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In this paper, self-motion of reactive colloids and their dispersion behaviour are
theoretically examined. The motion is driven by an osmotic force imbalance arising
from non-uniform atmospheres of reactive solutes around the colloids. The propulsion
here is not limited to Janus-like particles. It can also occur to particles having
‘uniform’ reactivity due to the more universal mechanism – entropic anisotropy
created by breaking in rotational symmetry. The idea is demonstrated by examining
the motion of a reactive particle due to asymmetry in its shape or to the presence
of an additional particle. In the two-particle problem, in particular, we find that sink
(source) particles can self-migrate towards (apart from) each other at velocities varying
as R−2, resembling Coulomb attraction (repulsion), where R is the inter-particle
distance. Because of this Coulomb-like nature, a suspension of sink particles could
undergo collective flocculation due to unscreened osmotic attraction. The criterion for
an occurrence of the flocculation is also established. It reveals that the flocculation
can occur if the particle volume fraction is within a certain window in terms of the
solute concentration and the particle reactivity. The stability of reactive suspensions
is also discussed using the modified Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory that takes account of the competition between long-range reaction-induced
osmotic forces and short-range colloidal forces. A more generalized view for the
present self-driven particle motion is elucidated by a simple scaling theory, providing
lucid accounts for the self-motion of two particles, composite bodies, and Janus
particles – all are driven by dipolar distortions in potential energy. Comparison with
phoretic self-swimmers is also discussed.

1. Introduction
Control of the motion of colloidal particles is essential to self-assembly,

micropatterning, synthesis and functionalization of nanoparticles and stability of
suspensions. A common strategy for manipulating particles is to tune various short-
range colloidal forces – the usual recipe based on classical Derjaguin–Landau–
Verwey–Overbeek (DLVO) theory (Verwey & Overbeek 1948). One can achieve an
active control on colloids to expedite the manipulation with external forces, for
example, through electric/magnetic fields (Jones 1995; Morgan & Green 2003) and
optical tweezers (Ashkin et al. 1986). Particles can also be driven by chemical potential
gradients in various forms (e.g. electric potential, concentration and temperature) to
move up against or down to the gradients, depending on their properties. A large class
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Self-propulsion and dispersion of reactive colloids 65

of colloidal transport processes, so-called ‘phoretic’ phenomena (Anderson 1989), such
as electrophoresis, diffusiophoresis, thermophoresis, etc., belong to this category.

While these strategies are useful in realizing a diversity of manipulations of colloidal
particles, most of the attention is restricted to non-reactive impermeable colloids. In
many practical applications, however, mass exchanges often occur between dispersed
colloids and the bulk fluid. In one occasion, particles (e.g. catalysts) can uptake
solutes from the bulk fluid, while in another (e.g. microemulsion or vesicles) they
can be dissolved back into the bulk. In these situations, particles permit selective
passages for solute or solvent molecules across the particle surfaces, acting like mobile
sources/sinks with constant release/capture of their surrounding substances from/into
themselves. From this point of view, these particles can be said ‘reactive’ because they
possess specific chemical/physical affinities to the surrounding substances. For such
particles, in addition to the usual colloidal forces, there exists another route to
affecting their motion. Because of reactions, changes in local solute concentrations
can create non-uniform atmospheres around the particles, giving rise to asymmetric
entropic landscapes and hence in turn propelling them without needs in acquiring
external forces or imposition of macroscopic potential gradients. That is, there will
be autonomous motion sustained by the particles’ own fuels. Indeed, such motion
has been observed in solutions of reactive colloids (Howse et al. 2007) or nanosized
objects (Paxton et al. 2004). Because the propulsion here is essentially generated
by self-induced entropic fields, one might think it somewhat similar to colloidal
phenomena due to overlapping depletion layer or excluded volume effects (Askura &
Oosawa 1954), as observed in binary colloids (Crocker et al. 1999) and colloid–
polymer mixtures (Ogden & Lewis 1996). And yet, as we will demonstrate, unlike the
usual short-range colloidal effects, the nature of this reaction-driven entropic effect
appears long range and hence can influence the particle motion distantly.

In this paper, we would like to explore more about how reactive colloids are
propelled by entropic forces generated from their own. Although this subject has
been investigated theoretically by several authors (Golestanian, Liverpool & Ajdari
2005, 2007; Córdova-Figueroa & Brady 2008), the efforts were focused on the motion
of a single spherical particle with non-uniform reactivity. In practice, however, a
particle could have some eccentricity on its shape, or, quite frequently, be surrounded
by other particles. As such spatial anisotropy can also occur to a particle of ‘uniform’
reactivity, the effect can also create a ‘non-uniform’ solute concentration around the
particle and hence produce an osmotic force to set it in motion. The present study
will focus on the motion of reactive colloids of this kind. The paper is organized as
follows. In § 2, we begin by reviewing the concept of symmetry breaking necessary for
self-propulsion. This concept is first illustrated by examining the motion of a nearly
spherical reactive particle in § 3. In § 4 we study the motion of two interacting reactive
colloids. In § 5 we put forth to discuss possible impacts on the dispersion behaviour
of reactive suspensions. The stability of reactive suspensions will also be examined in
the modified DLVO framework. In § 6 we develop a simple scaling theory to elucidate
the natures of self-driven entropic swimmers. § 7 is discussion. The paper is concluded
in § 8.

2. Self-propulsion of reactive particles due to breaking in spatial symmetry
In the context of low-Reynolds-number hydrodynamics as assumed in most of the

colloidal motions, the reversibility of flow (Happel & Brenner 1983) stipulates that a
spherical particle having uniform reactivity does not migrate at all if it is placed in
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66 H.-H. Wei and J.-S. Jan

an ‘isotropic’ medium. This is because the particle velocity U is linear in driving force
F and the latter must vanish due to the perfect spatial symmetry.

Motion can be rendered if the particle loses its rotational symmetry due to a certain
disparity in surface pattern or geometry, so that it can perceive unequal forces around
itself. In other words, a symmetry breaking is produced by a prescribed direction, say,
p, along which a non-zero F can be generated by the particle itself and hence U . This
idea has been demonstrated using Janus particles having a dipole-like distribution of
surface reactivity, as seen in diffusiophoretic self-swimmers (Golestanian et al. 2005,
2007) and osmotic motors (Córdova-Figueroa & Brady 2008). In § 6, we will discuss
in more detail about how breaking in spatial symmetry leads to self-movement of
particles and argue that particles can only migrate along p.

For a particle with ‘uniform’ chemical activity, however, the only way to drive the
particle without external forcing is to introduce asymmetry in its shape, place an
additional boundary, or add an extra object around it. In this way, an anisotropic
force field can also be produced to propel the particle. Prior to illustrating the effects
at work, we first provide general formulism below for the problem.

Consider a particle with uniform surface activity immersed in a solution of smaller
reactive solutes with diffusivity D. Neglecting convection, the solute concentration C
is described by the diffusion equation:

D∇2C = 0, (2.1)

subject to uniform concentration C∞ far from the particle and the first-order reaction
on its surface:

Dn · ∇ C = ksC (2.2)

with the unit normal n pointing into the fluid. Here, the rate constant ks can be either
>0 if the particle (sink) uptakes the solutes, or <0 if the solutes are released from the
particle (source) and dissolved back to the bulk phase.

As in Córdova-Figueroa & Brady (2008), the particle is propelled by an
entropic/osmotic force arising from non-uniform solute concentration due to reaction.
Despite some debates on such entropic propulsion (see e.g. the comments by Fisher &
Dhar 2009; Jülicher & Prost 2009, and the replies by Córdova-Figueroa & Brady
2009a, b), the propulsion can be understood as follows. From statistical mechanics
viewpoint, this force is a thermodynamic force generated by spatial variations of the
probability density of solutes (i.e. the gradient of the configurational entropic energy)
(Batchelor 1976). As shown by Squires & Brady (2005) as well as by Córdova-
Figueroa & Brady (2009b), the propulsion here entails solutes to be somewhat
‘visible’ (in size, mobility or chemical activity) in distinction to the surrounding
solvent at the Smoluchowski level, so that any anisotropy of the microstructure (i.e.
the probability density distribution of solutes) around the particle can be transformed
into a macroscopic force exerted by the solution on the particle. Speaking in a
simple term, the particle can perceive an ‘excess’ osmotic pressure created by the non-
uniformity of solutes around the particle. This entropy-driven mechanism is actually
the basis of the Stokes–Einstein equation for determining the diffusion coefficient of
a suspended object – the result by balancing the osmotic force with the Stokes drag,
as derived by Einstein (Einstein 1905) a century ago.

As the force generated by spatial variations in the osmotic pressure � over the
particle surface Sp is Fosm =

∫
Sp

(−�) n dA together with van Hoff’s equation � = kTC

(wherein kT is the thermal energy) by assuming that the solution is ideal (dilute), the
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Self-propulsion and dispersion of reactive colloids 67

driving osmotic force can be written as

Fosm = −kT

∫
Sp

Cn dA, (2.3)

which pushes the particle towards lower concentration regions. The particle velocity
U is determined by Fosm + Fhyd = 0, zero total force through balancing Fosm with the
hydrodynamic drag on the particle Fhyd = − ςU . This yields

U = ς−1 Fosm = −(kT /ς)

∫
Sp

Cn dA, (2.4)

where ς is the drag coefficient. For a spherical particle, it can be seen immediately
from (2.3) or (2.4) that to have a non-zero Fosm and U , C must be even in n. It
thus follows that one needs at least a dipolar distortion in C (i.e. C − C∞ ∝ x/r3) for
realizing the propulsion. Thereby, if the particle does not possess any inhomogeneity
in its reactivity, its motion can only be realized by introducing some asymmetry to its
shape or by the presence of other particles/boundaries, which will be examined next.

3. Self-migration of a nearly spherical reactive particle
We first examine the motion of a nearly spherical reactive particle. The

particle has a mean radius of a with a small deformation over its periphery:
r = R(θ) = a(1 + εf (θ, φ)), where ε (� 1) is the amplitude of the deformation and
f (θ, φ) is the prescribed shape varying with both latitude θ and longitude φ. To solve
C asymptotically, we expand it in ε : C = C0 + εC1 + . . . , with Cj satisfying (2.1) at
every order j. Rewriting (2.2) as

D

(
∂C

∂r
− 1

R2

∂R

∂θ

∂C

∂θ
− 1

R2 sin θ

∂R

∂φ

∂C

∂φ

)
N−1/2 = ksC

with N = 1 + R−2(∂R/∂θ)2 + (R sin θ)−2(∂R/∂φ)2 and expanding it about r = a, we
collect the terms in subsequent orders and solve the problem up to O(ε) below.

At leading order, the problem satisfies D∂C0/∂r = ksC0 at r = a and C0 → C∞ as
r → ∞, and has a solution:

C0

C∞
= 1 −

(
α

1 + α

)(a

r

)
. (3.1)

Here α = ksa/D is the ratio of the reaction rate to the diffusion rate. It is either
>0 for sink particles or <0 for source particles (but we restrict α > − 1 to ensure
C0(r = a) = 1/(1 + α) > 0). In the reaction limit |α| → 0, C0/C∞ ≈ 1−α(a/r), whereas in
the diffusion limit α → ∞ (which is only applicable to sink particles) has C0/C∞ ≈ 1 −
(a/r), independent of α. At this order, it is obvious that the particle will not move
at all since the concentration distribution here varies only radially – it is perfectly
symmetric around the particle.

At next order O(ε), we expect that the deformation will distort the concentration
asymmetrically, which can be readily seen from the perturbed surface boundary
condition: (

a2f (θ, φ)
∂2C0

∂r2
+ a

∂C1

∂r

)
= α

(
af (θ, φ)

∂C0

∂r
+ C1

)
at r = a. (3.2)
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68 H.-H. Wei and J.-S. Jan

Because C1 → 0 as r → ∞, the solution can be expressed in a harmonic expansion:

C1

C∞
=

∑
m

(a/r)m+1Am [ · ] Sm, (3.3)

where [·] denotes m scalar products between the mth-order polyadics Am and Sm. The
surface harmonics Sm are given by

Sm = (−1)mrm+1(∇ · · · ∇)m(1/r) or

S0 = 1, S1 = n, S2 = 3nn − I, etc. (3.4)

These surface harmonics satisfy the following orthogonal property over the surface
(Anderson 1985):

〈SmS�〉 =
1

4π

∫ ∫
SmS� sin θ dθ dφ = 0 if m 
= � (3.5)

with the first few orders listed below

〈S0S0〉 = 1, 〈S1S1〉ij = 1
3
δij , 〈S2S2〉ijk� = 1

3
(−2δij δk� + 3δikδj� + 3δi�δjk),

where δij is the Kronecker delta. The coefficients Am in (3.3) can be determined
by substituting (3.3) into (3.2) and applying the orthogonal property (3.5).
Expressing the deformation as a multipole expansion up to the quadrupole term:
f = f0 + n · f 1 + (3nn − I)/2: f2, we find

A0 = −βf0(2 + α)/(1 + α), A1 = −β f 1, A2 = −(β/2)f2(2 + α)/(3 + α), (3.6)

where β = α/(1 + α). Substituting (3.6) into (3.3) and evaluating Fosm in (2.4) (with
ς ≈ 6πηa and η the viscosity of the fluid), we find the particle velocity as

U =
2

9

kTC ∞a

η

εα

(1 + α)
f 1. (3.7)

Note here that the quadrupole deformation does not contribute to the velocity since
the deformation is symmetric with respect to the midplane (θ = ±π/2). Hence, the
particle will migrate in the direction along its principle axis f 1. For a ‘sink’ particle
(α > 0), it will see a denser solute cloud on the blunt side than the sharp end (cf.
A1 in (3.6)), which in turn creates an osmotic pressure gradient pushing the particle
towards the sharp end, as illustrated in figure 1(a). This result can be explained as
follows. Near the sharp end where the local radius of the curvature is smaller, the
diffusive flux from the bulk towards the particle surface is larger. As the solutes
around the sharp end are consumed at faster rates than those on the blunt side, a net
osmotic force will be created towards the sharp end where the solute concentration is
lower, driving the particle to move in the same direction. Similarly, the motion of a
‘source’ particle (−1 < α < 0) will be led by its blunt side, as illustrated in figure 1(b).
An alternative but simpler explanation for the above motion behaviours is that one
can view this slightly eccentric sphere as a composite object made by two touched
spheres of different sizes – the larger one forms the blunt side and the smaller one
does the sharp end (see § 5.2). Because the two sink (source) particles undergo inward
(outward) osmotic forces and the larger one experiences a stronger force (see § 4 for
the two-particle problem), the net force on the whole will be pointing towards the
smaller (larger) one to drive the composite body towards that direction.

As indicated by (3.7) or shown in figure 2, the speed U of a sink particle can
vary with α in different manners, depending on whether the swimming is reaction or
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Sink

(a) (b)

Source

Cs

Figure 1. Schematic pictures for the self-swimming of a reactive sphere with a small dipolar
deformation. (a) If the particle is sink-like (α > 0), it will move in the direction towards its
sharp end where the solute concentration is lower. (b) If the particle is source-like (α < 0), the
motion is just opposite to (a). The curves depict the solute concentration along the particle
surface.

100

10–1

10–2 10–1 101 102100

Diffusion controlled

U
/U

0

Reaction controlled

α

Figure 2. (Colour online) Drift velocity of a slightly deformed reactive sphere as a function
of reactivity parameter α. The velocity here is normalized by U0 = (2/9)(kTC ∞aε/η).

diffusion controlled. If the reaction is slow α � 1, U ≈ (2/9) (kTC ∞εa/η)α ∝ a2. If the
reaction is fast α � 1, however, the particle will no longer be speeded up by increasing
α. In this limit, the particle reaches a maximum speed U ≈ (2/9)(kTC ∞ εa/η) ∝ a. As
for a source particle, its motion, because of the restriction −1 <α < 0, will be limited
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70 H.-H. Wei and J.-S. Jan

only by the reaction, since the reactants cannot be replenished indefinitely by the
particle.

Different velocity scales shown above for sink particles can be obtained by simple
scaling arguments below. For α � 1, the particle is nearly impenetrable at slow
reaction rates. As the concentration is now nearly uniform as in the bulk, it furnishes
a reactive flux into the particle at the rate of ∼ ksC∞, giving rise to a concentration
correction C ′ ∼ ε C∞ksa/D ∼ ε C∞α through diffusion. The resulting osmotic pressure
is then

∏′ ∼ kTC ′ ∼ kT ε C∞α. Balancing the osmotic force
∏′

a2 with the viscous
drag ηUa, the particle velocity is therefore U ∼

∏′
a/η ∼ kT ε C∞a α/η. As for α � 1,

the reaction is so fast that the reactants are almost empty on the particle surface,
except within the thin diffuse boundary layer of thickness δD ∼ D/ks . The diffusion
flux across the boundary layer now becomes jD ∼ DC∞/δD ∼ ksC∞ and acts inwards
towards the particle surface. It causes a concentration correction C ′ ∼ εjD/ks ∼ ε C∞
through balance with the reaction, and thereby drives the particle at speed of
U ∼ a kT C ′/η ∼ kT ε C∞a/η.

4. Motion of two interacting reactive colloids
In the previous section, we have demonstrated that a slightly deformed reactive

colloid can self-migrate, confirming the idea that it is necessary to have some
prescribed direction to break spatial symmetry for rendering the propulsion. In this
section, we will further elaborate this idea by considering a pair of reactive spheres in
which the asymmetry is now created in the direction along their centre-to-centre line.

Two particles, labelled by 1 and 2, can be different in their sizes and reaction rates.
Define the dimensionless reactivity αi = ksiai/D for sphere i, where ai and ksi denote
the radius and reaction rate, respectively. If their centre-to-centre distance R is much
larger than the particle sizes, the solute concentration satisfying (2.1) can be written as
a twin harmonic expansion, stopping at the dipole terms by neglecting contributions
from O((a1/R)3, (a2/R)3) or higher:

C

C∞
= 1 − β1

(
a1

r1

)
− β2

(
a2

r2

)
+ A1

(
a1

r1

)2

cos θ1 + A2

(
a2

r2

)2

cos θ2 + · · · (4.1)

with βi =αi/(1 + αi) (i = 1, 2). Here we invoke two spherical coordinates (r1, θ1) and
(r2, θ2) whose origins are located at the centres of sphere 1 and 2, respectively. Making
use of Hobson’s addition theorem (Hobson 1965):

1

r2

=
1

R

{
1 +

(r1

R

)
cos θ1 + · · ·

}
,

(
1

r2

)2

cos θ2 =

(
1

R

)2 {
1 + 2

(r1

R

)
cos θ1 + · · ·

}
,

for r1 < R,

we can rewrite (4.1) in a single coordinate (r1, θ1) for r1 < R:

C

C∞
= 1 − β1

(
a1

r1

)
− β2

(a2

R

){
1 +

(r1

R

)
cos θ1

}
+ A1

(
a1

r1

)2

cos θ1 + A2

(a2

R

)2

+ · · · .

(4.2)
Applying boundary condition (2.2) at r1 = a1 on sphere 1, we can determine A1 from
the cos θ1 term:

A1 = β2

(a1a2

R2

) (
α1 − 1

α1 + 2

)
. (4.3)
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Equation (4.3) bears the similar form to the Clausius–Mossotti factor in polarization
induced by electric fields (Pohl 1978), and agrees with the dipole coefficient of the
exact solution obtained previously (Tsao 2001). Similarly, A2 can be determined by
evaluating (2.2) on the surface of sphere 2, or simply obtained by interchanging
subscripts 1 and 2 in the expression of A1. Substituting (4.3) into (4.2) and writing
cos θ1 = n1 · eR as the projection of the surface normal n1 on the centreline direction
eR (pointing towards sphere 2), we find the solute concentration distribution around
sphere 1:

C(r1 = a1)

C∞
≈ 1 − β1 − β2

(a2

R

)
+ A2

(a2

R

)2

−
(

3β2

2 + α1

) (a1a2

R2

)
n1 · eR. (4.4)

Here, we are only interested in the last term, since this term varies with azimuthal
position and is able to reflect the non-uniformity in the solute concentration between
the particles. As a result, sphere 1 has lower (higher) solute concentration on its front
hemisphere −π/2 < θ1 < π/2 due to the uptake (release) of the solutes by sphere 2
with β2 > 0 (< 0). That is, the solute distribution now becomes anisotropic because
they are re-distributed around the dumbbell-like geometry. Evaluating (2.4) with the
osmotic force on sphere 1: Fosm

1 = − kT
∫

C(r1 = a1)n1dA, we find the velocity of
sphere 1 as

U1 ≈ 2kTC ∞a2

3η

α2

(1 + α2)(2 + α1)

(a1

R

)2

eR. (4.5a)

Similarly, for sphere 2 we have

U2 ≈ −2kTC ∞a1

3η

α1

(1 + α1)(2 + α2)

(a2

R

)2

eR. (4.5b)

Here we neglect hydrodynamic interactions between the particles because the
associated corrections to the particle velocities are of O(U1a1/R, U2a2/R) or smaller.
Equations (4.5a, b) indicate that the particles will migrate along their centreline. Since
the direction of U i of one particle is determined by the sign of the reactivity αj of the
other, the particles can either move towards or depart from each other, depending on
if αj > 0 or < 0, as will be discussed in more details in § 4.2.

4.1. Swimming at low and high reaction rates

As indicated by (4.5), at low reaction rates the velocity of one particle
U1 ∼ (kTC ∞a2/η)α2(a1/R)2 is controlled by the reaction of the other (via α2). This also
suggests that a non-reactive particle (α1 = 0) can be propelled by a stationary sink
(source) and move towards (away from) it. For a pair of ‘sink’ particles at high reaction
rates, however, the motion of one particle is limited by the particle’s own reaction and
inversely proportional to its reaction rate, viz., U1 ∼ (kTC ∞ a2/η)(1/α1) (a1/R)2. As a
particle is in effect self-propelled by the concentration distortion due to the influence
of its nearby partner, the above results can also be explained by simple reflection
mechanisms below.

At low reaction rates, one reactive particle, say, sphere 2, creates a solute cloud of
C∞α2 (a2/r2) around itself. Because this cloud is perturbed by the presence of sphere 1
at r2 =R, sphere 1 will perceive a small concentration change C ′ ∼ C∞α2(a2/R)(a1/R)
from sphere 2, producing an osmotic force on sphere 1 and hence driving sphere
1 at velocity U1 ∼ a1kT C ′/η ∼ (kTC ∞a2/η)α2(a1/R)2. At high reaction rates (only
applicable to sink particles here), the concentration around sphere 2 is C∞(a2/r2) with
C ′ ∼ C∞(a2/R)(a1/R) due to the presence of sphere 1. Since the solute transport is
now controlled by diffusion, the concentration on the surface of sphere 1 due to C ′ is
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Figure 3. (Colour online) Effects of reactive parameter α on drift velocity U of a sink particle
due to osmotic attraction by its twin partner. Because U grows linearly with α for small α but
decays like α−1 for large α, it must exist a maximum in the range of α. The velocity here is
scaled by Upair = (2/3)(kTC ∞a/η)(a/R)2.

C ′
s ∼ jD/ks1 sustained by the diffusion flux jD ∼ DC ′/a1. The effect therefore propels

the particle at velocity U1 ∼ a1 kT C ′
s/η ∼ (kTC ∞a2/η) (1/α1)(a1/R)2.

In the special case where two sink particles are identical, the particle speed at low
reaction rates (small α) is U = (1/3)(kTC ∞a/η)α(a/R)2 ∝ ksa

4 which can be increased
by raising the reaction rate. At high reaction rates (large α), on the other hand,
U = (2/3)(kTC ∞a/η)(1/α)(a/R)2 ∝ k−1

s a2 decreases with the reaction rate. These two
limiting scenarios suggest that there must exist a maximum velocity in the range of α,
as shown in figure 3. This maximum thrust occurs at a moderate α(= 21/2) when the
reaction rate is comparable to the diffusion rate, which can be explained as follows.
While the particles can be propelled with more fuels by increasing the reaction rate,
reactants around the particles could be insufficient to sustain the motion. That is,
the particles could be slowed down by over-consumption of reactants. Thereby, the
maximum thrust can only be realized by reconciling consumption and replenishment
of reactants in the range of moderate reaction rates.

At a constant reaction rate ks , small (large) α means small (large) particles in use.
Since U ∝ a4 at small α and U ∝ a2 at large α, it is possible to use particles in different
sizes in experiments to see which scale the velocity follows and hence to distinguish
whether the drift is controlled by reaction or by diffusion.

4.2. Coulomb-like attraction/repulsion due to inter-particle entropic landscapes

As indicated by (4.5), two sink particles (α > 0) will migrate towards each other,
whereas a source pair (α < 0) will move apart. This pairwise motion looks as if the
particles were attracted towards or repelled from each other, resembling the motion
due to electrostatic interactions. Such Coulomb-like motion is further signified by the
1/R2 attenuation in the particle velocities. As illustrated in figure 4, such motion can
be thought of being driven by an entropic landscape in between the particles. For two
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knis

source sourcesource source

knisecruos

SinkSink

(a)

Source Source

(b)

SinkSource

(c)

Figure 4. (Colour online) Schematic pictures of the motion of two reactive particles. (a)
A pair of sink particles can be attracted towards each other, since the particles experience
relatively lower solute solutions on the interior side of the pair. As illustrated by the profile
of the solute concentration, the situation here is somewhat similar to that of two heavy balls
placed on a soft sheet: one ball can bend the sheet and create a basin around it; placing
another nearby will lead the two to fall onto each other because of deeper sinking of the basin.
(b) Similarly, a pair of source particles will be repelled from each other. (c) For an unlike pair,
both source and sink particles will move in the same direction led by the sink. The curves
depict the corresponding profiles of the solute concentrations.

interacting sink particles, they tend to suck solute molecules around them. Because
the solute concentrations far from the particles must remain higher than those nearby,
an entropic ‘bulge’ must exist in between the particles (figure 4a). As more solutes
can be consumed in the region between the particles, the height of this bulge is lower
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than the bulk level. As a result, the solute concentration around one particle on the
side in the inter-particle region is lower, creating a lower osmotic pressure to draw
the particle towards its partner. The situation here looks more like two heavy balls
placed on a soft sheet – one ball can bend the sheet and create a basin around it;
placing another ball nearby will lead all to fall onto each other because of deeper
sinking of the basin. Similarly, two source particles will be separated by an elevated
energy hill in between, causing them to move apart (figure 4b).

Similar to the method of image charge in electrostatics, an identical reactive pair in
an unbounded fluid can be thought of as twin images with respect to their midplane,
so their motion is equivalent to that of a particle having a large distance above an
impenetrable or reaction-inert plane (provided that hydrodynamic interactions are
negligible). Thus, the motion of twin particles (with a1 = a2 = a and ks1 = ks2) implies
that a sink (source) particle can also self-migrate towards (away from) the plane. In
this case, the particle velocity is still given by (4.5) but with R replaced by 2d, twice
the distance from the particle to the plane.

Now consider the motion of an unlike pair. As the source (sink) particle tends to
move towards (away from) its partner, they all drift in the same direction led by the
sink particle (figure 4c). In this case, whether they can run into together depends on
if the source particle (sphere 1 with −1 <α1 < 0) is fast enough to catch up with the
sink particle (sphere 2 with α2 > 0). Inspecting the velocity ratio of these two particles,
we find

|U1|
|U2| =

ks2

|ks1|

(
1 − 1

2 − |α1|

) (
1 +

1

1 + α2

)
�

ks2

|ks1| . (4.6)

As this velocity ratio never exceeds inverse the corresponding reaction-rate ratio, the
source will never catch up with the sink if the rate of reactants consumed by the
sink is lower than that produced by the source. It is also evident that the faster
consumption rate the sink particle has, the more likely for it to be captured by the
source particle.

Finally, we should emphasize that the particle velocity here attenuates at the
rate of 1/R2, which is slower than 1/R3 in phoretic interaction. In fact, as will be
shown in §§ 6 and 7.3, such a Coulomb-like drift is a generic feature of entropic
swimmers. As the corresponding potential energy decays like 1/R and acts like an
unscreened electrostatic potential, this character imparts ‘long-range’ influence on the
dispersion behaviour of reactive colloids, possibly destabilizing dilute suspensions (by
attraction) or stabilizing concentrated suspensions (by repulsion). This also leads to
our conjecture that sink colloids could undergo collective flocculation, which will also
be discussed later in § 5.1.

4.3. Near-contact motion of two sink particles

For two interacting sink particles with a large separation h(= R − 2a � a), we have
learned from (4.5) that they will move towards each other at the speed increasing at
the rate of h−2 because of steepening in solute concentration gradients. However, the
particles cannot be speeded up indefinitely. This is because when their separation is
decreased, the particles will also experience gradually increasing hydrodynamic drags,
making them slowed down during this mutual attraction process. This implies that
the particle velocity will not vary monotonically with h – a maximum velocity must
exist at a certain particle separation.

To see how the particles are slowed down by their mutual approaching, we consider
the opposite extreme in which the two particles come so close that their separation
becomes much smaller than the particle size (h � a). Here we do not intend to
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solve the problem in detail, though it can be rigorously formulated using matched
asymptotic expansions (Solomentstev, Velegol & Anderson 1997). Instead, we employ
a simple scaling analysis below to elicit the physics for such a near-contact situation.

In the thin gap region, the solute transport is dictated by diffusion across the gap:
∂2C/∂z2 ≈ 0, where z measures the normal distance to the midplane. As the diffusion
rate D∂C/∂z ∼ DC/h is also much faster than the reaction rate ksC (provided that
α = ksa/D is O(1)), the particles look virtually impenetrable, viz., ∂C/∂z ≈ 0, which
admits a uniform concentration, say, C0, across the gap. Outside the gap, however,
solutes can now be consumed by the reaction. This causes the concentration outside
the gap to be lower than that in the gap and hence the osmotic pressure. As a
result, the lower osmotic pressure outside the gap will suck the fluid out, bringing the
particles further closer as required by fluid mass conservation.

Having the above picture in mind, we estimate relevant scales below. As the solute
transport here is essentially controlled by reaction, any non-uniformity of the solute
concentration within the gap must arise from variations in axial diffusion. This
axial diffusion creates a concentration C ′ ∼ αC0(h/a) deviated from C0 and hence an
osmotic pressure �′ ∼ αkTC 0(h/a) for the propulsion. Since this pressure actually
varies laterally over the length scale � ∼ (ha)1/2 and decreases towards the proximate
bulk, its gradient drains the fluid with the lateral velocity V ∼ h2�′/η �. Also because
the fluid mass must be conserved, the particles will squeeze the fluid and head
towards each other with U ∼ (h/�)V . Given the fact that C0 is nearly of an order
of C∞ (More precisely, it can be identified using matched asymptotic techniques that
C0/C∞ ∼ (h/a)

√
2−1, similar to the analogous heat conduction problem considered by

Solomentstev et al. 1997.), the particle velocity can be estimated by

U ∼ akTC ∞α

η

(
h

a

)3

. (4.7)

Hence, in contrast to the h−2 velocity attenuation in the large-separation limit, the
particle velocity in the small-gap limit grows with h3. Hence, a maximum drift velocity
Umax must exist in such a way that solute concentration gradients are steepened by
deceasing h from the large-separation limit and viscous drags are decreased by
increasing h from the thin-gap limit. That is, Umax ∼ akTC ∞α/η can be found at
the crossover distance, h∗ ∼ a, between these two limits. In figure 5 we demonstrate
such a transition by displaying how the particle velocity varies with the inter-particle
distance in both small and large separation limits.

5. Dispersion of reactive colloids
5.1. Flocculation of sink particles

Recall in § 4.2 that two sink particles can migrate towards each other in a Coulomb-
like manner. If such long-range attraction-like motion enables bringing these particles
to a sufficiently short distance within which their natural short-range attraction forces
are strong, they might eventually collide and even be bound to each other. In other
words, a suspension of sink particles might be susceptible to flocculation. In this
section, we will investigate this reaction-induced flocculation and find the conditions
under which the flocculation can occur.

From a kinetic point of view, the flocculation can only occur if the inter-particle
attraction is not significantly disrupted by Brownian randomization between these
colloids. That is, the flocculation must occur sufficiently fast in such a way that
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h/a

Upair

1

~(h/a)3

h << a

h >> a

2a

~(h/a)–2

Figure 5. An illustration of how the pairwise velocity Upair varies with the particle
separation-to-size ratio h/a.

the particle collision time τU ∼ R/U is shorter than the macroscopic diffusion time
τR ∼ R2/Deff over the particle separation R. Alternatively, Brownian displacements of
the particles � ∼ (Deff τU )1/2 during τU must be no larger than R. Here Deff is the
effective particle diffusivity resulted from enhancement by reaction and is given by
(Golestanian et al. 2007; Howse et al. 2007)

Deff = Dp + U 2τa/6, (5.1)

where Dp ∼ kT /ηa is the native particle diffusivity and τa ∼ a2/Dp is the rotational
diffusion time over the particle size. As such, there are three time scales involved: the
collision time τU , the macroscopic diffusion time τR and the microscopic diffusion time
τa . The condition τR > τU entails the macroscopic Peclet number, the ratio between
these two time scales, to be larger than unity:

PeR =
τR

τU

=
UR

Deff

> 1. (5.2)

Because τR ∼ R2/Deff and Deff is determined by how fast the particle drift U is
compared to the rotational diffusion speed a/τa ∼ Dp/a, we also have to invoke the
microscopic Peclet number to measure the ratio between these two velocity scales:

Pea =
Ua

Dp

. (5.3)

Below we will use (5.2) to establish the criterion for realizing the flocculation in both
Pea � 1 and Pea � 1 limits.

For Pea � 1, the particles are Brownian-like with Deff ∼ Dp from (5.1). Hence, (5.2)
becomes

PeR =
τR

τU

=
UR

Dp

> 1 for Pea � 1. (5.4)

Making use of Dp ∼ kT /ηa and U ∼ γ akTC ∞(a/R)2
/
η with γ =α/((1 + α)(2 + α))

from (4.5), (5.4) can be rewritten as γ a3C∞(a/R) > 1, namely

φ > (C∞a3γ )−3, (5.5)
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where φ ∼ (a/R)3 is the volume fraction of the particles. Equation (5.5) is the condition
for realizing the flocculation of Brownian reactive particles (Pea � 1). It provides the
minimum particle fraction for an onset of the flocculation. It is also evident that
the larger particle size and the higher reactant concentration, the more inclination to
the flocculation.

At the other extreme Pea � 1, the particles’ rotational diffusion is suppressed. Since
the particle drift can now be enhanced by reaction, we have Deff ∼ U 2τa from (5.1).
Equation (5.2) then becomes

PeR =
UR

Deff

∼ R

Uτa

∼ τU

τa

> 1 forPea � 1. (5.6)

This leads the collision time to be longer than the microscopic diffusion time.
Substituting τU ∼ R/U ∼ η/γ kTC ∞φ and τa ∼ ηa3/kT into (5.6), we find that
flocculation can occur to non-Brownian reactive particles (Pea � 1) if the following
condition is satisfied:

φ < (C∞a3γ )−1. (5.7)

At the particle concentration beyond the critical value above, although the
particle drift can be promoted by increasing the particle fraction (because
U ∼ γ akTC ∞φ2/3

/
η), it will be soon outweighed by its own drift-enhanced Brownian

motion, thereby keeping the particles from aggregation.
Equations (5.4) and (5.6) suggest that for arbitrary Pea , the criterion for realizing

flocculation of sink particles is that the characteristic collision time must be within
the range between the macroscopic and microscopic particle diffusion times:

τa < τU < τR, (5.8)

wherein τa ∼ ηa3/kT , τU ∼ φ−1η/γ kTC ∞ and τR ∼ φ−2/3ηa3/kT for Pea � 1. This
criterion therefore furnishes conditions (5.5) and (5.7) combined:

(C∞a3γ )−3 < φ < (C∞a3γ )−1, (5.9)

providing the range of the particle volume fraction within which the flocculation can
occur. Also, because (5.9) is only applicable to dilute suspensions φ � 1, this requires

C∞a3γ � 1. (5.10)

Thereby, (5.10) suggests that for micrometre-sized particles, their flocculation requires
the addition of reactive reagents at C∞ � 10−9M, which can be realized in most of
the common systems.

The reasons for the existence of such a window of the particle volume fraction can
be understood as follows. On the one hand, too concentrated particles can undergo
intense reaction-enhanced Brownian randomization and hence inhibit clustering
driven by mutual attraction between the particles. If the suspension is too dilute,
however, the movement of the particles will be too sluggish to cause aggregation,
since solute concentration gradients (and hence osmotic forces) between far apart
particles are insufficient to drive the particles. Figure 6 is a map that summarizes
how the time scales discussed above depend on the particle volume fraction. It
depicts how the particle dispersion behaviour is determined by these time scales. The
susceptibility to the flocculation discussed by far does not include short-range van
der Waals and electrostatic interactions. How these effects mediate the stability of
reactive suspensions will be discussed next.
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~ φ−2/3
τR
τa

~ φ−1 (γa3 C∞)–1τU
τa

1

τ/
τ a

(γa3 C∞)–3 (γa3 C∞)–1 φ

Figure 6. (Colour online) Time scales involved in affecting the dispersion of a suspension of
sink colloids: the collision time τU , the macroscopic diffusion time τR , and the microscopic
diffusion time τa . These time scales have different dependences on the particle volume fraction
φ. Flocculation can occur when τa < τU < τR in the range of φ, as indicated by the shaded
area.

5.2. Stability of reactive suspensions

As shown earlier, reactive colloids can be self-attracted or repelled in a Coulomb-like
manner due to reaction-induced osmotic effects. An important implication from this
long-range feature is that reactive colloids could become more agglomerative or more
dispersive than inert ones. In the preceding subsection, we have shown that sink-like
colloids could be inclined to flocculation due to this mechanism. And yet, since actual
processes further involve short-range van der Waals and electrostatic forces that could
encourage or discourage attraction/repulsion between particles, the ultimate fate of
reactive colloids seems to rely on how long-range osmotic forces compete with these
short-range colloidal forces. Hence, in this part of discussion, we modify the classical
DLVO theory by including the osmotic effects to examine the stability of reactive
suspensions.

For a pair of reactive colloids of size a and separation R(>2a), the inter-particle
potential Ψ consists of three parts: the van der Waals attraction potential Ψvdw (<0)
(Russel, Saville & Schowalter 1989), the pairwise Yukawa potential Ψel(>0) accounting
for the screened Coulomb repulsion (Verwey & Overbeek 1948) and the osmotic
attraction/repulsion potential Ψrxn induced by reaction:

Ψ = Ψvdw + Ψel + Ψrxn = −Ψ 0
vdwH (R/a) + Ψ 0

el exp (−κR)
( a

R

)
+ Ψ 0

rxn

( a

R

)
. (5.11)

In the van der Waals part, Ψ 0
vdw = 16AH/9 with AH being the Hamaker constant

having magnitude in the thermal energy kT, and H (R/a) = (3/32)[2(a/R)2 + 2a2/(R2−
4a2) + ln(1 − 4(a/R)2)] (Russel et al. 1989). Since the contributions from the
other two parts are merely accounted at sufficiently large R, for consistency
we take H (R/a) ≈ (a/R)6 in the large-R form. In the electrostatic part, Ψ 0

el =
(q2/εma) exp(2κa)/(1 + κa)2 with q being the charge of the colloids, κ−1 the Debye
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screening length and εm the dielectric constant of the solution. In the osmotic part,
Ψ 0

rxn has kTC ∞a3γ in magnitude and can be either >0 for repulsion between source
particles, or <0 for attraction between sink particles.

If the colloids are source-like, they tend to keep apart from each other because
Ψrxn > 0. Since this tendency will be enhanced by electrostatic repulsion but mitigated
by van der Waals attraction, we only focus on the latter’s effects on the stability
of the system at high ionic strengths (κ → ∞). Inspecting (5.11) in the κ → ∞
limit, we find that Ψ admits a maximum Ψmax = 5(χ/6)6/5Ψ 0

vdw at Rmax = a(6/χ)1/5,
where χ ≡ Ψ 0

rxn

/
Ψ 0

vdw measures the relative magnitude of the osmotic repulsion with
respect to van der Waals attraction. Therefore, the maximum can only exist if
Rmax/a = (6/χ)1/5 > 2 or χ < χ∗ = 3/16 under which Ψmax/Ψ 0

vdw < 5/64. It follows
that if Ψ 0

rxn >χ∗Ψ 0
vdw =AH/3, Ψ will decrease monotonically in R – van der Waals

attraction is too weak to oppose the osmotic repulsion. Hence, the colloids will
always remain separated. On the other hand, if Ψ 0

rxn <χ∗Ψ 0
vdw , the colloids would

have an opportunity to be gathered by their van der Waals attraction which is now
strong enough to overcome the osmotic repulsion. In figure 7(a), we plot Ψ/Ψ 0

vdw as a
function of R/a for various values of χ . The result shows that the repulsion is indeed
suppressed by van der Waals attraction as χ is decreased, and the existence of energy
maxima for χ < 0.2, as described above. However, since the energy barrier Ψmax for
this dispersion–aggregation transition is (5/64)Ψ 0

vdw = (5/36)AH and is smaller than
the thermal energy kT, we surmise that aggregation, if it occurred, would hardly be
maintained due to thermal fluctuations.

As for sink particles, they tend to aggregate due to the osmotic attraction with
Ψrxn < 0. As this tendency, with or without van der Waals attraction, can only
be resisted by electrostatic repulsion, we set Ψ 0

vdw = 0 in (5.11) to see how the
electrostatic repulsion alone competes with the osmotic attraction. It is clear that
there is no way to stop the aggregation in the limit of κ−1 → 0 at which Ψel

vanishes completely because of the Debye screening. In the limit of κ−1 → ∞, the
aggregation can simply be prevented by electrostatic repulsion with q2/εma >|Ψ 0

rxn |.
For finite κ−1, an equilibrium can be established between the osmotic attraction
and electrostatic repulsion, creating an energy well Ψmin at R = Rmin . Here Rmin

is determined by Λ = g(R) from dΨ/dR = 0, where g(R) ≡ exp(κR)/(κR +1) and
Λ ≡ Ψ 0

el

/
|Ψ 0

rxn | measures the strength of electrostatic repulsion relative to the osmotic
attraction. Since g(R) increases monotonically in R(>2a), an equilibrium (i.e. energy
minimum) can only exist if Λ > Λ∗ = g(2a) = exp(2κa)/(2κa +1). That is, one requires
q2/εma >|Ψ 0

rxn |(κa +1)2/(2κa +1) to defeat the attraction for keeping the colloids
from aggregation. Figure 7(b) portrays the distributions of Ψ (R) for various values
of Λ when κa =0.8. The result indicates that the osmotic attraction is diminished
by electrostatic repulsion as Λ is increased, and that an energy minimum begins to
emerge when Λ > Λ∗ ≈ 2, confirming the features described above.

6. Self-driven particle motion due to dipolar distortion in potential energy
In § 3, we have demonstrated the self-migration of a slightly eccentric reactive

particle. We have also shown in § 4 that two reactive colloids can self-approach
or move apart from each other. These self-driven motions, because of asymmetries
in the geometries, are driven by osmotic forces arising from non-uniform solute
concentrations around particles. In fact, this kind of locomotion is not limited by
that powered by reaction. A similar motion can also be realized by other means
such as temperature or electrical potential. In this section, we do not intend to make
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Figure 7. Pair potential energy landscapes for reactive colloids in the presence of van der
Waals and electrostatic effects. (a) Effects of van der Waals attraction on potential distributions
for source particles (Ψ 0

rxn > 0). The parameter χ = Ψ 0
rxn/Ψ

0
vdwmeasures the relative magnitude of

the reaction-induced osmotic repulsion with respect to van der Waals attraction. The osmotic
repulsion is suppressed by van der Waals attraction as χ is decreased. For χ <χ∗ ≈ 0.2, energy
maxima start to appear, as indicated by circles. Inset is a larger scale view on how the potential
energy behaves when χ varies from small to large values. (b) Effects of electrostatic repulsion
(with κa = 0.8) on potential distributions for sink particles (Ψ 0

rxn < 0). Λ= Ψ 0
el/|Ψ 0

rxn | measures
the strength of electrostatic repulsion relative to the reaction-induced osmotic attraction. The
osmotic attraction is diminished by electrostatic repulsion as Λ is increased. For Λ>Λ∗ ≈ 2,
energy minima (equilibria) can exist, as indicated by circles. Inset is a larger scale view on how
the potential energy behaves when Λ varies from small to large values.

formal mathematical generalization. Instead, we develop a scaling theory to explain
self-driven motion of various systems in a unified view. As will be seen below, this
theory, though qualitative, provides a lucid way to reveal the essences of self-driven
phenomena. As we will also show, the present autonomous particle motion is actually
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a new class of self-driven phenomena that are driven by dipolar distortions in potential
energy. We start with the motion of two interacting particles. We then extend the
analysis to composite bodies such as dumbbells and Janus particles.

6.1. Motion of two interacting particles

Consider the motion of two spheres (labelled by 1 and 2) separated by a large distance
R compared to their sizes a1 and a2. For particle i, its velocity U i can be expressed
as U i = Mi · Fi with Mi being the mobility tensor and Fi the net driving force on
the particle. Here, the mobility tensor, because of the dumbbell-like geometry, is of
the form Mi =M

(i)
// pi pi + M

(i)
⊥ (I − pi pi), where M

(i)
// and M

(i)
⊥ denote the respective

mobility coefficients along the centreline direction pi (= Ri/R pointing away from
the particle centre) and in the direction perpendicular to the centreline. Because the
system configuration is axisymmetric with respect to the centreline, the reversibility
of Stokes flow stipulates that the two particles will not rotate around, suggesting that
they must be torque-free, i.e. Ri × Fi = 0. Hence, the driving forces Fi will only be
along the centreline and hence the particle velocities U i .

Suppose that either particle possesses a monopole-like potential Φi =(ai/ri)Φ̃i ,
where ri = |xi | is the distance measured from the centre of particle i, and Φ̃i is the
corresponding potential scale with >0 (<0) denoting a source (sink). Clearly, each
particle alone cannot be propelled by its own potential because of the isotropic
potential energy distribution. As one particle can feel the potential field generated by
its partner, a dipolar potential energy variation can be created around it and hence
in turn produce a force to set it in motion. Therefore, the force on sphere i scales as
the potential gradient generated by sphere j, giving

Fi ∼ −∇ Φj |xj =Rj
= − pi

R2
Φ̃jaj , (6.1)

Note that this force can only act along the centreline because of torque free. Also, we
use the fact that pj = − pi to derive the result. Substitution (6.1) into the velocity–force
relationship U i = Mi · Fi yields

U i ∼ −M
(i)
// pi

Φ̃j aj

R2
∼ − Φ̃j

ηR2
pi . (6.2)

Here M
(i)
// ∼ 1/(ηai) (its dependence on R can be negligible because of large R assumed

here) and the contribution from the M
(i)
⊥ term vanishes because M

(i)
⊥ (I − pi pi) · Fi =

− M
(i)
⊥ (I − pi pi) · piΦ̃j aj/R

2 is identically zero. Equation (6.2) indicates that how one
particle moves depends upon if its partner is a sink or source – it will be attracted
towards (repelled by) its sink (source) partner with Φ̃i <0 (>0). Similar to (4.5), (6.2)
also implies the exactly same Coulomb-like feature: two sink (source) particles having
Φ̃i <0 (>0) will move towards (apart from) each other.

6.2. Motion of dumbbells

The above analysis can be extended to the motion of a dumbbell that comprises two
spheres having a thin, rigid connector in between, as shown in figure 8. Since the net
driving force F = F1 + F2 generally does not vanish, the dumbbell must migrate along
F. Neglecting the drag of the connector, the velocity U of the dumbbell can be found
by balancing F with the total drag force on the two spheres via (M−1

1 + M−1
2 ) · U = F,

giving

U ∼ F1 + F2

η(a1 + a2)
∼ (Φ̃1a1 − Φ̃2a2)

ηR2(a1 + a2)
p1. (6.3)
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(a)

Sink

SourceSource

(b)

SinkSource

(c)

Sink

Figure 8. A schematic illustration of the self-motion of dumbbells. In (a), the dumbbell is
made by two sink spheres which tend to move towards each other by inward forces. In (b),
the dumbbell consists of two source spheres with outward forces that tend to pull them apart.
In (c), the dumbbell constitutes a pair of sink and source spheres. For the sink (source) end,
the exerted inter-particle force is pointed towards (away from) it. The inter-particle forces are
indicated by white arrows. The motion directions of these dumbbells are indicated by black
arrows.

Here we have used (6.1) together with p2 = − p1 to derive the result. Hence, the
dumbbell will be powered by the weighted difference between Φ̃1 and Φ̃2, (Φ̃1a1 −
Φ̃2a2)/(a1 + a2). The direction of the dumbbell’s motion is determined by the sphere
having a larger force. If the dumbbell is made by two sink spheres (with Φ̃1 < 0 and
Φ̃2 < 0), F(1) and F(2) will act inwards (see (6.1)). Thereby, the net force is towards
the sphere having a smaller |Φ̃a| and so the direction of this sink-like dumbbell
(figure 8a). Similarly, the motion of a source-like dumbbell (with Φ̃1 > 0 and Φ̃2 > 0)
is led by the sphere with a larger Φ̃a (figure 8b). For a dumbbell made by an unlike
pair, since both F(1) and F(2) act in the same direction from the source towards the
sink, the motion is always led by the sink sphere (figure 8c).

6.3. Motion of asymmetric shaped objects or Janus particles

In this section, we further apply the above dumbbell analysis to explain the motion of
an asymmetric shaped object or Janus-like particle (figure 9). In this case, we model
a particle as a composite body of two spheres in contact or partially merged. In
principle, one might have to include multipole contributions in the potential energy
distribution to capture strong interactions between two touched spheres. As we have
learned from the previous subsection that it is the dipolar contribution from the
system orientation important to the motion, the use of the results using point-like
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≈

(b)

(a)

≈

Figure 9. Approximate models for explaining the self-driven motion of an egg-shaped colloid
(a) and that of a Janus particle (b). In (a), the colloid can be treated like a composite body
made by two touched spheres of different sizes. In (b), the particle can be viewed as an object
combining a pair of source and sink spheres in equal size.

approach in § 6.2 should, at least qualitatively, be able to reveal the features of the
motion.

We first analyse the motion of a particle in asymmetric shape. For simplicity,
we assume that this particle is egg-like. In this case, we can treat this particle
as a composite body of two touched spheres in unequal sizes (figure 9a). Letting
Φ̃1 = Φ̃2 ≡ Φ̃ and R =2ā = a1 + a2 in (6.3), we find that the velocity of the particle
scales as

U ∼ Φ̃(a1 − a2)

ηā3
p1. (6.4)

As a result, if this egg-like particle is of sink (source) type with Φ̃ <0 (>0), its motion
will be towards the end with the smaller (larger) radius, as is shown in the dumbbell
model. This result also provides a simpler explanation for the motion behaviour of a
nearly spherical reactive particle shown in § 3.

A similar analysis can also be applied to the motion of a Janus-like particle which
can be approximately treated as an object combining a pair of source and sink spheres
in equal size (figure 9b). Letting a1 = a2 = a and R = 2ā = a1 + a2 in (6.3), we find

U ∼ (Φ̃1 − Φ̃2)

ηa2
p1. (6.5)

Hence, the particle will migrate with the sink half being its front side.

7. Discussion
7.1. Validity of the present analysis

A few points concerning the validity of the present analysis are worth mentioning
below. First of all, since we assume that the solute transport is governed by diffusion,
our analysis holds if the convection induced by the particle drift is sufficiently weak
compared to diffusion. That is, the Peclet number, the ratio of diffusion to convection
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time scales, needs to be small,

Pe =
Ua

D
=

δα kTC ∞a2

ηD
� 1, (7.1)

where the velocity scale U = δαkTC ∞a/η with δ the small parameter (e.g. amplitude
of surface undulation ε or (a/R)2) measuring the degree of anisotropy. Assume that
the dimensionless reactivity α is of an order of unity and δ ∼ 10−1. With typical
values a ∼ 1 µm, T ∼ 300 K, η ∼ 10−2 poise, and D ∼ 10−5 cm2s−1, our analysis is only
applicable to systems containing a trace amount of reactive species at concentration
C∞ below 10−5 M. For Pe ∼ 10−1 or C∞ ∼ 10−6 M, the particle drift will be an order of
U ∼ 10 µm s−1. For larger solutes such as macromolecules or nanosized nuclei whose
diffusion coefficients are much smaller (10−10 to 10−7cm2 s−1), to attain a similar drift
velocity, the required solute concentration will be of a few orders of magnitude higher,
i.e. C∞ ∼ 10−4 to 10−1 M.

However, if the particle drift is so fast that diffusion no longer dominates the
transport, solutes will be advected by the fluid as the particle migrates. Because such
advection can shrink the solute-depletion region on the particle’s front and reduce
the solute concentration in the trailing wake on the particle’s rear (Squires & Brady
2005; Córdova-Figueroa & Brady 2008), the effect tends to reduce osmotic forces
and thereby limits the speed of the particle. In fact, the particle velocity cannot grow
indefinitely by raising the supply of reactants, since it never exceeds the diffusive
velocity of reactants D/a (Córdova-Figueroa & Brady 2008).

Additionally, the transport of reactive solutes here is analysed on the ‘quasi-steady’
basis. This entails that the particle size does not change appreciably during its
journey in which the particle is in fact shrinking or growing because of reaction.
To see how fast the particle changes its size, we inspect solute balance over the
particle: 4πa2ρsda/dt = 4πa2D n · ∇ C|r = a = 4πa2ksC|r = a , where ρs is the density of
solute molecule inside the particle. Substitution of (3.1) into the above equation yields
the following equation governing how the particle size changes over time:(

1 +
ksa

D

)
da

dt
=

ksC∞

ρs

. (7.2)

Hence, the change in the particle size scales as a ∼ kst(1 + ksa/D)−1C∞/ρs which
must be small compared to a for ensuring the present quasi-steady approach. Because
the characteristic time scale is the particle translation time t ∼ L/U across the
macroscopic length scale L (e.g. inter-particle distance or the size of the cell), a
small change in the particle size during this period provides the condition under
which the quasi-steady approach holds

a

a
∼

(
ks

a

) (
L

U

)(
1 +

ksa

D

)−1
C∞

ρs

� 1. (7.3)

In the diffusion limit ksa/D � 1 (only for sink particles), a/a ∼ (D/a2)(L/U )C∞/ρs .
In the reaction limit ksa/D � 1, a/a ∼ (ks/a)(L/U )C∞/ρs . This approach, however,
breaks down if the translation time L/U is too long compared to the diffusion time
a2/D (in the diffusion limit) or to the reaction time a/ks (in the reaction limit).
This is because the longer journey a particle experiences, the more apparent growth
or shrinkage will result. In this case, a diffusive boundary layer grows like (Dt)1/2

around the particle, which must be taken into account in the transient solute transport.
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Nevertheless, the motion of reactive particles can still be thought at steady state in the
low-Reynolds-numbers motion considered here, since any acceleration/deceleration
of the particles will be dissipated by prevailing viscous effects and relaxed very
quickly (within time a2ρ/η ∼ 10−6 s for micrometre-sized particles in a fluid of density
ρ ∼ 1 g cm−3).

7.2. Screening length and collective flocculation in a suspension of sink particles

In § 5.1, we have shown that a suspension of sink particles could undergo flocculation
due to Coulomb-like attraction between these particles. If such flocculation indeed
occurred, there could be clusters growing with time due to local accumulation of the
particles. On the other hand, as the particles continue building up in clusters, particle
concentration gradients are also developed between the clusters and the bulk solution,
creating diffusion to oppose the clustering. Therefore, how strong this self-aggregation
process depends upon the competition between the clustering and diffusion.

To quantify how strong the clustering is, we consider a suspension of sink particles of
size a. Suppose that the clustering is initiated by a certain test particle, called ‘nucleus’,
surrounded by a cloud of suspended particles of concentration ρ. Because of the
reaction-induced attraction, there is an injection flux of the rate ρU ∼ ρΦ̃/η r2 towards
the nucleus, where the injection speed U (with Φ̃ < 0) can be estimated by (6.2) and r is
the distance to the nucleus. At steady state, this convective flux is counterbalanced by
the diffusive flux −Dp∂ρ/∂r (with Dp ∼ kT /ηa being the diffusivity of the particles),
establishing the Poisson–Boltzmann distribution for ρ(r � a):

ρ ∼ ρ0 exp(λ/r), (7.4)

where ρ0 is the particle concentration in the bulk and λ represents the screening
length

λ∼
∣∣Φ̃∣∣ /Dpη ∼

∣∣Φ̃∣∣ a/kT . (7.5)

As ρ is much larger than ρ0 for r < λ and decays very rapidly beyond λ, how strong
the clustering is can be measured by the size of λ – the larger λ, the stronger the
clustering. That is, λ is the characteristic length scale within which particle attraction
is important. For r > λ, the particle distribution is not affected by the attraction and
remains the same as that in the bulk. In other words, the attraction is ‘screened’.
This screening effect is attributed to zero net particle flux arising from the local
Poisson–Boltzmann equilibrium established by a swarm of attracted particles around
a nucleus – it tends to prevent further uptake of particles from the bulk towards the
nucleus. The phenomenon is similar to the Debye screening on a charged object by its
surrounding counterion cloud. During the clustering, the inward particle flux exceeds
the outward diffusion flux until reaching the equilibrium at which particles cease
to build up. As this injection process can only occur within λ but not outside λ, λ
therefore measures the size of the zone within which particles can undergo collective
attraction. The similar self-aggregation and screening length can also be found in
thermocapillary nucleation of microdroplets (Karpov & Oxtoby 1997).

For a suspension of sink particles considered here, Φ̃ ∼ a3kTC ∞γ taken from the
two-particle problem in § 4. Combining (7.5) with the diluteness condition γ a3C∞ � 1
in (5.10), we find λ� a, suggesting that inter-particle attraction is virtually unscreened.
Therefore, if the particle concentration ρ0 ∼ φ/a3 (with φ being the particle volume
fraction) were so dense that the inter-particle distance R0 ∼ ρ

−1/3
0 ∼ a/φ1/3 becomes

shorter than λ, the range of the clustering would become prohibitively long. This
explains why a suspension of sink particles is susceptible to collective flocculation, as
is discussed in § 5.1. The condition for flocculation a/φ1/3 < λ also agrees with (5.5).
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7.3. Comparison to pair propulsion by phoretic interactions

In § 6, we have developed a scaling theory to explain the pairwise particle motion
due to inter-particle interactions. It might be instructive to make a comparison with
that due to phoretic interactions. In phoretic motion, since the screening length is
typically much smaller than the particle size, potential variations are confined in the
close vicinity of the particle surface. This effect results in an effective slip velocity of
the surrounding fluid on the particle surface: us = b(I − nn) · ∇ Φ , with Φ being the
driving potential and b the slip coefficient. It can be shown, with the aid of Lorentz
reciprocal theorem (Happel & Brenner 1983), that a phoretic particle actually moves
at the average slip velocity over the surface (Anderson 1985):

Uphoretic = −bS−1
p

∫
(I − nn) · ∇ Φ dA, (7.6)

where Sp is the surface area of the particle. For spherical phoretic particles having
uniform surface properties, similar to our two-particle problem they can also be self-
driven by surface reactions (Golestanian et al. 2007) with potential variations created
by particle interactions. In contrast to (6.2) for entropic swimmers, it is the ‘surface
gradient’ of the potential, (I − nn) · ∇ Φ , driving phoretic motion. To generate a non-
zero Uphoretic , ∇ Φ must be even in n and hence require at least a ‘quadrupole’ field
∇ Φ ∼ (I − 3xxr−2)/r3 to set off the motion, as opposed to dipolar fields in entropic
swimmers, where r is the inter-particle distance. Thereby, the phoretic velocity Uphoretic

decays at the rate of r−3 faster than r−2 in entropic swimmers. In other words,
the pair propulsion by entropic interactions is more efficient than that by phoretic
interactions. In the latter, one would require more concentrated particles to render
greater potential gradients for setting them in motion.

In analogy to thin and thick Debye layer limits in the context of electrophoresis,
it can be thought that the present entropic swimming works in the ‘unscreened’ limit
(see § 7.2), whereas phoretic swimming does in the ‘screened’ limit. Since the screening
length measures the effective range of the propulsion force and is determined by the
natures of solutes and particles, reactive particles in different solutions might display
distinct motion and dispersion behaviours.

8. Concluding remarks
In conclusion, we have analysed the motion of reactive colloids and shown that they

can be propelled by asymmetric osmotic forces generated by their own. The motion
can occur due to asymmetry in the particle shape or to the presence of neighbouring
particles. In the former, we find that a sink (source) particle can move with its
sharp (blunt) end. In the latter, a pair of sink (source) particles can move towards
(apart from) each other, resembling Coulomb-like attraction (repulsion). When two
particles are nearly in touch, however, we show that the particle velocity will grow
cubically with their separation. The opposite trends of the particle drift in small and
large separation limits stipulate that the maximum thrust must exist at the crossover
between these two limits in such a way that driving osmotic forces are enhanced
by shortening the inter-particle distance while hydrodynamic drags are reduced by
increasing the distance.

In light of the Coulomb-like nature of pair propulsion, we find that collective
flocculation could likely occur to sink particles due to unscreened osmotic attraction
(see § 5). Whether the flocculation can occur depends on three time scales: the
collision time between two self-attracting particles, the diffusion time over the particle
separation and the rotational diffusion time of the particles. Inspecting these time
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scales, we can establish the criterion for an occurrence of the flocculation. Since
Brownian randomization can be enhanced by reaction at high particle concentrations
whereas osmotic forces become too sluggish to drive particles at low particle
concentrations, we arrive at the conclusion that the flocculation can only occur in a
certain range of the particle volume fraction, as is revealed by our scaling analysis.

The stability of reactive suspensions is also discussed in the modified DLVO
framework and seems to be determined by the competition between long-range
reaction-induced osmotic effects, short-range van der Waals attraction and Debye
electrostatic repulsion.

We have also developed a scaling theory to elucidate the features of various self-
driven motions such as two interacting particles, composite bodies and Janus particles.
All are driven by dipolar distortions in potential energy. For the self-motion due to
particle interactions, it admits R−2 decay in particle velocities and hence is more
efficient than that due to phoretic interactions in which particles velocities vary as
R−3, where R is the inter-particle distance.

Our study might shed some light on other self-driven phenomena such as coarsening
of microdrops (Tanaka 1996) and phase separation in nematic liquid crystals (Thakur
et al. 2006). This is because in these phenomena coalescence of small nuclei and
their growth into larger clusters are commonly involved and in essence resemble the
flocculation of reactive colloids discussed in this work. It is also possible to incorporate
our results into kinetic theories for describing evolution of microstructures in various
processes such as heterogeneous nucleation, formation of nanocrystals, clustering in
microemulsion and self-organization of anisotropic materials.

This work was supported by the National Science Council of Taiwan under Grant
No. NSC 97-2628-E-006-001-MY3.
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