the Langmuir

kinetic model.28 In this model, the adsorptive and desorptive

fluxes are prescribed by kaC0(GN � G) and �kdG, respectively,
Fig. 17 Use of a cyclically stretching polymer chain in regulating

molecular adsorption/desorption over the chain. For slow stretching with

a ¼ 0.1, a maximum for the absorbed amount M occurs at the corre-

sponding maximum for the chain extension X at the moment when both

adsorption and desorption reach an equilibrium. Since the ratio between

these two maxima Mmax/Xmax is equal to the ratio of the adsorption to

desorption rates K1/K2, this can be used to control adsorption/desorption

by changing De. (a) With (K1,K2) ¼ (1,2) under which desorption

dominates adsorption, adsorption enhancement can be achieved by

increasing M via increasing De from 1 to 2. (b) With (K1,K2) ¼ (2,1), on

the other hand, prevailing adsorption can be suppressed by reducing M

via decreasing De from 2 to 1. In both cases, the changes of De are

introduced at the end of the 4th cycle.

This journal is ª The Royal Society of Chemistry 2012
where ka and kd are the rate constants, G is the solute concen-

tration per surface area along the chain, GN is the maximum

packing density, and C0 is the solute concentration in the bulk.

As the chain also works like an extendable cable that can capture/

release more solute molecules as it stretches/contracts, this rela-

tive motion produces an additional convective flux wC0(dx/dt)

into/out of the chain for adsorption/desorption, where w

measures the projection to the chain on the solution side due to

the inclination of the chain. Based on the above assumptions,

taking mass balance for solute molecules by adding up all the

fluxes over the chain surface p|x|d (with d being the diameter of

the chain), we derive the following equation for determining how

the total mass of the solute molecules absorbed on the chain,

pd|x|G, varies with time:

dðjxjGÞ
dt

¼
�
kaC0ðGN � GÞ � kdGþ wC0

dx

dt

�
jxj:

Let s ¼ G/(wb�1C0) be the dimensionless surface concentration.

Then the above equation is reduced to the dimensionless form:

dðjX jsÞ
ds

¼
�
K1 � K2sþ dX

ds

�
jX j; (17)

wherein K1 ¼ (kaGN)/(wU0) and K2 ¼ b�1(kaC0 + kd)/U0 measure

the importance of adsorption and desorption relative to

convection induced by the stretching, respectively, and their ratio

provides the sorption constant when adsorption equilibrates with

desorption.

In Fig. 17, we observe that as long as the stretching is suffi-

ciently slow (a < 1), a maximum for the absorbed amount

M h |X|s occurs at the corresponding maximum for X at the

moment when both adsorption and desorption reach an equi-

librium. The ratio between these two maxima, Mmax/Xmax, can

then be used to determine the sorption constant K1/K2 ¼ smax ¼
Mmax/Xmax. This feature can be further utilized to control the

amount of absorbed molecules by changing De. As also illus-

trated in Fig. 17, the amount of absorbed molecules can be

increased by raising De when desorption dominates adsorption

(K1 <K2) (Fig. 17a), whereas prevailing adsorption (K1 > K2) can

be suppressed by decreasing De (Fig. 17b). This result also

implies that the stretching could be used to enhance the capture

of low-affinity molecules onto a polymer chain while preventing

undesired adsorption of high-affinity molecules.
X. Concluding remarks

We have analyzed stretching of a tethered polymer chain under

the actions of travelling wave electric fields. The stretching here is

driven by low-frequency electrophoresis in a time oscillatory

fashion. Both deterministic and stochastic studies are also carried

out without and with fluctuations, respectively. In the deter-

ministic study, we show that a polymer chain can be extended by

cyclic strokes generated by a travelling wave field and that its

extension can be maintained in the wave propagation direction.

This is very different from the stretching in purely sinusoidal

fields in which a polymer chain merely stretches and contracts

back and forth without gaining any net stretch after a cycle. As

the stretch can be amplified by raising the field intensity but

rapidly damped by increasing the wave speed, these two

competing effects, characterized respectively by De and a,
Soft Matter, 2012, 8, 1977–1990 | 1989
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determine the averaged extent of stretching. Therefore, the

stretching behavior can be judiciously controlled in terms of the

electrode size, the chain’s properties, and applied field

conditions.

In the stochastic study, we look at whether the chain can

maintain its stretch in a travelling wave field in the presence of

fluctuations. From a kinetic point of view, this is to examine

whether a stretched chain can return to the lower-energy coil

state through hopping activated by random noises. The situation

here can be thought of as a vibrating harmonic oscillator that can

exhibit double or multiple wells, depending on the extent of

stretching. We find that, even though increasing the wave speed

tends to damp stretching, the effects can help the chain keep

extended by preventing it from hopping back to the lower-energy

coil state. In other words, the coil-to-stretch transition can be

expedited in the sense that a travelling wave field, aside from

driving the stretching, provides an additional trapping for lock-

ing the chain into a stretched state at a higher energy level. In this

regard, we identify two distinct hopping kinetics: Arrhenius and

Kramers modes, governing the respective coil–stretch transitions

in the double-well and multiple-well scenarios. If fluctuations are

too large or the wave speed is too high, however, the chain will no

longer be stretchable. We develop a kinetic theory to include all

these effects and predict tongue-like coil–stretch phase diagrams

in good agreement with those generated by Brownian dynamics

simulations. It is also worth pointing out that such cooperative

effects of AC fields and fluctuations on the dynamic stability of

a chain are unique to travelling wave stretching—they simply do

not exist in steady or usual AC fields.

We also put forth to explore the possibility of applying trav-

elling wave stretching to dynamic molecular probing. Such

probing is illustrated by monitoring the stretching dynamics

under periodic molecular bombardments. The stretching can also

be applied to regulate molecular adsorption/desorption onto the

chain. These examples might open up new paradigms of single

molecule spectroscopy for in situ molecular probing and

detection.

It would be interesting to look at how a polymer chain is

folded or unfolded and how its conformation evolves under the

influence of travelling wave fields. These issues could be better

addressed by modeling a polymer as a bead-spring chain and by

resorting to Brownian dynamics simulations again to visualize

how it deforms at finer scales. It is anticipated that fluctuation

effects would play critical roles in the dynamics at the subchain

level. Additional insights may be gained by solving for the

configurational probability distribution from the time-dependent

Smoluchowski equation. As the present study has revealed some

essences about how a polymer chain responds to travelling wave
1990 | Soft Matter, 2012, 8, 1977–1990
fields with and without fluctuations, it should provide useful

prior knowledge for these more sophisticated studies.
Acknowledgements

This work was supported by the National Science Council of

Taiwan under Grants 97-2628-E-006-001-MY3 and 100-2221-E-

006-185 of HHW.
References

1 A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot and
D. Bensimon, Science, 1994, 265, 2096–2098.

2 E. Y. Chan, N. M. Goncalves, R. A. Haeusler, A. J. Hatch,
J. W. Larson, A. M. Maletta, G. R. Yantz, E. D. Carstea,
M. Fuchs, G. G. Wong, S. R. Gullans and R. Gilmanshin, Genome
Res., 2004, 14, 1137–1146.

3 J. H. Kim, V. R. Dukkipati, S. W. Pang and R. G. Larson, Nanoscale
Res. Lett., 2007, 2, 185–201.

4 B. Maier, D. Bensimon and V. Croquette, Proc. Natl. Acad. Sci.
U. S. A., 2000, 97, 12002–12007.

5 G. S. Manning, J. Chem. Phys., 1969, 51, 924–933.
6 F. Oosawa, Polyelectrolytes, M. Dekker, New York, 1971.
7 V. A. Bloomfield, Biopolymers, 1997, 44, 269–282.
8 S.-F. Hsieh and H.-H. Wei, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2009, 79, 021901.

9 M. D. Wang, H. Yin, R. Landick, J. Gelles and S. M. Block, Biophys.
J., 1997, 72, 1335–1346.

10 S. B. Smith, L. Finzi and C. Bustamante, Science, 1992, 258, 1122–
1126.

11 P. S. Doyle, B. Ladoux and J.-L. Viovy, Phys. Rev. Lett., 2000, 84,
4769–4772.

12 S. Ferree and H. W. Blanch, Biophys. J., 2003, 85, 2539–2546.
13 H.-H. Wei, Appl. Phys. Lett., 2007, 90, 204103.
14 P. G. De Gennes, J. Chem. Phys., 1974, 60, 5030–5042.
15 V. Namasivayam, R. G. Larson, D. T. Burke and M. A. Burns, Anal.

Chem., 2002, 74, 3378–3385.
16 P. T. Underhill and P. S. Doyle, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2007, 76, 011805.
17 S.-F. Hsieh, C.-P. Chang, Y.-J. Juang and H.-H. Wei, Appl. Phys.

Lett., 2008, 93, 084103.
18 A. C. Hindmarsh, ACM SIGNUM Newsletter, 1980, 15, 10–11.
19 M. Ueda, K. Yoshikawa andM. Doi, Polym. J., 1997, 29, 1040–1043.
20 M. Ueda, K. Yoshikawa and M. Doi, Polym. J., 1999, 31, 637–644.
21 S. Wang, H. C. Chang and Y. Zhu, Macromolecules, 2010, 43, 7402–

7405.
22 H. Liu, Y. Zhu and E.Maginn,Macromolecules, 2010, 43, 4805–4813.
23 P.-Y. Hsiao, Y.-F. Wei and H.-C. Chang, Soft Matter, 2011, 7, 1207–

1213.
24 H. P. Babcock, R. E. Teixeira, J. S. Hur, E. S. G. Shaqfeh and S. Chu,

Macromolecules, 2003, 36, 4544–4548.
25 V. A. Beck and E. S. G. Shaqfeh, J. Chem. Phys., 2006, 124, 094902.
26 H. A. Kramers, Physica, 1940, 7, 284–304.
27 W. C. K. Poon and D. Andelman, Soft Condensed Matter Physics in

Molecular and Cell Biology, Taylor & Francis, New York, 2006.
28 J. C. Berg, An Introduction to Interfaces & Colloids: the Bridge to

Nanoscience, World Scientific, Singapore, 2010.
This journal is ª The Royal Society of Chemistry 2012

https://doi.org/10.1039/c1sm06485a

	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing

	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing

	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing

	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing
	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coiltnqh_x2013stretch transition, and a new paradigm of dynamic molecular probing


