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This paper examines particle trapping and release in confined microvortex flows, including those near a solid
surface due to variations in the electrokinetic slip velocity and those at a liquid-gas interface due to an external
momentum source. We derive a general analytical solution for a two-dimensional microvortex flow within a
semicircular cap. We also use a bifurcation theory on the kinetic equation of particles under various velocity
and force fields to delineate the conditions for a vortex trap, a point trap, a limit cycle trap, and the selective
sorting of the particles into different traps. In the presence of only divergence-free forces on suspended
particles, we find that two parameters, such as those related to Stokes drag, gravity, and flow vorticity, are
sufficient to classify all the trap topologies for a given slip velocity distribution. We also show that
nondivergence-free forces such as nonuniform repulsion or attraction can capture suspended particles in one
trap and selectively sort a binary suspension into different traps.
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I. INTRODUCTION

The advent of microfluidic technology has stimulated
growing demands in precisely controlling and manipulating
micro-/nanocolloids, biological cells, and even molecules in
the liquid samples. Due to the low diffusivity of such par-
ticles, Brownian transport to a localized sensor location often
requires unacceptably long time—the current DNA microar-
ray requires hour-long diffusive time for the target to the
probe pixels. There is hence considerable interest in using
flow to enhance the transport of the particles and molecules
to the probes. For surface assays over an entire surface, flow
can quickly replenish docked target molecules to reduce the
diffusion length of undocked ones to the surface probes �1�.

However, for more localized sensors, particularly optical
ones, the transport of the particles needs to be focused to-
ward a localized region where the sensor is located. The
incompressibility of the flow field stipulates that a purely
convective particle transport cannot cause this focusing. The
strategy is then to combine a microvortex circulation with
another force on the particles �like electrostatic attraction
from a point electrode, dielectrophoresis, thermal diffusive
force due to reactive depletion or gravity�, such that trapping
at a localized position can occur �2–4�. The convective mi-
crovortex flow allows long-range convection toward the
stagnation point of the vortex flow where a short-range force
then traps the particles at that location. As the convective
flow effect is typically much larger than the force effect
�high Peclet number�, this multiscale trap is hence much
more rapid and long range than those relying just on Brown-
ian transport or short-range forces. It was also realized that,
quite curiously, trapping can only occur at a converging stag-
nation point of the vortex flow field, as the short-range force

on particles is unidirectional and can hence only reverse the
direction of the outgoing convective particle transport at a
converging stagnation point.

Several such multiscale particle and molecular traps with
converging stagnation points were reported recently. Hou
et al. �5� used an ionic wind point momentum source to
generate a spiral flow �with a secondary vortex flow� and trap
bacteria by gravity at the stagnation point of the spiral flow
for Raman spectroscopy by a laser beam 10-microns in di-
mension. Concentration by five to six orders of magnitude
can be achieved within 15 min for an mm-sized reservoir,
about three to four orders of magnitude faster than relying on
diffusive sampling. A more detailed experimental scrutiny of
the ionic-wind generated particle trap has revealed that the
point particle trap can sometimes evolve into a vortex trap,
where the particles are confined to a closed streamline or the
region within it, when the force on a particle is low and can
produce no trapping under other conditions �6�.

One means of generating microvortices is by electro-
osmotic flow �EOF� over a surface with nonuniform Zeta
potentials either by functionalization or induced-charge
electro-osmosis �ICEO� �7–11�. Zeta potential is electric po-
tential on the slipping plane in the interfacial double layer
versus the fluid bulk. Vortex flow can also arise from AC
electro-osmosis �ACEO�, where flow is generated by the ac-
tion of an AC electric field on its own induced diffuse
charges near a polarizable surface �12–14�. In both ICEO and
ACEO, the electrokinetic slip velocity on a surface is non-
linear with respect to the applied field and varies with posi-
tion, thus causing vortex flows of diverse features.

Particle trapping by microvortices generated by ICEO
with a dc field was first reported by Thamida and Chang �7�.
However, the most convenient means of generating micro-
vortices for trapping particles was by ACEO. Since the pio-
neering work of Holmes and Morgan �15�, this ACEO vortex
trapping strategy has been extended to concentrating bacteria
�2,16� and DNA �17,18�. DNA trapping by ACEO was
shown to have a factor of several tens in concentration en-

*Author to whom correspondence should be addressed;
shhwang@mail.ncku.edu.tw

PHYSICAL REVIEW E 82, 026308 �2010�

1539-3755/2010/82�2�/026308�16� ©2010 The American Physical Society026308-1

http://dx.doi.org/10.1103/PhysRevE.82.026308


richment within just a few seconds, allowing fast sample
detection with enhanced fluorescent intensity �18�. However,
Hou and Chang �19� have recently found that, like the inter-
facial vortex traps of Yeo et al. �6�, such ACEO microvortex
point traps often transform into a cylinder or ring trap, where
the trapped particles are confined not to a point but to either
the surface of a rotating cylinder or ring.

The dynamics of small particles in vortex flows also play
an important role in nature and in technological applications.
Maxey and Riley �20� established a kinetic equation for de-
scribing the motion of small spherical particles in an un-
steady nonuniform flow field. Rubin et al. �21� studied the
settling of heavy �aerosol� particles in a two-dimensional cel-
lular flow field. They showed that arbitrarily small inertial
effects can induce almost all particles to settle under gravity
and that inertial particles are attracted to globally stable pe-
riodic paths. Druzhinin et al. �22� examined the regular and
chaotic advection of small particles driven by pressure gra-
dient, inertial and added-mass forces in a cellular or axisym-
metric flow in the inviscid limit. Angilella �23� analyzed cha-
otic particle settling and trapping in the same two-
dimensional flows submitted to a weak time-periodic
perturbation. The effects of particle inertia and flow unsteadi-
ness were investigated. The behavior of heavy particles in
turbulent flows can be revealed by studying their motion in a
periodic Stuart vortex flow and a Burgers vortex flow that are
used to model large-scale and small-scale vortex flows in
turbulence, respectively �24,25�. Vilela and Motter �26�
showed that permanent trapping of inertial aerosols much
heavier than the advecting fluid can occur in two widely
studied open flows: the blinking vortex system with static
vortices and the leapfrogging vortex system with moving
vortices. Rcently, Sapsis, and Haller �27� performed an
analysis to predict the location of inertial particle clustering
in three-dimensional steady or two-dimensional time-
periodic flows. Angilella �28� examined trapping of dust par-
ticles in an inviscid vortex pair with equal strength and re-
vealed that permanent trapping at two attracting points can
occur for heavy particles injected in an isolated corotating
vortex pair. For similar trapping with unequal vortex
strength, Nizkaya et al. �29� found that dust particles can be
captured by attracting equilibrium points in a corotating vor-
tex pair and trapped by a limit cycle in a counter-rotating
vortex pair. Although these prior studies have revealed abun-
dant dynamic features in particle entrainment and trapping,
the underlying mechanisms are simply the balance between
the centrifugal force due to particle inertia �that pushes the
particles outward� and the hydrodynamic force exerted by
vortex flow �that drives the particles toward the vortex cen-
ter�. The use of the inward hydrodynamic force in accom-
plishing particle trapping can be enhanced by the unsteadi-
ness and turbulence of a vortex flow.

In contrast to the aforementioned particle transport
mechanisms, particle trapping at a localized location is
unique to microfluidics with vanishing particle inertia, steady
Stokes fluid flows, and various short-range effects such as
electrostatic forces or dielectrophoresis �DEP�. We have un-
dertaken this problem and demonstrated theoretically that
steady EOF vortices can indeed act as long-range collectors
to facilitate particle trapping by short-range forces �30�. In

this study, the vortices were generated by a pair of oppositely
charged strips in an unbounded fluid. One can also combine
the effects of patterned surface charge with hydrodynamic
flow to form closed recirculating EOF rolls �31�. Geometry
effects might also help to generate desired structures of EOF
vortices, as occurring in an open charged cavity �32�. The
deficiency in particle trapping is that it would take a long
time for such vortex flows to bring particles at a distance
down onto the collecting surface.

Perhaps a more efficient way is to trap particles by con-
fined EOF vortices in a closed environment in which flow
depletion effects can be completely eliminated. This
confinement-assisted trapping has been demonstrated by ac-
tive deposition of particles on patterned, energized electrodes
inside a sessile droplet with combined effects of EOF and
evaporation �33�. We expect that similar but more robust
trapping might take place using confined ICEO or ACEO
vortices.

In this paper, we aim at providing feasible techniques for
particle trapping, release, and sorting by confined EOF mi-
crovortices. In particular, we seek not only to delineate the
conditions for a vortex trap, a point trap and a limit cycle
trap, but also to suggest a means to sort different particles.
Starting with the Stokes flow equation and general boundary
conditions, we derive an analytical solution for two-
dimensional microvortex flow within a semicircular cap in
Sec. II. We also utilize this solution to illustrate the structures
of confined microvortex flows under the no-slip and free-slip
boundary conditions. In Sec. III, kinetic equations are pre-
sented to govern particle motion under various velocity and
force fields. In Sec. IV, we develop a generic bifurcation
theory to identify dynamic characteristics of particle motion
in a vortex. This theory offers a facile way to break a vortex
trap, create a point trap, or generate a limit cycle trap, pro-
viding an adroit manipulation of particle trapping and re-
lease. In particular, we find that the formation of a point or
limit cycle trap is sensitive to particle identity. This feature is
advantageous to sort colloidal particles as explored in Sec. V.
This work is concluded in Sec. VI.

II. MATHEMATICAL FORMULATION AND SOLUTION
FOR STOKES FLUID FLOW IN A SEMICIRCULAR

CHANNEL

As depicted in Fig. 1, we consider the two-dimensional
microfluidic flow in a semicircular cap driven by a nonuni-
form distribution of the electrokinetic �or Smoluchowski�
slip velocity on the bottom surface. Assume that the fluid is
incompressible and Newtonian, and its flow is Stokes flow at
a very low Reynolds number. To interpret the problem in
dimensionless form, we scale velocity and length by the
maximum Smoluchowski slip velocity U0 and the radius of
the semicircle L, respectively. Pressure and stress are scaled
by �U0 /L, where � denotes the viscosity of fluid.

A. Analytical solution for general microfluidic flow

For Stokes flow, the stream function � in the polar coor-
dinates �r ,�� satisfies the familiar biharmonic equation
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�4� = 0 �1�

and the velocity field �ur ,u�� can be readily obtained through

ur =
1

r

��

��
, u� = −

��

�r
, �2a�

which satisfy the continuity equation automatically. In the
Cartesian coordinates �x ,y�, the velocity components ux and
uy are related to ur and u� via

ux = − ur sin � − u� cos �, uy = ur cos � − u� sin � .

�2b�

The general boundary conditions are

ur = h1�r�, u� = h2�r� at � = �/2, �3a�

ur = h3�r�, u� = h4�r� at � = − �/2, �3b�

� = h5���, u� = h6��� at r = 1. �3c�

Equations �3a� and �3b� provide the slip velocity distribution
on the bottom surface by virtue of h1�r� and h3�r�, which are
imposed by nonuniform functionalization, ICEO, ACEO, or
an external momentum source. Equation �3c� is the inflow/
outflow boundary condition on the cap. In this condition,
u�=h6��� can also be replaced by specifying the shear stress
�r� via

�r� =
1

r2

�2�

��2 +
1

r

��

�r
−

�2�

�r2 . �4�

Taking the general solution provided by Leal �34� and
assuming finite velocity at r=0, the solution to Eq. �1� is
then composed by a linear combination of four flow modes,
r� sin ��, r� cos ��, r� sin��−2��, and r� cos��−2��, with �
being a real number. The first two modes are irrotational,
whereas the latter two modes are rotational. Applying the
boundary conditions of Eqs. �3a�–�3c�, we arrive at four fun-
damental solutions. Each of them, satisfying a specific type
of homogeneous boundary conditions, is divided into an odd
and an even part with respect to �, viz. �n=�n

odd+�n
even �see

Appendix A for the proof�, as listed below.
�1� u�=0 at �= �� /2

�1
odd = �

m=2,4

	

�amrm + bmrm+2�sin m� , �5a�

�1
even = �

m=1,3

	

�am� rm + bm� rm+2�cos m� . �5b�

�2� ur=0 at �= �� /2

�2
odd = �

m=1,3

	

�amrm + bmrm+2�sin m� , �6a�

�2
even = �

m=0,2

	

�am� rm + bm� rm+2�cos m� . �6b�

�3� ur=u�=0 at �= �� /2

�3
odd = c1r3 sin � + �

m=3,5

	

�cm−2rm + cmrm+2�sin m� , �7a�

�3
even = �0 + c0�r

2 + �
m=2,4

	

�cm−2� rm + cm� rm+2�cos m� . �7b�

�4� ur=u�=0 at �= �� /2 and �=0 at r=1

�4
odd = �

i=1

	


i�4i
odd, �8a�

�4
even = �

i=1

	


i��4i
even, �8b�

where

�4i
odd = di1r3 sin � + �

k=2

	

�di,k−1r2k−1 + dikr
2k+1�sin�2k − 1��

− r2i+2 sin 2i� + �
k=2

	
�− 1�k−1i

k + i − 1
�r2k+2i−2 − r2k+2i�

�sin�2k + 2i − 2�� , �8c�

dik = �
j=1

k
�− 1�i+k�8i�

��2i + 2j − 1��2i − 2j + 1�
, �8d�

�4i
even = di1� r2 + �

k=2

	

�di,k−1� r2k−2 + dik� r2k�cos�2k − 2��

− r2i+1 cos�2i − 1�� + �
k=2

	
�− 1�k−1�2i − 1�

2k + 2i − 3

��r2k+2i−3 − r2k+2i−1�cos�2k + 2i − 3�� , �8e�

dik� =
�− 1�i+k

��i − 1/2�
+ �

j=2

k
�− 1�i+k�8i − 4�

��2i + 2j − 3��2i − 2j + 1�
. �8f�

�

/ 2� �� / 2� �� �

r

y

x
1( )ru h r� , 2 ( )u h r� � 3 ( )ru h r� , 4 ( )u h r� �

1r �
5 ( )h� ��

6 ( )u h� ��

FIG. 1. Geometry of the microfluidic system. In the semicircle,
two-dimensional microvortex flow is driven by a nonuniform elec-
trokinetic slip velocity prescribed on the bottom surface.
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Through a superposition of the above fundamental solu-
tions, we invoke procedures below to systematically derive
an analytical solution for the problem.

Step 1. Use the fundamental solution �1 in Eq. �5� to
satisfy the slip velocity ur given by Eqs. �3a� and �3b�, i.e.,
��1 /��=rh1�r� at �=� /2 and ��1 /��=rh3�r� at �=−� /2.
Here, we assume that the slip velocity distribution can be
well approximated by a polynomial in r with a proper choice
of the coefficients am, bm, am� , and bm� .

Step 2. Apply the fundamental solution �2 in Eq. �6� to
satisfy u� �in terms of a polynomial in r� at �= �� /2 also
given by Eqs. �3a� and �3b�. The coefficients am, bm, am� , and
bm� are chosen such that ��2 /�r=−h2�r� at �=� /2 and
��2 /�r=−h4�r� at �=−� /2.

Step 3. The solution secured so far is �1�r ,��+�2�r ,��,
which satisfies all the boundary conditions of Eqs. �3a� and
�3b�. The next step is to incorporate the fundamental
solution �3 in Eq. �7� to meet the condition of �=h5���
at r=1 in Eq. �3c�. The coefficient �0 in Eq. �7b� is
used to designate the reference value and can be
chosen as ���1,� /2�+��1,−� /2�� /2. The coefficients
cm and cm� are evaluated to make �3�1,�� equal to
h5���−�1�1,��−�2�1,��, yielding

c1 = �1, cm = �m − cm−2, m = 3,5, . . . , �9a�

c0� = �0�, cm� = �m� − cm−2� , m = 2,4, . . . , �9b�

where

h5��� − �1�1,�� − �2�1,�� − �0

= �
m=1,3

	

�m sin m� + �
m=0,2

	

�m� cos m� . �9c�

Step 4. In the final step, the fundamental solution �4 in
Eq. �8� is employed to satisfy the last boundary condition
u�=h6��� at r=1 in Eq. �3c�. Note that the addition of �4 will
not alter any boundary conditions employed in the preceding
three steps. We can thus determine the expansion coefficients

i and 
i� in �4 by applying the complete solution,
�=�1+�2+�3+�4, to meet u�=h6��� at r=1.

B. Analytical solution for confined microvortex flow

For the fluid flow confined within in the semicircular cap,
we specify the following conditions in Eq. �3� to ensure no
flow across the outer boundary,

u� = 0 at � = � �/2, �10a�

� = 0 at r = 1. �10b�

At the cap, we apply either the “no-slip condition” to a solid-
liquid interface or the “free-slip condition” to a gas-liquid
interface,

u� = 0 at r = 1 for no-slip surface, �10c�

�r� = 0 at r = 1 for free-slip surface. �10d�

In Eq. �10d�, the zero tangential stress condition renders the
slippery outer boundary, which can simulate a microfluidic

system involving a droplet of colloidal suspension on a long
substrate. Here, the droplet shape is treated approximately as
a semicircle and the interface is assumed to be fixed at
r=1, provided that the surface tension force is sufficiently
strong compared to the viscous force, i.e., the capillary num-
ber Ca=�U0 /�1 where  is the surface tension. Other
conditions due to an external momentum source could also
be used to replace Eq. �10d� at the gas-liquid interface. Note
that the functions �4i

odd and �4i
even developed in Eqs. �8c� and

�8e� can be converted to represent u� or �r�, such that the
no-slip or free-slip boundary condition can be satisfied. The
first five sets of the converted functions are evaluated
at r=1 and elucidated in Fig. 2.

Confined microvortex flow can be set up by a nonuniform
slip velocity uslip=ur over the bottom surface at �= �� /2 as
seen in Eqs. �3a� and �3b�. The distribution of this velocity
can be approximated by a polynomial in x as follows:

uslip = ux�y=0 = �
j=0

M

pjx
j . �11�

The detailed derivation of the analytical solution is provided
in Appendix B. Below, we illustrate the use of the analytical
solution with an example.

Example 1. For the no-slip and free-slip microvortex
flows, we obtain analytical solutions with N=10 �see Appen-
dix B for the use of N� when the following slip velocity
distribution is imposed over the bottom surface �−1�x�1
and y=0�:

uslip�x� = 0.444�1 − 4x − x2 + 4x3� .

This velocity is zero at x=0.25, positive for x�0.25, and
negative for x�0.25, which might mimic situations occur-
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FIG. 2. �Color online� First five sets of functions �4i
odd are con-

verted to represent u� and �r� at r=1 in panels �a, c�. Those derived
from �4i

even are shown in panels �b, d�.
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ring in ACEO. As elucidated in Fig. 3, each analytical solu-
tion can be decomposed into odd and even parts by splitting
uslip�x� into uslip

odd�x� and uslip
even�x�, respectively. Each odd part

generates a pair of counter-rotating vortices in equal sizes, as
shown in Figs. 4�c� and 4�d�. Each even part generates a
single vortex, circulating across the entire semicircle, as seen
in Figs. 4�e� and 4�f�.

Combining the odd and even parts, Figs. 4�a� and 4�b�
show the streamlines of vortex flow patterns subject to the

no-slip and free-slip conditions, respectively. The results re-
veal a pair of asymmetric microvortices separated by a
dividing dotted line emitted from the stagnation point
�at x=0.25� on the bottom surface where the fluid velocity
vanishes. Note that the positive slip velocity, which is larger
in magnitude, causes the larger counterclockwise vortex on
the left. In addition, since the flow comes toward the stagna-
tion point from both sides along the surface, it constitutes a
converging stagnation point that is particularly useful for
particle trapping. Moreover, it seems that the centers of the
vortices in the no-slip case are closer to the bottom surface.
This flow feature might aid in capturing particles at the stag-
nation point as will be elaborated later.

III. SINGLE PARTICLE MOTION IN A MICROVORTEX
FLOW FIELD

To realize particle transport in a vortex, we need to derive
kinetic equations to describe particle motion under various
velocity and force fields. We limit this study to the dilute
concentration regime, in which particle-particle interactions
are neglected. Hence, for a small rigid spherical particle of
radius R instantaneously centered at �xp�t� ,yp�t�� and moving
with velocity Vi�t�, we first consider the dimensionless equa-
tion governing particle motion in the undisturbed flow field
ui as follows:

-0.5
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0.5

1

-1 -0.5 0 0.5 1

u
slip

x

Slip velocity

Even part

Odd part

FIG. 3. Nonuniform slip velocity over the bottom surface for
Example 1. The slip velocity can be decomposed into its odd and
even parts.
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FIG. 4. Respective flow structures generated by the slip velocity, its odd part and its even part depicted in Fig. 3: �a, c, e� under the
no-slip condition; �b, d, f� under the free-slip condition. Vortex flow structures in panels �a, b� show converging stagnation points on the
bottom surface.
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St
dVi

dt
=

�fSt

�p

Dui

Dt
−

�fSt

2�p
�dVi

dt
−

D

Dt
�ui +

3Fa

5
�2ui	


+ Ga ei − �Vi − ui − Fa�2ui�

− Ba�
0

t 1
�t − �

d

d�
�Vi − ui − Fa�2ui�d� . �12�

In the equation above, time has been scaled by L /U0, the
subscript i can be x or y and ei denotes the unit vector point-
ing downward in the vertical direction �the direction of
gravity�. The derivatives d /dt and D /Dt denote time deriva-
tives following a moving sphere and a fluid element, respec-
tively. The terms on the right correspond in turn to the force
exerted by the undisturbed flow, the added mass, buoyancy,
Stokes drag, and the Basset history force. The �2ui term
represents the Faxen correction to the Stokes drag force due
to local variations of the flow field around the particle, and
comes only from the rotational part of fluid flow. Equation
�12� was first derived by Maxey and Riley �20�, except for
the added-mass term, whose form was corrected by Babiano
et al. for targeting trajectories of small neutrally buoyant
particles �35�.

The four dimensionless parameters in Eq. �12� are the
particle Stokes, gravity, Faxen, and Basset numbers as given,
respectively, by

St =
2R2�pU0

9�L
,Ga =

2R2��p − �f�g
9�U0

,Fa =
R2

6L2 ,Ba = R��fU0

��L
,

where �p is the particle density, �f the fluid density, and g the
gravitational acceleration. The Stokes number St can be in-
terpreted as the ratio of the dynamic response time of the
particle �2R2�p /9�� to the time scale associated with the
fluid motion �L /U0�. A small value of the Stokes number
implies that the particle behavior is dominated by the viscous
force.

To simplify the dynamic analysis of particle motion, we
assume that St is so small that the particle inertial term, the
force exerted by the undisturbed flow, and the added-mass
term can be ignored. Moreover, we postulate two situations
for the Faxen correction and Basset history terms subse-
quently. First, Fa and Ba are such small numbers that both
terms are negligible. To be more quantitative, we consider
the specific case of spherical particles �R=5 �m,
�p=1.1 g /cm3, g=980 cm /s2� suspended in water
��f=1 g /cm3, �=0.01 g /cm s, U0=100 �m /s� on a sub-
strate �L=200 �m�. The four dimensionless parameters are
calculated as St=3.06�10−6, Ga=0.0544, Fa=1.04�10−4,
and Ba=0.0020. It appears that merely the gravitational and
viscous terms are significant in Eq. �12�. The second situa-
tion assumes Ba�Fa so as to retain the Faxen effect but
ignore the Basset history term. This would result in the
undesirable feature of a very small vortex velocity
�U0��R2 /�fL

3�. We thus restrict the second situation to in-
vestigation on settling by gravity in the absence of other
external forces.

Based on the above postulations, the following kinetic
equations are established for particle motion:

dxp

dt
= ux + Fa�2ux + ZDED,x + ZNEN,x  F�xp�t�,yp�t�� ,

�13a�

dyp

dt
= uy + Fa�2uy − Ga + ZDED,y + ZNEN,y  G�xp�t�,yp�t�� .

�13b�

The ui terms reflect the particle’s movement advected by the
fluid flow. The newly added terms account for the effects of
other external forces acting on the particle. Such forces are
divided into the divergence-free �DF� part ED,i and the
nondivergence-free �NDF� part EN,i multiplied by the respec-
tive nondimensional mobilities ZD and ZN. The DF part can
come from electric, optical, or magnetic forces. On the other
hand, electrostatic or dielectrophoretic interactions between
the particle and the bottom surface can contribute to short-
range NDF forces on the particle when it is close to the
surface. Note that both fluid velocity and gravity are
divergence-free because the former satisfies the continuity
equation and the latter is a uniform and unidirectional field.
Moreover, any particle motion caused by a DF force field can
be described by a stream function. For instance, �=r sin �
stands for the uniform field of ux=0 and uy =1, whereas
�=r cos � stands for the uniform field of ux=1 and uy =0.

IV. MECHANISMS FOR PARTICLE TRAPPING AND
RELEASE IN MICROVORTICES

In this section, we seek to understand particle trapping
and release mechanisms at a stagnation point on the bottom
surface as well as via a point or a limit cycle trap in the
circulating fluid. In particular, we would like to illuminate
the role of a nondivergence-free force and discuss the condi-
tions necessary for particle trapping and release.

A. Linear stability analysis of particle flow

We first carry out a linear stability analysis for the dy-
namic system given by Eq. �13� at some fixed point �x̄p , ȳp�.
This analysis not only enables us to identify the dynamic
nature of the fixed point, but also tell us how to modify its
stability for manipulating the nonlinear behavior of particle
flow. The fixed point satisfies the equilibrium condition

F�x̄p, ȳp� = G�x̄p, ȳp� = 0. �14�

The eigenvalues �� of the Jacobian matrix J�x̄p , ȳp� can be
calculated by

�� =
1

2
�tr�J�� � �tr�J��2 − 4 det�J��� . �15a�

Here, the superscript � denotes the value evaluated at the
fixed point, and the trace and determinant of the matrix are
given by

tr�J�� =
�F�

�xp
+

�G�

�yp
, �15b�
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det�J�� =
�F�

�xp

�G�

�yp
−

�F�

�yp

�G�

�xp
. �15c�

We see from Eq. �15b� that if all the velocity and force
fields in Eq. �13� are divergence-free, i.e., EN,i=0, the trace is
always zero. In this case, Eq. �15a� suggests that the corre-
sponding fixed point can be either a saddle point having two
real eigenvalues of the same absolute value but opposite
signs or a center having a pair of purely imaginary eigenval-
ues. However, the addition of a nondivergence-free force
field EN,i could make the trace nonzero and hence turn a
center fixed point into a stable or unstable spiral. This feature
allows us to trap or release particles with the aid of repulsive
or attractive NDF forces.

B. Vortex trap in a divergence-free field

In the absence of NDF forces, a center fixed point for
particle flow often exists within a fluid vortex. It is found
that this center is accompanied by a vortex trap in which
every particle circulates along its specific isolated and closed
path and permanently suspends there �see Appendix C for the
derivation of the normal form�. This phenomenon is in line
with that observed by Stommel �36� for noninertial particles
settling in a cellular flow field. The vortex trap often prevents
particle trapping at a fixed point because it can neither cap-
ture particles from the outside nor release particles from the
inside.

A permanent vortex trap for particles is difficult to realize
in reality. Rubin et al. �21� applied a singular perturbation
theory to show that a small amount of inertia is sufficient to
break the closed orbits of the particles and causes them to
settle eventually. Nevertheless, under the assumptions of
vanishing particle inertia and no NDF force, the enclosed
particles would escape away from the closed orbits very
slowly and could be treated essentially as being confined.

C. Particle trapping at a converging stagnation point
without NDF force

As demonstrated by previous studies �2,30,37�, a stagna-
tion point with converging fluid flow occurring on a surface
can be used to facilitate particle trapping, especially with the
aid of short-range attractive forces. The advantage of such a
manipulation is that vortex flow provides long-range convec-
tive transport that rapidly conveys suspended particles to the
proximity of the collecting surface. Those particles are then
brought onto the surface by certain short-range effects
against upward fluid flow. Finally, particle focusing is real-
ized by surface slip streams toward the stagnation point.

We intend to explore the efficiency or speed of particle
trapping at the converging stagnation point in vortex-pair
structures developed in Example 1. Here, the trapping effi-
ciency must be distinguished from the trapping speed. The
former measures how many particles can be trapped,
whereas the latter concerns how fast the particles are trapped.
We first investigate the trapping efficiency at the stagnation
point subject to the DF Faxen and gravitational forces using
Eq. �13� with ZD=ZN=0.

Figure 5 elucidates the impact of the Faxen effect �Fa�

and gravity �Ga� on the efficiency of particle trapping at the
stagnation point in the no-slip vortex flow of Example 1. In
the parameter space of Fa and Ga, the figure shows two
bifurcation curves that partition the space into three regions
�I–III�, which possess different phase portraits of particle
flow and hence different trapping characteristics as depicted
in Figs. 5�a�–5�f�. Recall that a vortex trap accompanies a
center with the eigenvalues of �j�. Each bifurcation curve
is a collection of double-zero bifurcation points, at which the
center of a vortex trap becomes a fixed point with two zero
eigenvalues, viz. �=0. It is found that the vortex trap
dwindles in size with a decrease in � and eventually van-
ishes as � is reduced to zero. Consequently, there are two
vortex traps in region I, one vortex trap in region II, and no
vortex trap in region III.

Figures 5�a�–5�c� in region I reveal that each of the two
vortex traps is enclosed by a homoclinic orbit, which joins a
saddle point to itself. Hence, the size of a vortex trap can be
roughly estimated by the distance between the center and the
connecting saddle point. The right vortex trap �the smaller
one� vanishes at the first bifurcation curve as evidence in
Figs. 5�d� and 5�e�, whereas the left vortex trap �the larger
one� vanishes at the second bifurcation curve as seen in Fig.
5�f�.

The operation conditions belonging to region I are com-
monly encountered in practice �small Fa and Ga� and are
worth special attention. From Fig. 5�a�, which corresponds to
point �a� at Fa=0.01 and Ga=0 �ignoring gravity�, we see

FIG. 5. �Color online� Effects of Fa and Ga on the efficiency of
particle trapping at the stagnation point in the no-slip vortex flow of
Example 1. Panels �a-f� depict different particle dynamics corre-
sponding to the open circles indicated in the upper panel. Note that
the aspect ratio of each semicircle has been varied to exhibit par-
ticle dynamics more clearly.
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that the Faxen effect elicits at least three saddle points of
particle motion. The middle saddle point lies slightly above
the stagnation point; any particle abiding below the stable
manifold of this saddle point will be brought onto the bottom
surface and then focused at the stagnation point by surface
streams. The left and right saddle points form two vortex
traps that confine particles inside. The rest of the particles
will be driven elsewhere. It follows that the Faxen effect in
the no-slip vortex flow provides a positive but limited capac-
ity to facilitate particle trapping. On one hand, the middle
saddle point help collect a part of the particles, and on the
other hand, it restrains the rest of the particles from being
captured by the stagnation point.

This deficiency caused by the Faxen effect can be im-
proved by gravity as illustrated by Fig. 5�b� at Fa=0.01 and
Ga=0.0231 and Fig. 5�c� at Fa=0 and Ga=0.0533 �ignoring
the Faxen effect�. With an increase in gravity, the original
connection of the left homoclinic orbit with the left saddle
point as shown in Fig. 5�a� is broken and a new connection is
established with the middle saddle point as seen in Fig. 5�b�.
This allows more particles on the left and outside the left
vortex trap to settle on the bottom surface. A further increase
in gravity will force the two homoclinic orbits to reconnect
with the upper and lower saddle points as indicated in Fig.
5�c�. As a result, almost all particles except those confined in
the two vortex traps will be trapped at the stagnation point.
This implies that when the gravity is dominant �Ga�Fa�, the
trapping efficiency at the stagnation point can be evaluated
by the size of the vortex trap�s� as is evidenced in Figs. 5�c�,
5�e�, and 5�f� in the three regions.

Note that an increase in the divergence-free force of the
Faxen effect or gravity does not break the vortex trap in-
stantly by varying the stability of the center but can shrink its
size and release more particles. The disappearance of the
vortex trap, however, requires a sufficiently large Faxen or
gravitational force as shown in regions II and III.

Figure 6 elucidates the impact of the Faxen effect and
gravity on the efficiency of particle trapping at the stagnation
point in the free-slip vortex flow of Example 1. The param-
eter space is divided into three regions �I–III� by two double-
zero bifurcation curves �solid lines� and is partitioned into
two regions �A and B� by a dashed line. Note that the dashed
line can be approximated by Fa�0.1 Ga. Therefore, regions
A and B can be determined by �p−�f�7.5�U0 /gL2 and
�p−�f�7.5�U0 /gL2, respectively. This figure consists of six
subregions �IA–IIIA, IB–IIIB�, each of which possesses a
specific phase portrait of particle flow as depicted in Figs.
6�a�–6�g�. In contrast with the no-slip case, the Faxen effect
here would induce upward particle transport from the bottom
surface because it cannot elicit a saddle point above the stag-
nation point as indicated in Figs. 6�a� and 6�d�. Therefore,
any particles near the stagnation point will be dispersed away
by the induced upward motion. The dashed line in Fig. 6
denotes the situation where the gravity compensates for the
Faxen effect so as to induce a saddle point right on the bot-
tom surface. Consequently, particles cannot be trapped at the
stagnation point in region A because of the negative outcome
of the Faxen effect as is clearly revealed in Fig. 6�f�. This
shortcoming can be remedied by the presence of gravity. In
subregions IB–IIIB, which are to the right of the dashed line,

particle trapping at the stagnation point is realizable in the
presence of sufficient gravity. The trapping characteristics as
shown in Figs. 6�b�, 6�e�, and 6�g� are qualitatively similar to
those seen in Figs. 5�c�, 5�e�, and 5�f� for the no-slip case.
Nevertheless, under the same gravity, the no-slip vortex flow
produces much better trapping efficiency than the free-slip
vortex flow.

D. Particle trapping at a stagnation point with NDF force

Figures 5�b� and 6�b� reveal that the presence of large
vortex traps could deteriorate the trapping efficiency at a
stagnation point by holding more particles inside. To pro-
mote the trapping efficiency in Example 1, one can turn the
center fixed point of a vortex trap into an unstable spiral with
an attractive NDF force. Such a change to instability could
break immediately the vortex trap and release particles away
from the unstable spiral. As mentioned in Sec. III, if such an
NDF force enters as short-range electrostatic or dielectro-
phoretic attraction between the particle and the surface, it can
only act on the particle in the y direction according to

EN,x = 0, EN,y = − exp�− yp/�� .

The electrostatic force here with the mobility ZN is given by
the screened Coulomb attraction of a charged particle to an
oppositely charged surface if the particle comes close to the
surface within a certain distance of the electric double layer
� �38�. Because of the charge screening, the force must at-
tenuate exponentially in y at the rate of �−1 according to the
Debye-Hückel theory �39�. As for the DEP force, it comes to

FIG. 6. �Color online� Effects of Fa and Ga on the efficiency of
particle trapping at the stagnation point in the free-slip vortex flow
of Example 1. Panels �a–g� depict different particle dynamics cor-
responding to the open circles indicated in the upper panel.
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attract the particle toward the surface through positive DEP if
the field at the surface is the greatest. It can be shown that the
local electric field near the surface behaves like exp�−y /��
with � measuring the penetration depth of the field. The re-
sulting DEP force is then proportional to exp�−y /�� with
�=� /2, which also decays exponentially in y but at the rate
twice faster than the electric field.

With the attractive NDF force to break the vortex traps
and release all the enclosed particles, the trapping efficiency
at the stagnation point is no longer an issue. We then pay
attention to the trapping speed of the no-slip and free-slip
designs. To see the effects of the above short-range force
with �=0.1 on particle trapping, we ignore the Faxen
correction and gravity and integrate Eq. �13� numerically to
calculate particle trajectories in the no-slip vortex flow with
ZN=0.356 and in the free-slip vortex flow with ZN=0.71, as
shown in Figs. 7�a� and 7�b�, respectively. The particle flow
scenario is then as follows. Four particles, placed initially in
the fluid vortices, move in spiral motion away from the un-
stable spirals. When any particle come in proximity of the
bottom surface, it will perceive more pronounced attraction
and hence will be brought onto the surface with an abrupt
change in motion. Upon being captured by the surface, the
particle is advected horizontally along with the slip flow to-
ward the stagnation point �assuming its normal velocity
vanishes�.

To see more clearly how fast these particles move, the
symbols labeled along the particle trajectories in Fig. 7 are

used to track the particle locations at different times. On each
trajectory, any two adjacent symbols indicate the consecutive
particle positions during a time interval of L /U0. Obviously,
the trapping speed can be affected by the traveling velocity
and distance of particles. The traveling distance is largely
determined by the positions of the unstable spirals above the
bottom surface. However, the effect of the traveling distance
would dominate over the effect of the traveling velocity due
to the short-range nature of the applied force as depicted
below. Figure 7�b� for the free-slip design reveals that the
two unstable spirals are far away from the bottom surface
providing the short-range NDF force and hence experience
weak attraction. Consequently, most particles would take a
long path to the surface. This becomes more apparent for
those trajectories near the spirals, as illustrated by the blue
and green particles �labeled, respectively, by circle and x�,
whose collection is time-consuming. On the other hand, par-
ticles away from the unstable spirals will land on the surface
quickly because of their fast velocities, as shown by the red
and black particles �labeled, respectively, by square and tri-
angle�. In contrast, the no-slip design as elucidated in Fig.
7�a� results in two unstable spirals much closer to the bottom
surface. As a result of strong attraction, the distance that each
particle will travel before landing is significantly shortened.
Overall, the no-slip design has a faster trapping speed than
the free-slip design even though the strength of the applied
NDF force is halved for the no-slip design.

It is worthwhile to emphasize that vortex-based particle
trapping is a collaborative mechanism of convective trans-
port and force effects. Hence, its efficiency and speed depend
on the detailed flow structure and the nature of forces. In this
example, the no-slip vortex flow seems to be more effective
than the free-slip vortex flow in collecting particles at the
converging stagnation point. On the other hand, a DF force
such as gravity is less effective in that it cannot break but
only shrink a vortex trap in contrast with an NDF force.

E. Particle capturing by a point trap in a vortex flow

The present design applies a repulsive NDF force to cre-
ate a point trap in a circulating fluid via turning the center of
a vortex trap into a stable spiral. Its location is determined
mainly by the vortex flow structure and can be varied to a
certain extent by various DF and NDF force fields. However,
its stability, relating to the trapping speed, can only be
changed by an NDF force. It is observed that the location of
a point trap is restricted to a small region around the center
of a fluid vortex, beyond which the corresponding stable spi-
ral, turning to a saddle point, would lose the capability of
collecting particles. If this location is distant from the force
source and can only experience weak NDF force, the trap-
ping speed will become inevitably low. Note that the basin of
attraction of a point trap could be as large as the entire semi-
circle if it were properly designed. We illustrate such a de-
sign with an example.

Example 2. Consider a clockwise single vortex flow es-
tablished by the slip velocity distribution

uslip�x� = − 0.844�1 − x − x2 + x3� .

The flow structures under the no-slip and free-slip conditions
are portrayed as undertone streamlines in Figs. 8�a� and 8�b�,
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FIG. 7. �Color online� Facilitated particle trapping at the stag-
nation point due to an attractive NDF force from the bottom surface
for Example 1: �a� no-slip vortex flow with ZN=0.356; �b� free-slip
vortex flow with ZN=0.71. The vortex flow of fluid is denoted by
undertone streamlines, the unstable spiral points are indicated by
open circles, and particle trajectories are represented by solid lines.
In panels �a, b�, particles labeled by the same symbol are placed at
the same initial locations. Any two adjacent symbols along each
particle trajectory are separated by a time interval of L /U0.
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respectively. To generate a point trap, a short-range repulsive
NDF force field is placed near the surface according to

EN,x = 0, EN,y = exp�− yp/0.1� .

Such a repulsive force can again be furnished by electrostatic
interactions between a charged particle and a like-charge sur-
face. It can also arise from negative DEP in which a polar-
ized particle can migrate toward low fields under actions of
field gradients.

For particles with mobility ZN=0.675 in the no-slip flow,
the location of the point trap is indicated as a small open
circle in Fig. 8�a�. The point trap is rather close to the bottom
surface, implying that the NDF force from the surface would
exert strong repulsion on the point trap to induce a fast stable
spiral. The real-time scenario of particle flow is clearly elu-
cidated by each trajectory along which symbols of the same
shape are used to mark the consecutive particle positions
during a time interval of L /U0. It appears that the trapping
speed is fast in that three particles from different places are
attracted and soon aggregated near the point trap. Moreover,
the trapping efficiency of this design is high because the
most adjacent saddle point, limiting the basin of attraction of
the point trap, is at a long distance.

For particles with the same mobility in the free-slip vortex
flow, the point trap is located rather far away from the sur-
face as seen in Fig. 8�b�. It seems that the NDF field given
above attenuates very quickly in the direction toward the
point trap and hence imparts weak repulsion on it. In other
words, the short-range nature of the repulsive force renders
the point trap less effective for particle trapping. Evidently,

the trapping speed is low for this design in which the par-
ticles are sucked toward the point trap in a slow spiral man-
ner.

F. Particle trapping and release by a limit cycle trap
in a vortex

To generate a ring trap, we utilize the well-known phe-
nomenon of a supercritical Hopf bifurcation in which stable
limit cycles emerge from a fixed point. It can be shown that
for particle motion governed by Eq. �13� in any DF field, a
fixed point of center type is accompanied by a pair of purely
imaginary eigenvalues and the vanishing first Lyapunov co-
efficient of �=0 �see Appendix C�. However, a supercritical
Hopf bifurcation requires that the center fixed point should
possess a negative � and lose its stability with changes in
some parameters �40�. These conditions can be achieved by
incorporating a pair of repulsive and attractive NDF force
fields, �rEr,i and �aEa,i, i.e., replacing EN,i in Eq. �13� by

EN,i = �rEr,i + �aEa,i.

We then choose �r=�r
� and �a=�a

� such that the fixed point of
a particle with mobility ZN is of center type and the corre-
sponding � is negative. The search for such a setup is
straightforward, inasmuch as the center of a fluid vortex is a
natural candidate for the desired fixed point. Upon acquiring
the supercritical Hopf bifurcation point, the final design is
achieved by decreasing the value of �r from �r

� to induce a
stable limit cycle with the ring size roughly proportional to
��r

�−�r. This ring trap then appears as an orbitally stable
limit cycle surrounding an unstable spiral. Note that any DF
velocity or force fields cannot contribute to the formation of
a limit cycle because they can vary neither the stability of the
fixed point nor the value of �.

Figure 9�a� exhibits the typical phase portrait of a stable
limit cycle for particle motion within a fluid vortex. The
fixed point is an unstable spiral, whereas the closed limit
cycle orbit is plotted by the dashed line. This limit cycle will
capture particles enclosed by the stable manifold of the
neighboring saddle point. Each of them will follow a spiral
path toward the closed orbit. The size of the limit cycle is
restricted by the neighboring saddle point produced by the
counteraction of the applied force and vortex flow. In other
words, if the applied NDF force fields are sufficiently strong
�e.g., decreasing the value of �r further�, the induced limit
cycle might extend across the saddle point and be broken by
its unstable manifold as shown in Fig. 9�b�. Hence, particles
in the interior will be brought away or released along the
unstable manifold. These behaviors of particle motion will
be elaborated later.

V. PARTICLE SORTING USING POINT OR LIMIT CYCLE
TRAPS IN VORTICES

Conventional vortex-based particle manipulation is more
effective in particle trapping than in particle sorting. The
reason is that the vortex flow is mainly employed to bring
particles down onto the surface. After the particles land on
the surface, the sole role of liquid flow is merely focusing
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FIG. 8. �Color online� Particle trapping at a point trap �indicated
by an open circle� in a single vortex flow �denoted by undertone
streamlines� due to a repulsive force from the surface for Example
2: �a� no-slip flow with ZN=0.675; �b� free-slip flow with
ZN=0.675. Along each particle trajectory, any two adjacent symbols
are separated by a time interval of L /U0.
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these particles toward the stagnation point, regardless of par-
ticle identity �such as size, density, charge, conductivity,
etc.�, and hence is of little help to particle separation or sort-
ing. On the contrary, the use of point traps or limit cycle
traps furnishes an effective means to sort particles because
their locations and existence are sensitive to the nature of
nonhydrodynamic forces involved and determined exclu-
sively by particle properties. Hence, if there are particles
with different properties, it is possible to sort them by the
vortex flow into different point traps or limit cycle traps.
Recall in Fig. 9�b� that particles with certain properties could
break these traps. This suggests that if traps exist for some
particles but not for other, complete particle sorting can be
realized by capturing those specific to the traps and diverting
unspecific ones away.

Below we provide two examples to demonstrate the use
of point traps or limit cycle traps in sorting particles through
their differences in the mobilities of nonhydrodynamic force
fields, ZD and ZN, or according to their sizes reflected by
gravity Ga.

A. Particle sorting using point traps—Example 3

We start with illustrating particle sorting using point traps
in a counterclockwise single vortex flow driven by the slip
velocity distribution

uslip�x� = 0.844�1 − x − x2 + x3� .

Both no-slip and free-slip vortex flows are considered to ex-
amine the effects of flow structures on the sorting mecha-
nism. To create point traps, a short-range repulsive NDF

force field �EN,x ,EN,y�= �0,exp�−yp /0.1�� is applied to par-
ticles with ZN=0.169 for the no-slip case and ZN=1.35 for
the free-slip case. To realize sorting by mobility, we impose
an additional DF force field �ED,x ,ED,y�= �−1,0� �a uniform
force in the horizontal direction� on particles having different
DF mobilities ZD. To realize sorting by size, we postulate
that particles of different radii R are subject to the DF force
field determined by the gravity number Ga, which is propor-
tional to R2.

Figures 10�a� and 10�b� show the trajectories of four
particles in the no-slip and free-slip vortex flows, respec-
tively. These particles are of three different types P1, P2, and
P3, distinguished by their different mobilities ZD1 :ZD2 :ZD3
=1:2 :4. To illuminate how dynamic topology determines the
fates of these particles, we place two identical P3 particles at
different initial positions.

We find that particles P1 and P2 are sucked to their re-
spective point traps, as indicated by an open circle and an
open square. On the contrary, the point trap associated with
P3 is now destroyed by the largest DF force of ZD3ED,x. That
is, the fixed point for the motion of P3 turns to a saddle
point. Two P3 particles, starting from different initial posi-
tions, will eventually move to the left side of the fluid, and
thus be completely separated from particles P1 and P2. Note
that particles P1 and P2 will line up in the bulk of the vortex
according to their DF mobilities, thus achieving localized
separation between them. Extensive numerical simulation
studies manifest that the critical particle mobility for achiev-
ing complete separation is 3.69ZD1 for the no-slip case and
3.22ZD1 for the free-slip case.

Figures 11�a� and 11�b� show the sorting behaviors for
three types of particles with different sizes R1 :R2 :R3

FIG. 9. Typical phase portraits for a stable limit cycle �dashed
line� in conjunction with a saddle point, including �a� their exis-
tence and �b� the breaking mechanism.
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FIG. 10. �Color online� Particle sorting by mobility via point
traps �indicated by open circles and squares� for Example 3: �a�
no-slip vortex flow with ZD1=0.127; �b� free-slip vortex flow with
ZD1=0.506. The point traps for the critical particle motion leading
to complete separation are indicated by triangle symbols.
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=1:2 :4. In either no-slip or free-slip case, smaller particles
P1 and P2 will be captured by their respective point traps �as
indicated by an open circle and an open square�, whereas the
largest particles P3 will be pulled out of these traps onto the
bottom surface by gravity. The critical particle radius for
achieving complete separation is found to be 3.82R1 for the
no-slip case and 3.88R1 for the free-slip case.

B. Particle sorting using limit cycle traps—Example 4

Here, we demonstrate particle sorting using limit cycle
traps in two vortex flow structures set up by the following
nonuniform slip velocity distributions:

uslip�x� = 0.844�1 − x − x2 + x3� for no-slip flow,

uslip�x� = 0.844�1 + x − x2 − x3� for free-slip flow.

The NDF force fields required to elicit a limit cycle are pro-
duced by a pair of source and sink points �essentially source
and sink lines in the three-dimensional view�. It is postulated
that the particle is pushed by the repulsive force from the
source point and at the same time is pulled by the attractive
force from the sink point. We stipulate that the NDF force is
acting along the direction from the particle toward the loca-
tion of the source or sink point, and its magnitude is in-
versely proportional to their distance raised to the power n.
Note that if n is equal to one, the force field will be
divergence-free. To reflect the short-range and
nondivergence-free nature, the respective force fields are
given by the inverse power expressions with n�1,

Er,x =
xp − xr

��xp − xr�2 + �yp − yr�2��1+n�/2 ,

Er,y =
yp − yr

��xp − xr�2 + �yp − yr�2��1+n�/2 ,

Ea,x =
− �xp − xa�

��xp − xa�2 + �yp − ya�2��1+n�/2 ,

Ea,y =
− �yp − ya�

��xp − xa�2 + �yp − ya�2��1+n�/2 .

In the present analysis, we take n=3 for the no-slip vortex
flow and n=2 for the free-slip vortex flow �the NDF force
becomes shorter-range for the no-slip case�. As marked in
Figs. 12 and 13, the source point with the strength of �r is
placed at �xr ,yr� to exert a repulsive force on the particles,
whereas the sink point with the strength of �a is placed at
�xa ,ya� to exert an attractive force on the particles. The de-
sign of the NDF force fields requires that the repulsive
source point be closer to the particles in motion but the as-
sociated value of �r be smaller. It is then possible that for a
particular combination of �r and �a, particles of one identity
will be trapped within a limit cycle, whereas those of another
identity will leave out of the limit cycle trap according to the
two phase portraits delineated in Fig. 9.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

y

(a)

P3

P3

P2
P1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

y

(b)

P3

P2

P1

P3

FIG. 11. �Color online� Particle sorting by size via point traps
�indicated by open circles and squares� for Example 3: �a� no-slip
vortex flow with Ga=0.0105 for P1; �b� free-slip vortex flow with
Ga=0.0633 for P1. The point traps for the critical particle motion
leading to complete separation are indicated by triangle symbols.
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FIG. 12. �Color online� Particle sorting by mobility via limit
cycle traps �pictured by the interior dotted lines� for Example 4: �a�
no-slip vortex flow with ZN1�r=0.166; �b� free-slip vortex flow with
ZN1�r=3.97. For particle P1 in the no-slip vortex flow, a supercriti-
cal Hopf bifurcation with �=−3.09 would occur at ZN1�r

�=0.211
and ZN1�a

�=0.529, whereas for particle P1 in the free-slip vortex
flow, a supercritical Hopf bifurcation with �=−0.0842 would occur
at ZN1�r

�=4.22 and ZN1�a
�=6.15.
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In the absence of DF forces, Fig. 12�a� uncovers the sort-
ing scenario of two particles P1 and P2 with NDF mobilities
ZN1 :ZN2=1:2 in the no-slip vortex flow. Initially, the par-
ticles are aggregated by setting up a point trap near the vor-
tex center. We then set ZN1�r=0.166 and ZN1�a=ZN1�a

� to
induce a stable limit cycle to trap particle P1, whose super-
critical Hopf bifurcation with �=−3.09 would occur at
ZN1�r

�=0.211 and ZN1�a
�=0.529. For particle P2 with larger

mobility ZN2, the corresponding limit cycle goes beyond the
stable manifold of the neighboring saddle point and is broken
by the unstable manifold, as depicted in Fig. 9�b�. So this
particle will not fall into the limit cycle trap set up for par-
ticle P1 and go elsewhere, rendering a complete separation
between the two particles, as shown in Fig. 12�a�. Figure
12�b� shows similar particle separation using a limit cycle
trap in the free-slip design with ZN1�r=3.97 and
ZN1�a=ZN1�a

�.
A similar strategy can also be applied to sort particles of

different sizes in vortex flows under gravity. Assume that two
particles P1 and P2 have the same density and NDF mobility
ZN, but the radius of particle P2 is twice as large as particle
P1. Namely, the gravity parameter Ga of particle P2 is four
times that of particle P1. For particle P1, we can generate a
limit cycle trap using the design values of Ga=0.0084,
ZN�r=0.160, and ZN�a=ZN�a

� for the no-slip case and

Ga=0.042, ZN�r=3.91, and ZN�a=ZN�a
� for the free-slip case.

The larger particle P2, subject to the greater gravitational
pulling, is hard to maintain its own stable limit cycle. As a
result, P1 can be readily captured by a limit cycle trap,
whereas P2 is pulled out of the trap by gravity, as shown in
Fig. 13. Both Figs. 12 and 13 suggest that it is possible to
form multiple limit cycle traps for achieving localized
separation of particles according to their multiple particle
identities.

VI. CONCLUDING REMARKS

Motivated by particle manipulation with EOF in a micro-
droplet on an inhomogeneous substrate and by mimicking
nonuniform boundary slip conditions in ICEO or ACEO, we
have not only derived analytical solutions for the two-
dimensional microvortex flow confined in a semicircular cap,
but also studied the dynamics of particles in such a flow
subject to various forces. We apply a linear stability analysis
and develop a generic bifurcation theory to foresee the fates
of suspended particles in the flow. More importantly, stable
or unstable states can exist to offer excellent tools for achiev-
ing selective particle trapping, release, and sorting if the un-
derlying flow and force fields are properly designed. These
states are categorized as �i� a vortex trap around a stationary
center, �ii� a point trap/release around a stable/unstable spiral
point, and �iii� a ring trap along a stable limit cycle.

The key in realizing desired particle manipulation is to
apply a nondivergence-free �NDF� force on a particle, turn-
ing a vortex center into a point trap/release or a limit cycle
trap. If the NDF force is attractive, a broken vortex trap can
release particles from an unstable spiral point, thus enhanc-
ing the subsequent particle trapping at a converging stagna-
tion point. If a repulsive NDF force is used, a point trap
�stable spiral point� can result to attract surrounding particles
toward it. If both attractive and repulsive NDF forces work
jointly to create a supercritical Hopf bifurcation, a limit cycle
can form to trap particles into a ring. Either a point trap or a
limit cycle trap furnishes the ability to capture particles at
specific locations within the fluid. Therefore, these traps can
be applied to selectively sort particles according to their
properties.

In this work, we neglect inertial effects on particle dy-
namics because the Stokes number is very small in most
microfluidic systems. Inertial effects, if non-negligible,
would tend to drive the particles away from the vortex cen-
ter, similar to the effects caused by an attractive NDF force.
This is evident in Appendix D, showing that inertial effects
always destabilize the center fixed point in a vortex flow.

Our study provides a useful framework to unravel particle
dynamics in microvortices under the combined effects of ad-
vection and forces. It is interesting to note that the forces
need not be externally applied. With inertia, it is possible to
create a limit cycle trap by applying a repulsive NDF force
or imposing a time-periodic perturbation upon the vortex
flow. Results found in this study might offer new paradigms
for achieving efficient particle manipulation and hence have
potentials in realizing high-throughput screening in many on-
chip applications.
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FIG. 13. �Color online� Particle sorting by size via limit cycle
traps �pictured by the interior dotted lines� for Example 4: �a� no-
slip vortex flow with Ga=0.0084 for particle P1; �b� free-slip vortex
flow with Ga=0.042 for particle P1. For P1 in the no-slip vortex
flow, a Hopf bifurcation with �=−0.357 would occur at
ZN�r

�=0.211 and ZN�a
�=0.415, whereas for P1 in the free-slip vortex

flow, a Hopf bifurcation with �=−0.0941 would occur at
ZN�r

�=4.22 and ZN�a
�=6.14.
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APPENDIX A: DERIVATION OF FUNDAMENTAL
SOLUTIONS

It is easy to see that Eqs. �5� and �6� satisfy u�=0 and
ur=0 at �= �� /2, respectively, because sin��m� /2�=0
when m is even and cos��m� /2�=0 when m is odd. Equa-
tions �7a� and �7b� are constructed from the functions in Eqs.
�6a� and �6b� to meet the additional condition of u�=0 at
�= �� /2. They can be rewritten as �assuming �0=0�.

�3
odd = �

m=1,3

	

cmrm+2�sin m� + sin�m + 2��� , �A1a�

�3
even = �

m=0,2

	

cm� rm+2�cos m� + cos�m + 2��� . �A1b�

Note that in the above expansions, the functions
sin m�+sin�m+2�� �with odd m� and cos m�+cos�m+2��
�with even m� satisfy ur=u�=0 at �= �� /2. Similarly, the
functions in Eqs. �5a� and �5b� can be employed to yield
another fundamental solution that also satisfies ur=u�=0 at
�= �� /2, giving

�6
odd = c2r4 sin 2� + �

m=4,6

	 �m − 2

m
cm−2rm + cmrm+2	sin m� ,

�A2a�

�6
even = c1�r

3 cos � + �
m=3,5

	 �m − 2

m
cm−2� rm + cm� rm+2	cos m� .

�A2b�

Here, Eqs. �A1� and �A2� are combined in a subtle way to
meet another homogeneous boundary condition, �=0 at
r=1. We first select the coefficients cm �=dik� and cm� �=dik� �,
such that Eqs. �A1a� and �A1b� can be used to develop so-
lutions that equal sin 2i� and cos�2i−1�� at r=1
�i=1,2 , . . .�, respectively. The coefficients dik and dik� can be
calculated from

sin 2i� = �
j=1

	

d̂ij sin�2j − 1�� ,

cos�2i − 1�� = �
j=1

	

d̂ij� cos�2j − 2�� ,

where

dik = �
j=1

k

�− 1� j+kd̂ij, dik� = �
j=1

k

�− 1� j+kd̂ij� .

We then use Eqs. �A2a� and �A2b� to generate solutions that
equal −sin 2i� and −cos�2i−1�� at r=1, respectively, giving

cm = −
m − 2

m
cm−2, c2i = − 1, cj = 0 �j � 2i� ,

cm� = −
m − 2

m
cm−2� , c2i−1� = − 1, cj� = 0 �j � 2i − 1� .

Adding up the derived two sets of solutions ensures �=0 at
r=1 and leads to the fundamental solution presented in Eq.
�8�.

APPENDIX B: DERIVATION OF ANALYTICAL SOLUTION
FOR CONFINED MICROVORTICES

The fundamental solution Eq. �5� that satisfies Eq. �10a�
can also be made to satisfy Eq. �10b� by setting bm=−am and
bm� =−am� . The solution �1 then reduces to �5 as follows:

�5
odd = �

m=2,4

	

am�rm − rm+2�sin m� , �B1a�

�5
even = �

m=1,3

	

am� �rm − rm+2�cos m� . �B1b�

Comparing these equations with Eq. �11� for the slip veloc-
ity, the coefficients am and am� can be determined from the
following formulas:

am =
�− 1�m/2

m
�

j=1

j=odd

m−1

pj, m = 2,4, . . . , �B2a�

am� =
�− 1��m−1�/2

m
�

j=0

j=even

m−1

pj, m = 1,3, . . . . �B2b�

To satisfy the boundary condition at the cap, Eqs. �10c� or
�10d�, we make use of �4 in Eq. �8� to derive the solution as
follows. Recall that the functions �4i

odd and �4i
even in Eqs. �8c�

and �8e� could be converted to represent u� or �r�. The coef-
ficients 
i and 
i� in Eqs. �8a� and �8b� are determined so as
to cancel nonzero values of u� or �r� resulting from �5 at
r=1. Note that the functions of �4 are not orthogonal with
respect to the integration of � from −� /2 to � /2. Therefore,
the coefficients 
i or 
i� must be solved numerically by a set
of algebraic equations with the number of truncation
N=10–20 at best. The complete solution is thus obtained as
�=�4+�5.

If the no-slip condition of Eq. �10c� is used, 
i and 
i� are
estimated from
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�
i=1

N


i

��4i
odd

�r
= −

��5
odd

�r
at r = 1, �B3a�

�
i=1

N


i�
��4i

even

�r
= −

��5
even

�r
at r = 1. �B3b�

However, a subtle issue arises from the free-slip condition of
Eq. �10d�. As can be seen from Figs. 2�c� and 2�d�, the shear
stress �r� represented by the first set of the functions is iden-
tically zero at r=1. Obviously, this set of the functions can-
not be used to adjust the value of the shear stress at the cap
boundary. Hence, we omit the contribution from them and
determine 
i and 
i� using

�
i=2

N


i� �2�4i
odd

��2 +
��4i

odd

�r
−

�2�4i
odd

�r2 	
= − � �2�5

odd

��2 +
��5

odd

�r
−

�2�5
odd

�r2 	 at r = 1,

�B4a�

�
i=2

N


i�� �2�4i
even

��2 +
��4i

even

�r
−

�2�4i
even

�r2 	
= − � �2�5

even

��2 +
��5

even

�r
−

�2�5
even

�r2 	 at r = 1.

�B4b�

Consequently, the solution obtained from Eq. �B4�,
��=�4�
1=
1�=0�+�5, is incomplete because it does not
satisfy u�=0 for the two corners at �= �� /2 and r=1. The
first set of the functions are then employed to recover this
zero corner condition, giving


1 = 0.3927� ���

�r
�1,− �/2� −

���

�r
�1,�/2�
 , �B5a�


1� = − 0.7854� ���

�r
�1,− �/2� +

���

�r
�1,�/2�
 . �B5b�

APPENDIX C: OCCURRENCE OF A VORTEX TRAP IN
THE ABSENCE OF NDF FORCE FIELDS

If the fixed point of Eq. �13� is a center, the similarity
transformation can lead to a two-dimensional system of the
form

d

dt
�x

y
	 = �0 − �

� 0
	�x

y
	 + � f�x,y�

g�x,y�
	 �C1�

with f�0,0�=g�0,0�=0 and �f� /�x=�f� /�y=�g� /�x
=�g� /�y=0. This point corresponds to a Hopf bifurcation
point in some occasions. The normal form theorem shows
that by smooth changes of coordinates with the fixed point
reduced to the origin, the above problem can be brought to
the following form in polar coordinates �40�,

dr

dt
= �r3 + O�r5� , �C2a�

d�

dt
= � + O�r2� . �C2b�

The normal form calculation could yield the first
Lyapunov coefficient � as

� =
1

16
�� �2

�x2 +
�2

�y2	� � f�

�x
+

�g�

�y
	


+
1

16�
�� �2f�

�y2

�

�y
−

�2g�

�x2

�

�x
	� � f�

�x
+

�g�

�y
	

+
�2f�

�x � y

�2f�

�x2 −
�2g�

�x � y

�2g�

�y2 
 .

It follows that if f and g constitute a DF field, then the first
Lyapunov coefficient � is always zero. As a result, the par-
ticle trajectory tends to circulate around the fixed point and
form a closed orbit. The statement is accurate at least to the
order of r5. On the contrary, a NDF force may cause a Hopf
bifurcation and a nonzero value of �.

APPENDIX D: EIGENVALUES OF A FIXED POINT IN
THE PRESENCE OF SMALL INERTIAL EFFECT

In the presence of inertial, Eq. �13� should be expanded in
dimension as

dxp

dt
= Vx�t� , �D1a�

dyp

dt
= Vy�t� , �D1b�

St
dVx

dt
= − Vx�t� + F�xp�t�,yp�t�� , �D1c�

St
dVy

dt
= − Vy�t� + G�xp�t�,yp�t�� . �D1d�

For the small inertial effect with St=��1, the Jacobian ma-

trix at the fixed point �x̄p , ȳp , V̄x , V̄y� in Eq. �D1� can be ex-
pressed as

J��x̄p, ȳp,V̄x,V̄y� =
1

��
0 0 � 0

0 0 0 �

�F�

�xp

�F�

�yp
− 1 0

�G�

�xp

�G�

�yp
0 − 1

� . �D2�
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The four eigenvalues with inertia �� of J� can be related to
those without inertia �� �c.f. Eq. �15a�� as ���1+����=��

=�� j�. The two eigenvalues associated with �xp ,yp� can
then be approximated by

�� � ���2 − �2� + � � j��1 − 2��� , �D3�

whose real part is greater than zero as the fixed point is at the
vortex center with �=0. This implies that inertial effects

always destabilize the center fixed point. Similarly, those as-
sociated with �Vx ,Vy� are

�� � − 1/� − � − ���2 − �2� � j��1 − 2��� , �D4�

whose real part approaches −	 for a vanishing �, implying
that the particle velocity will quickly reach its steady state.
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