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Normal and tangential surface ionic currents around low-permittivity nanocolloids
with surface charges are shown to produce three different conductive mechanisms
for ac-induced dipoles, all involving dynamic space charge accumulation at the
double layer/bulk interface with a conductivity jump. However, the distinct capaci-
tor dimensions and diffusive contributions produce three disparate crossover fre-
quencies at which the induced dipole reverses direction relative to the bulk field. A
highly conducting collapsed diffuse layer, with bulk ion mobility, renders the par-
ticle conductive and produces an ionic strength independent crossover frequency
for weak electrolytes. A precipitous drop in crossover frequency occurs at high
ionic strengths when charging occurs only at the poles through field focusing
around the insulated colloid. A peculiar maximum in crossover frequency exists
between these two asymptotes for colloids smaller than a critical size when normal
charging of the diffuse layer occurs over the entire surface. The crossover fre-
quency data for latex nanocolloids of various sizes in different electrolytes of wide
ranging ionic strengths are collapsed by explicit theoretical predictions without
empirical parameters. © 2010 American Institute of Physics.
[doi:10.1063/1.3455720]

I. INTRODUCTION

Electric-field-induced polarization of a dielectric particle plays an essential role in colloid
self-assembly, electrorheology, ac impedance spectroscopy, and dielectrophoresis.l’2 Conductive
surface polarization by space charges such as electrons or ions, in addition to interfacial molecular
dielectric polarization, is speculated to produce various relaxation times of particle induced dipole
dynamics. The classical Maxwell-Wagner (MW) theory3 accounts for conductive polarization
mechanism by combining the electric displacement jump at the surface due to some accumulated
interfacial space charge g, & d @/ dn]=—g, with the accumulation of g at the interface by a jump in
the normal current [od¢/dn]=iwg, due to a conductivity jump at the interface, to produce a
complex displacement jump across the interface, [ ¢/ dn]=0 with a complex permittivity =g
—io/w in the frequency domain.

When the Laplace equation is solved on two sides for a sphere of size @ in a uniform far field
E., with this complex displacement jump and potential continuity, [¢]=0, a dipole potential of
d=E..afcy(alr)cos 6 is obtained with the complex Clausius—Mossotti (CM) factor fcy;, whose
real part vanishes at the crossover frequency (in hertz) given by, wco=(1/2m)[(op—0y)(op
+20y,)/ (gy—€p)(2ey+£p)]"%, the critical frequency when the induced dipole changes direction
with respect to the external field. (Subscripts M and P represent the medium and the particle,
respectively). As both the boundary conditions and the Laplace equations are invariant to rescaling
by the size of the sphere, this wc is independent of particle size a, monotonically decreases with
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medium ionic strength (as measured by the bulk conductivity oy,=2F?2>DC.,/RT for an electro-
lyte concentration of C.,), and ceases to exist when the particle becomes less conductive than the
medium.

These predictions are found to be inconsistent with measured data for latex spheres in
electrolytes,4 which exhibit size-dependent wc, that can be nonmonotonic with respect to oy,
even though polystyrene is much less conductive than the medium. Stern layer conductance due to
adsorbed ions can render the particle more conducting than the medium’ and a modified MW
theory can introduce size dependence.‘l’ﬁ_lO However, the necessary Stern layer conductance is
empirically estimated, as the mobility of the bound ions is unknown. Theories have been
advanced® ™" to account for surface currents by tangential ionic flux carried by mobile ions in the
diffuse double layer. In Ref. 11, we reported a theory for low-conductivity fluids whose Debye
layer is larger than the particle and whose conductivity is comparable to the bulk. For such
conditions, we found the Stern layer adsorption dynamics to be important as a charge accumula-
tion mechanism for the Debye layer charging. Here, we connect the Stern layer adsorption and
conduction more explicitly by scrutinizing a highly concentrated polarized layer, which we believe
to be the classical Stern layer. More importantly, we extend the theory to intermediate and high-
conductivity conditions where conductivity jump across the thin Debye layer now replaces the
Stern layer adsorption to provide the required charge accumulation dynamics. The charge convec-
tion by electro-osmotic flow is again neglected for thin layers, as the relevant Péclet number is
much less than unity. An averaging theory (without empirical parameters) over the thin double
layer is then introduced to capture all the mechanisms affecting ac polarization: conductivity
gradient between the layer and the bulk (which accumulates space charge) due to surface charge
attraction, tangential diffusion/current, and normal electric displacement.

Il. THEORY

A. Large Debye layer asymptote

The thickness of the charged layer of counterions adjacent to a charged surface is not neces-
sary the Debye screening length, N=\eRT/2C.z*F2, which is from a linearized version of the
Poisson—Boltzmann (PB) equation for symmetric electrolytes with valency z, when the zeta po-
tential is small (sF/RT)<<1. An earlier analysis of the full nonlinear PB theory14 reproduced in
Ref. 15 shows that the zeta potential / scales as Eg\ when it is small but as (RT/F)In(EqNF/2RT)?
when it is large. Thus the thickness of the counterions is N only for intermediate and strong
electrolytes. For weak electrolytes with large differences in counterion and coion concentrations,
omitting the coion concentration allows an analysis of the nonlinear PB equationm’15 to produce a
collapsed diffuse double layer with a nonlinear screening length Ag=aRT/FE,, where « is a unit
order empirical constant taken to be 4 here, to be no more than 5 nm for most surface charge
densities. This thickness is independent of ionic strength and is fixed for a given particle. Hence,
for electrolyte concentrations and medium conductivity below the critical bulk electrolyte concen-
tration CS=g,,RT/(2F?z*\g") (3 mM for univalent electrolytes at Eg=2.0 X 107 V/m) or medium
conductance o, =g, D/\¢” (about 0.14 S/m for the same conditions), the relevant polarized layer
thickness is Ag. For weak electrolytes with ionic strength below these values, the total counterions
within this layer represent almost the total surface charge and hence, there is a little space charge
outside PB equilibrium. Also, the conductivity within the collapsed layer is larger than the medium
by a large Boltzmann factor of exp({F/RT) assuming that the mobile ions in the collapsed layer
retain the bulk mobility. Due to the high-conductivity and small dimension of the collapsed layer
with respect to the bulk value and particle size, the bulk field lines are focused into this layer.6
Because of this field focusing effect, the tangential ion flux within it is dominated by electromi-
gration with little contribution from convection by electro-osmotic flow or from diffusion. The
thinness of the layer also implies that the dielectric displacement jump [ed ¢/ dn] at the particle-
medium surface can be extrapolated by Ag to the diffuse layer interface. One can hence use the
standard practice of relating the disturbance potential field across an insulated sphere with a
conducting shell to that of a conducting sphere to obtain effective particle conductivity.5 However,
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FIG. 1. The collapse of low-conductivity data of latex particles by the collapsed layer theory (Eg=2.0X 107 V/m and
D=5%10"" m?/s). Open symbols correspond to colloids smaller than 220 nm.

the shell conductivity is based on mobile ions here and this quasisteady averaging for a purely
conducting shell without tangential diffusion produces an effective particle conductivity of op
=2K,/a> o), for a dielectric sphere with a surface conductance K,=De(E¢F/RT). This effective
particle conductivity can then be used in the standard MW theory.

As the collapsed layer thickness and conductivity are independent of the medium conductivity,
the resulting wco=(1/2V27)(0p/€y), for weak electrolytes is independent of ionic strength or
solvent, provided that it has a higher permittivity than the particle. With a surface field of Eg
=2.0X 107 V/m corresponding to a surface charge density of 1.4 uC/cm?, consistent with a
measured surface charge density of around 2.0 uC/cm? (Ref. 4) for latex colloids and a generic
ion diffusivity of D=5X 10" m?/s, we are able to collapse all data of Green and Morgan4 in Fig.
1 below a'f,,. Positive deviation from the theory for colloids smaller than 220 nm (open symbols)
occurs near (r,f,,. A precipitous drop occurs for o,,> op for all particles when the MW theory fails.

B. Thin Debye layer asymptote

Beyond CS, the collapsed layer disappears and is replaced by an ionic strength dependent
Debye diffuse layer of thickness N\, with (A/a)<<1. The particle now becomes nonconducting
without the collapsed layer. The thin diffuse layer remains sufficiently thick to allow tangential
field penetration into the diffuse layer. The conductivity difference between this layer and the bulk
is small as {F/RT<<1, but this small difference needs to be resolved in the analysis as it is this
conductivity gradient that allows dynamic space charge accumulation. Conductivity jump across
the Debye layer, which is still necessary for charge accumulation, is often absent from thick-layer
theories that expand from the PB f:quilibrium.”’13 Also, with a small conductivity increase in the
layer relative to the bulk, field focusing effects of the highly conducting collapsed layer disappear
and tangential diffusion must now be included. Because the colloid is now an insulator, the field
lines that penetrate the diffuse layer do not approach the colloid surface. The displacement jump
at the particle surface hence becomes irrelevant. The pertinent displacement jump is that across the
diffuse layer, which is related to the local diffuse layer charge accumulation, determined by
various mobile ion currents.
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The leading order solution ¢, satisfies the surface field condition due to the surface charge
and is the classical PB equilibrium distribution near the surface with a polarized diffuse layer
containing nonhomogeneous ion distributions. This leading inner solution screens the surface
charge such that the far field sees an insulated sphere and hence produces a potential ¢y=
—((a/r)*/12+(r/a))E..a cos 6 sin(wt) in the outer region outside the Debye layer. The nonequilib-
rium correction ¢ to ¢, in the outer medium occurs due to ion accumulation in the diffuse layer.
Let (p) be the layer-averaged perturbation charge density (deviation from the PB equilibrium),
then a layer-averaged charge balance can be derived by integrating the Nernst—Planck ion flux
equation over the diffuse layer of thickness A,

@ &y p)

=0p—> +D -
ot DL g2 Js?

J(n=N\)/\. (1)

The only nonlinear term in the Nernst—Planck equation is the electromigration term and the
expansion about PB equilibrium ¢, which is independent of the tangential coordinate s, produces
the conduction term in Eq. (1) whose conductivity o, represents the layer-averaged conductivity
of the PB equilibrium distribution. The normal charging flux from the homogeneous bulk involves
only electromigration J(n=X\) ~ —ay,(d¢,/ dn)p, where the subscript D denotes the outer boundary
of the diffuse layer and is supplied by the outer field and the new field due to the deviation charge
at the outer boundary of the diffuse layer, ¢= ¢+ . On the other hand, displacement jump across
the double layer, across both the surface charge and the space charge in the Debye layer, is
determined by deviation charge density. With the field negligible inside the particle, this displace-
ment jump stipulates that £,,(d¢/ In) ,=—N(p). The field at the outer boundary of the diffuse layer
can be approximated by an expansion from the particle surface (d¢p/dn)p~ (by/In*)\
+(z?<23/ on),, where subscript s denotes the particle surface. Eliminating the deviation charge den-
sity, we obtain an effective electrostatic condition for the deviation potential in the frequency
space,

(O'M+iw8M—DSMi)<)\%+&_¢) Z—KUDL(%). (2)

Js? an’ on Js*

Since the dielectric dipole (having a CM factor of —1/2) produced by the zero order outer solution
¢y is always out of phase with the applied field, it is the in-phase dipole component of nonequi-
librium potential ¢ that determines the dipole intensity and orientation.

Using boundary condition (2), we solve the Laplace equation for ¢ with a zero far field and
find the corresponding dipole coefficient. Together with —1/2 from ¢, we obtain the dipole
intensity in terms of the classical CM factor

o)
fom 1+§<>\) o, D a 3)
AV iwh\? A2 ’
+1+2|—
a

The real (in-phase) part yields the crossover to leading order in (\/a) for electrolyte concentra-
tions near C<, wc0=(\"/§/2’77)(D/ A\?)((N/a)((op,/o,)—1)—1)"2. At moderate electrolyte conduc-
tivities considered here, the zeta potential can be sufficiently high that (\/a)(op,/0,,)>1 or
tangential conduction dominates. In this case, the conductivity given by the PB equilibrium
theory6 is (opy/ o)) =cosh({F/RT)~ (1/2)(EgAF/RT)? and one concludes that
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FIG. 2. The crossover data for two different latex particle sizes compared to the three theories for different medium
conductivities. Same symbols as Fig. 1 are used. Also shown is Ermonila and Morgan’s theory, which uses the Maxwell—
Wagner expression but included in the particle conductivity contributions from the Stern layer conduction and diffuse layer
conduction and convection op=(2Kg/a)+ (2K /a). The Stern layer conductance K;=2ogu/a=2Esegu/a was estimated
to be 0.92 nS and the diffuse layer conductance is Kgy=([4F>cz>D(1+3m/z?)]/(RT/N))(cosh(zF{/2RT)~1) with the
electro-osmotic contribution captured by m=(RT/F)*(2&,,/31D). The zeta potential { is related to the surface field Es.
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As N scales as 0';4”2, Wco varies as o-if4 and its curious rise with respect to ionic strength is

captured. In Fig. 2, we are able to favorably compare the collapsed diffuse layer theory to the wc(
data in Ref. 4 for 93 and 557 nm latex nanocolloids below o7, for the same values of Eg and D as
used in Fig. 1. The distinct rise is absent for the larger particle (>220 nm as seen in Fig. 1) since
Eq. (4) predicts w¢, that is lower than the constant asymptote at low conductivities. Physically,
the tangential flux through the thin Debye layer is not sufficient to distort the charge accumulation
over the entire particle surface for these large particles. In contrast, an earlier theory,10 which does
not properly capture charge accumulation with normal conductivity and displacement jumps
across the double layer and the full tangential flux along it, is shown in Fig. 2 to produce
negligible rise in the crossover even for the smaller particle.

C. Polar charging asymptote

Even for very small particles, the tangential flux in the diffuse layer disappears for very strong
electrolytes, when \ approaches atomic scales. The penetrating outer field can again reach the
particle surface and produce a dielectric polarization with a CM factor of —1/2. That a crossover
frequency still exists means that a new conductive polarization mechanism due to current penetra-
tion to the surface appears. The outer field —V ¢, has the largest normal component at the poles
and we expect that the poles are the last locations where the surface charging can survive for
strong electrolytes. The tangential field line gets focused as they exit the pole like the induced
dipoles of carbon nanotubes'® and penetrates the double layer interface where the conductivity
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FIG. 3. Collapse of crossover data below 0.1 S/m by the high-conductivity theory. Same symbols as in Fig. 1. Field
focusing around an insulated sphere driving an intense charge accumulation at the polar double layer interface due to
conductivity gradients.

jump occurs (see Fig. 3). Hence a dipole is produced that has a much higher strength than classical
MW dipole. The discharging time is fast and hence the polar capacitor is in-phase with the applied
field.

A local Cartesian expansion at the pole simplifies the local two-dimensional Debye—Huckel
equation. Extending the one-dimensional theory of Gonzélez et al."” to two dimensions and to
include curvature, the Debye—Huckel equation is converted to a linear Poisson equation for the
local perturbation charge density at PB equilibrium,

ﬁ;+g@+ﬁ;+l@=% (35)
dz= adz ds° sds N
with s being the tangential coordinate and z the normal coordinate. For the localized polar charg-
ing with vanishing p at s, z—oo, the solution of Eq. (5) is in the form of p=A(r)exp(
—-z/N)Ky(s/(2/a\)) with the geometric mean length scale arising from the curvature at the pole
and with a modified Bessel function.

Coefficient A is determined from the accumulation of space charge at the pole due to the
conductivity gradient at diffuse layer interface. Due to the conductivity jump across the outer
double layer interface, the leading outer potential ¢y=—((a/r)?/2+(r/a))E.a cos 6 sin(wt) pro-
duces a jump in the radial flux density at the double layer interface D(r=a+\) of the right pole
(6=0): N(opL— o) (IE/ dr)sin(wt) |,—x1a=3(0pL— 0y) (N a)E., sin(wt). The flux tube that conducts
ion into the pole is of radius (a\/2)"? and hence the total charge accumulation rate at this
interface due to conductivity gradient is 3(op;— o) (N a)E,, sin(wt)(mAa/2). On the other hand,
the total accumulated charge ¢ in the polar region can be estimated by the volume integral of Eq.
(5) in s and z from 0— o to yield A(¢)7\3(a/\). Taking the time derivative of this quantity and
relating it to the former accumulation rate, we obtain an equation for the space charge accumula-
tion rate at the pole: dA/dt=(3/2)(op—0y) (N a)E., sin(wr)/\. With the boundary condition that
the charge density vanishes exactly at the beginning of each half cycle, this equation can be
integrated over each half cycle to produce A(f)=G sin*(wt/2) for 0<t<m/w and A(f)=
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—G cos*(wt/2) for m/w<t<2m/w, where G=(3/2)(op,—0y)(N/a)(2/w)(E../\) and with an
inner discharging boundary layer in time of width (\?/D) separating the regions. Fourier sine
transforming A(z), converting it to the total polar charge g=Am\%a and relating to the dipole
potential at the pole (g/(27meya))=fcmE~a, yields an equivalent CM factor of (3/7w)(D/a?)
X(op./oy—1). When this is balanced with the dielectric CM factor of (—1/2), we obtain the
crossover of this polar region (in hertz) as

R e B

where the approximation is taken for small zeta potential in the high medium conductivity regime.
The resulting crossover scales as 0';,,1 and is seen to be in quantitative agreement with the high-
conductivity data in both Figs. 2 and 3. This peculiar polar charging mechanism at high conduc-
tivities is not captured by any earlier theory, one of which is shown in Fig. 2.

lll. CONCLUSION

In this paper we present the dielectrophoretic crossover frequency spectrum for a latex colloid
across different conducting buffers by exploring the multitude of physical phenomenon associated
with charging of the double layer. The double layer charging dynamics clearly establishes the
conductivity gradient responsible for the dielectrophoretic crossover frequency seen in otherwise
insulated latex colloids. This phenomenon we believe can be exploited to design the next genera-
tion of point of care microfluidic chips based on molecular manipulation,18 rapid concentration of
biomolecules,'® and biomolecule dielectrophoretic spectroscopic analysis.15
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