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In this article, we investigate theoretically electro-osmotic flow set up by charged strips on an otherwise uncharged
surface. Starting with a single-strip problem we demonstrate that for simple polynomial surface charge distributions
several basic solutions can be derived in closed forms constituted by the analogous idea-flow solutions, which provide
a more lucid way of revealing the flow features. These solutions reveal two types of flow topology: simple draining-
in/pumping-out streaming and a pair of microvortices for symmetric and antisymmetric surface charge distributions,
respectively. For an arbitrary surface charge distribution, more complicated flow structures can be found by the
superposition of these basic solutions. We further extend the analysis to two uniformly charged strips and show how
the flow characteristics vary with the strips’ dimensions and surface zeta potentials. The far-field velocity behavior
is also asymptotically identified and indicates that the hydrodynamic nature of the flow is typically long-range. An
application to particle trapping with electro-osmotic vortices is also investigated theoretically for the first time. We
show that in collaboration with short-range attraction effects the trapping can be facilitated by symmetric vortices
with a converging stagnation point, but not by asymmetric vortices.

I. Introduction

The recent advent of micro/nanotechnology has imparted
renewed strategies in patterning or creating structures on small
scales. This has also triggered growing demands in parallel
processing and automation in an integrated, miniaturized device
under the theme of “lab on a chip” or “total microanalysis system”
(µTAS).1 Because a device often involves a variety of operations,
the ability to precisely control and manipulate underlying transport
processes becomes the key to fulfilling specific functions of the
device. Although much progress has been made toward this aim,
electrokinetic actuation provides a promising means in microf-
luidic applications because not only can operations be carried
out on an electrode-embedded portable platform without moving
parts but also its unique transport features offer a diversity of
manipulation capacities.2-4

The most common way to drive fluids using electrokinetic
effects is through electro-osmotic flow (EOF), which arises from
the movement of mobile charge clouds within thin electric double
layers (10-100 nm) adjacent to a charged surface under the
action of an applied field. Because most of the viscous dissipation
occurs within the double layers, EOF in a macroscopic view acts
like a slip flow with the characteristic Smoluchowski velocity5

U)-
ε�E|

η
(1)

where ε and η denote the permittivity and viscosity of the working
electrolyte, respectively, � is the surface zeta potential across the
double layer, and E| is the applied field parallel to the surface.
The minus sign here is attributed to the fact that it is the movement

of the double-layer counterions that is responsible for the fluid
motion.

Because eq 1 is independent of the macroscopic length scale,
EOF in a microchannel virtually looks like a plug flow. Because
this character can eliminate Taylor dispersion commonly
encountered in pressure-driven flow, EOF is widely used in
conveying analytes or the separation of charged species with
electric fields.6 Moreover, the flow resistance now goes like d-2

and hence becomes much smaller than pressure-driven flow whose
resistance is proportional to d-4, where d is the hydraulic radius.
Also, because much higher electric fields can be rendered at
small scales, EOF is more efficient at transporting samples in
microdevices than conventional pressure forcing.

While EOF is advantageous in driving fluids on the microscale
(despite possible joule heating or bubble problems), pure EOF
(in the absence of pressure gradients) on uniformly charged
surfaces, however, does not permit vortices or closed streamlines
because of its irrotational flow nature. In addition, it often suffers
mixing deficiencies or lacks the ability to manipulate the fluid
motion. Pure EOF is also less desirable for trapping suspended
particles or concentrate dilute samples because it cannot provide
velocity gradients needed for these processes.

One remedy for these shortcomings is to create nonuniform
EOF by patterning charge on surfaces. Because of the breakdown
of the electrostatics-hydrodynamics similitude,7 the fluid motion
now becomes rotational and hence can render the nonzero vorticity
needed to engineer the flow.8,9 Nonuniform surface charge can
occur on a number of occasions, for instance, due to surface
defects10 or the adsorption of foreign particles on surfaces.11 It
can also be caused by concentration/charge polarization induced
by dc12 or ac fields.13 The phenomenon could be further mediated
by Faradaic reactions14 or electrothermal effects.15,16 In all of
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these cases, the zeta potential of a surface is not constant and
often varies with position. Because a practical microdevice often
comprises different surfaces bearing distinct charges, the resulting
EOF could exhibit a variety of features depending on the spatial
variations of the surface zeta potentials and the interactions
between local EOFs on different charged surfaces.

Motivated by the above, it is necessary to understand how an
EOF behaves with various surface charge distributions or different
arrangements of charged patterns. There have been a large number
of studies on this subject, including analytical and numerical
investigations on EOFs in various channel geometries with
patterned surface charges or nonuniform zeta potential distribu-
tions10,17-24 and their applications to solute transport pro-
cesses.25,26 While some physics and features have been revealed
previously, we feel the need to seek a more detailed and
fundamental understanding of nonuniformly charged EOF. In
this work, we begin with the simplest scenario: an EOF set up
by a charged strip on an otherwise uncharged surface in a dc
electric field. As we will demonstrated in section II by expressing
the surface charge distribution in a simple polynomial form, we
can obtain an analytical solution for the flow field from which
the underlying physics can be more directly revealed and
identified. This approach also provides a systematic framework
for solving a 2D EOF with an arbitrary charge distribution or
pattern. In section III, we study the flow on two charged strips
by constructing the solution via a superposition of those involved
in single-strip problems, which enables us to decode complex
flow interactions. An application using such a flow for particle
trapping is illustrated in section IV. The article is concluded in
section V.

II. EOF on a Single Charged Strip

II.A. Problem Formulation. Although practical EOFs occur
in 3D microchannels, here we focus on a 2D EOF on a charged
surface in an unbounded electrolyte solution. This approach
enables us to elicit the genuine features of the flow without being
complicated by the effects of proximate boundaries.

The flow is driven by an electric field E parallel to the surface
and is set up by a finite charged strip of width 2a, outside of
which there is no charge. See Figure 1. In the case in which the
surface region outside the strip is uniformly charged, the effect
is simply equivalent to that obtained by adding an EOF field
created by a uniformly charged surface. Therefore, it suffices to
examine the present problem. To nondimensionalize the problem,
we scale lengths, fluid velocity, and pressure by a, U0 ≡ ε� 0E/η,
and ηU0/a, respectively, where �0 is the amplitude of the zeta
potential of the strip. Let p denote the pressure and v ≡ (u, V)
denote the velocity field with u and V being respective velocity
components in the horizontal (x) and vertical (y) directions. In
the dimensionless form, the fluid motion is governed by the
Stokes equations:

∇ 2v ) ∇ p, ∇ · v ) 0 (2)

In the strip region (-1 e x e 1, y ) 0), it is subjected to the
Smoluchowski slip condition (eq 1) by assuming that the electric
double layer is sufficiently thin compared to the strip dimension
and there is vanishing normal velocity on the surface

u) f(x), V) 0 (3a,b)

where f(x) is the slip velocity distribution induced by a prescribed
nonuniform surface charge or zeta potential distribution on the
strip. For the rest of the surface, because it bears no charge, the
no-slip condition is applied:

u)V) 0 (4)

Far away from the surface, the velocity must vanish. That is,

vf 0 as r) √x2 + y2f∞ (5)

A remark concerning the validity of our analysis is worth making
below prior to solving the EOF problem above. Because a
nonuniform surface charge distribution could cause bulk con-
centration gradients and induce a diffusio-osmotic flow (DOF),
our analysis holds if the diffusio-osmostic velocity scale UDOF
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Figure 1. Two-dimensional EOF set up by a charged strip (highlighted
in red) on an otherwise uncharged surface in a uniform electric field.
The surface velocity on the strip is prescribed by the Smoluchowski
formula with an arbitrary surface charge distribution.

Figure 2. Streamlines of two ideal-flow solutions involved in our
problem: (a) a point source and sink pair and (b) two oppositely
rotating swirls.
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) {(ε/η)(kT/Ze)2} d ln Cs/dx is small compared to the Smolu-
chowski slip velocity given by eq 1, where kT is the thermal
energy, Z is the valence of the supporting electrolyte, e is the
elementary charge, and Cs is the electrolyte concentration at the
outer edge of the double layer.27 Because Cs ) 2C0 cosh(Ze�/kT)
from the Boltzmann distribution (with C0 being the bulk
concentration), we have UDOF ≈ (ε/η)(kT/Ze) d�/dx in terms of
the zeta potential gradient. Hence, by comparing UDOF with eq
1, diffusio-osmotic flow can be precluded if (kT/Ze)d ln �/dx
,E; that is, the applied field must be sufficiently large compared
to local zeta potential gradients.

To solve the flow problem with eqs 2-5, it is more convenient
to adopt the stream function formulation. We define the stream
function ψ in such a way that

u) ∂ψ
∂y

and V)-∂ψ
∂x

(6)

which ensures that the continuity equation ∇ ·v ) 0 is satisfied
automatically. Equation 2 then reduces to a biharmonic equation:

∇ 2∇ 2ψ) 0 (7)

Applying boundary conditions (eqs 3-5) and taking Fourier
transforms, we arrive at the solution for ψ:

ψ)∫0

∞
[(A′′ (k)+A ′ (k)x+A(k)y)e-ky] cos(kx) dk

+∫0

∞
[(B′′ (k)+B ′ (k)x+B(k)y)e-ky] sin(kx) dk (8)

The four coefficients A′, A′′ , B′, and B′′ are identically zero
because of zero normal velocity, and ψ ) 0 on the surface in
eq 4. Hence, the solution reduces to

ψ) y∫0

∞
[A(k) cos(kx)+B(k) sin(kx)]e-ky dk (9)

with the coefficients

A(k)) 1
π∫-1

1
f(x) cos(kx) dx and

B(k)) 1
π∫-1

1
f(x) sin(kx) dx (10)

representing symmetric and antisymmetric parts of the solution,
respectively.

II.B.ApproachwithIdeal-FlowAnalogyandItsImplications.
While the above mathematical layout provides a general
formulation for solving the flow field on a single strip with an
arbitrary surface charge distribution, we observe that the solution
form (eq 9) is simply the product of y and an analogous ideal-
flow solution. Here the analogous ideal-flow problem satisfies
the Laplace equation with the same boundary conditions except
that f(x) in eq 10 is replaced by a stream function distribution
on the strip. Two consequences immediately follow from this
observation. First, because the flow now is no longer ideal, it
must admit a vorticity that is set off by the velocity mismatch
between the charged strip and the uncharged surfacesthe
breakdown of the electrostatics-hydrodynamics similitude.

Second, mathematically speaking, the EOF solution here can
be constructed simply by the analogous ideal-flow solution. As
will be seen below, this ideal-flow solution consists only of simple
source and sink solutions, which can be expressed explicitly in
terms of spatial variables. This approach not only allows us to
obtain the EOF solution in an explicit form, but also aids in our
physical understanding by revealing quantitative features of the
flow. Below, we first solve for the analogous ideal-flow problem.
The EOF solution will then be given in the next subsection.

For the analogous ideal-flow problem, we find that all of the
solutions are derived from the following two fundamental
solutions

Figure 3. Streamlines of EOF with surface charge distributions: (a) f ) 1 (b) f ) x (c) f ) x2, and (d) f ) x3. The electric field is toward the right.
For symmetric charge distributions (a, c), the flow shows a simple draining-in/pumping-out streaming, whereas for asymmetric distributions (b, d),
the flow exhibits a pair of microvortices.
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�1 )
1
π

tan-1( 2y

x2 + y2 - 1),

u1 )
1
π[ 2(x2 - y2 - 1)

(x2 + y2 - 1)2 + 4y2],

V1 )
1
π[ 4xy

(x2 + y2 - 1)2 + 4y2] (11a)

�2 )
1

2π
ln[ (x+ 1)2 + y2

(x- 1)2 + y2],

u2 )
1
π[ -4xy

(x2 + y2 - 1)2 + 4y2],

V2 )
1
π[ 2(x2 - y2 - 1)

(x2 + y2 - 1)2 + 4y2] (11b)

where �1 and �2 are stream functions with the corresponding
velocity fields (u1, V1) and (u2, V2). As illustrated in Figure 2, by
rewriting these ideal-flow solutions in twin polar coordinates
with origins at the outer edges of the strip, it can be easily
recognized that eq 11a represents a radial source and sink pair
located at the two edges of the strip and that eq 11b is a similar
solution consisting of two oppositely rotating swirls. Because
these ideal-flow solutions are essentially made by a point source
and sink pair, the corresponding far-field (r ) �(x2 + y2)f ∞)
behaviors look like dipoles whose velocities decay at a rate of
1/r2, as shown in Appendix I.

II.C. Flow Fields and Their Characteristics. Now we solve
for the EOF problem. Similar to simple harmonic expansions
for solving ideal-flow problems,28 we write the prescribed
surface charge distribution in the polynomial form:

f(x))∑ cnx
n (12)

Here we retain only the terms up to the cubic term, which
suffices to describe most of the surface charge distributions
in practice. For each distribution, we determine the corre-
sponding stream function and velocity field. After taking
inverse Fourier transforms, we find that all of the solutions
can be constituted by the two ideal-flow solutions given by
eqs 11a and 11b. As a result, these EOF solutions can be derived
in closed forms below and written explicitly in terms of spatial
variables.
(i) For uniform f ) 1

ψ) y�1, u) �1 + yu1, V) yV1 (13)

(ii) For linear f ) x,

ψ) yx�1 - y2�2,

u) x�1 + yxu1 - 2y�2 - y2u2,

V)-y�1 + yxV1 + y2V2 (14)

(iii) For quadratic f ) x2,

ψ) (x2y- y3)�1 - 2xy2�2 +
2
π

y2,

u) (x2 - 3y2)�1 + (x2y- y3)u1 - 4xy�2 - 2xy2u2 +
4
π

y,

V)-2xy�1 + (x2y- y3)V1 + 2y2�2 - 2xy2V2 (15)

(iv) For cubic f ) x3,

ψ) (x3y- 3xy3)�1 + (y4 - 3x2y2)�2 +
4
π

xy2,

u) (x3 - 9xy2)�1 + (x3y- 3xy3)u1 + (4y3 - 6x2y)�2 +

(y4 - 3x2y2)u2 +
8
π

xy,

V) 3(y3 - x2y)�1 + (x3y- 3xy3)V1 + 6xy2�2 +

(y4 - 3x2y2)V2 -
4
π

y2 (16)

The corresponding far-field behaviors for the above solutions
are provided in Appendix II. In fact, we find that for a charge
distribution with an arbitrary integer power in x, the solution can
be written in a complex-variable form, which is given in Appendix
III.

Figure 3a-d shows the streamlines for the surface charge
distributions listed above. For symmetric charge distributions (i)
and (iii), Figure 3a,c shows that the fluid is sucked toward the
strip at one end and then ejected toward the bulk at the other,
as if a moving object pushed (dragged) the fluid ahead (behind).
Because the effect creates pumping with a constant flow rate, the
velocity field must decay at a rate of 1/r to maintain mass
conservation of fluid flow over a control volume of an arbitrarily
large size r, which is consistent with the large-r behaviors in eqs
13 and 15 (cf. eqs A3 and A5 in Appendix II). Alternatively, the
flow resembles the motion of a free falling object in an otherwise
quiescent fluid so that the far-field flow behavior must behave
like that induced by a point force (i.e., Stokeslet) at the same
attenuation rate.

As for antisymmetric charge distributions (ii) and (iv), because
the surface velocity on one half of the strip is identical to that
on the other half but in the opposite direction, the opposition
between these velocities results in a pair of symmetric vortices,
as shown in Figure 3b,d. Also, because there is no net flow rate
here, the far-field velocity must decay at a rate of 1/r2 or faster,
consistent with those in eqs 14 and 16 (cf. eqs A4 and A6 in
Appendix II).

Having the EOF solutions (eqs 13-16) ready for various
surface charge distributions, we can construct a flow solution
with an arbitrary surface charge distribution simply by a
superposition of these solutions. Figure 4 is an example and
shows a draining-in/pumping-out stream pattern with a small
recirculating eddy, a combination of the flow features of both
symmetric and antisymmetric cases.

II.D. Extension to EOF in Nonuniform Applied Fields.
Given the fact that the surface velocity distribution f(x) actually
lumps the contributions from the surface charge (via the zeta

(25) Ghosal, S.; Lu, Z. Technical Proceedings of the 2002 International
Conference on Simulation of Microsystems; Nano Science and Technology
Institute: San Juan, Puerto Rico, 2002.

(26) Gleeson, J. P. J. Colloid Interface Sci. 2002, 249, 217–226.
(27) Anderson, J. L. Ann. ReV. Fluid Mech. 1989, 21, 61–99.
(28) Milne-Thomson, L. M. Theoretical Hydrodynamics; Macmillan: London,

1968.

Figure 4. Streamlines with asymmetric surface charge distribution f )
x3 - 0.4x2 - x + 0.4. The flow exhibits a draining-in/pumping-out
streaming with a small recirculating eddy.
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potential) and the local electric field on the basis of eq 1, it
is straightforward to extend the analysis to systems in nonuniform
fields. Because an applied field must be divergence-free and can
generally be written in a simple harmonic form, the corresponding
tangential field E| on the surface also behaves like xm, whereas
the associated normal field vanishes. Using the surface charge
distribution of xq, the resulting surface velocity becomes f(x))
xm+ q, and hence the solutions derived earlier are still applicable.

Recall in Figure 3 that symmetric and antisymmetric surface
charge distributions lead to draining/pumping and vortex flow
structures, respectively. An application of a nonuniform field
can change the flow structure from one to another, depending
on whether the field is in phase or out of phase with the surface
charge distribution. For in-phase case, f(x) will be symmetric
and hence will lead to a simple in-and-out flow; on the contrary,
out-of-phase case must develop a pair of vortices in response to
an antisymmetric distribution of f(x). In the case in which the
applied field has a certain phase difference with the surface charge
distribution, the flow will possess features of both symmetric
and antisymmetric cases and hence will exhibit a variety of stream
patterns such as closed eddy, multiple vortices, and saddle-point
flow, as illustrated in Figure 5.

III. Electro-osmotic Flow on Two Charged Strips

Motivated by the fact that a practical microdevice often
comprises a number of patterned surfaces or arrays of micro-
electrodes, in this section we study EOF involving more than
one charged strip. Hereafter we focus on a system with a pair
of uniformly charged strips (Figure 6). Because the problem is
linear, the solution can be constructed by a superposition of
those for single-strip problems derived in the preceding section.
Because the flow generated by one strip can interact with the
other, the detailed flow structure will depend on the strips’ charges
(reflected by zeta potentials �1 and �2), widths (a1 and a2), and
separation (l), which are characterized by the following parameters
normalized by the quantities of strip 1:

R) �2/�1, �)a2/a1, γ)l/a1

To facilitate the subsequent discussion, we use �1 < 0 so that
the slip velocity on strip 1 is always in the direction of the applied
field. Combining two single-strip solutions from eq 13, we obtain
the following stream function for EOF on two charged strips

ψ) y
π

[	1 +R	2]with

	1 ) tan-1( y

x2 + y2 - 0.25),

	2 ) tan-1( �y

(x- d)2 + y2 - 0.25�2),

d) γ+ (1+ �)/2 (17)

Similarly, the corresponding velocity field reads

u) 1
π

[	1 +R	2]+
y
π

[u3 +Ru4] (18a)

V) y
π

[V3 +RV4] (18b)

where (u3, V3) and (u4, V4) are derived from the two single-strip
solutions

u3 )
x2 - y2 - 0.25

(x2 + y2 - 0.25)2 + y2
,

V3 )
2xy

(x2 + y2 - 0.25)2 + y2
,

u4 )
�((x- d)2 - y2 - 0.25�2)

((x- d)2 + y2 - 0.25�2)2 + �2y2
,

V4 )
2�(x- d)y

((x- d)2 + y2 - 0.25�2)2 + �2y2

With the flow solution above, we now examine how the flow
structure varies with the relevant parameters.

III.A. Effects of Strip Charges, Widths, and Separation on
EOF Structure. Figure 7 shows how the charges of the equal-
sized strips affect the EOF structure. Figure 7a,b shows the stream

Figure 5. Illustration of flow patterns for EOF on a uniformly charged
strip when applied electric fields are nonuniform: (a) Ex ) x3 - 3x2 -
0.25x + 0.5, (b) Ex ) x3 - 3x2 - 0.25x + 1, and (c) Ex ) x3 - 3x2 -
0.25x + 0.75. The flow can exhibit various structures such as (a) closed
eddy, (b) multiple vortices, and (c) saddle-point flow.

Figure 6. EOF set up by two charged strips in a uniform applied field.
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patterns when the strips bear like charge (R> 0). At first glance,
the two concurrent surface flows yield simple draining-in and
pumping-out stream patterns, similar to those in Figure 3a,c in
the single-strip case. It is obvious that the result (Figure 7a) for
the equal charge case R ) 1 must be symmetric with respect to
the midplane because of the reversibility of Stokes flow. For
unequally charged strips, the flow structure becomes asymmetric
(Figure 7b) with a slight shift toward the strip with more charges
(left) because more streams tend to be drawn by the faster surface
velocity.

Figure 7c,d shows the results for unlike-charge case R < 0.
Because the two surface velocities now oppose each other, the
flow must form vortices. If the charges are equal (R)-1), then
Figure 7c shows a symmetric pair of microvortices with a zero
net flow rate that resembles Figure 3b,d for single-strip case with
antisymmetric charge distributions. Unequal opposite surface
charges will generate a net EOF because of excess surface charge.
Because this net flow is dictated by the vortex on the strip with
more charges and tends to suppress that on the other, the vortex
on the strip with less charges will be confined on the surface,
creating the closed recirculating eddy shown in Figure 7d.

Figure 8 depicts the effects of strip size on the flow structure.
Here we look at unlike-charge case with R ) -1 and examine
how the flow structure changes as a result of the interactions of
the vortices. Again, if the strips are of equal dimensions, then
the flow exhibits a symmetric vortex pair, as already shown in
Figure 7c. When the size of one strip decreases, however, the
associated vortex shrinks and is suppressed by the adjacent
expanding vortex on the other, as depicted in Figure 8a-c. The
explanation is that the situation here gradually approaches the
single-strip limit � f0 in which the vortex on the larger strip
will become so large that none of the streams leaving the strip
will return.

Finally, we examine the effects of strip separation. We are
again interested in unlike-charge case, and the results are shown
in Figure 9. At large separations, the interactions between two
vortices are so weak that the local flow behavior near each strip

resembles that over a uniformly charged strip (cf. Figure 9b,d).
At small separations, the two strips essentially act like a single
strip having a step change in the zeta potential. Because the
interactions between the vortices now are strong, the small vortex
is suppressed by the larger one, giving rise to a closed eddy for
the former (cf. Figure 9a,c).

III.B. Pumping Flow Rate. As demonstrated above, when
the strips have like charges, the flow simply shows additive
pumping via concurrent surface flows. If they bear uneven
opposite charges, then the flow can exhibit a free stream
accompanied by asymmetric vortices. The flow rate (per unit
length) is

Q)∫0

∞
u dy)ψ(∞)-ψ(0)) 1+R�

π
(19)

which is determined solely by the zeta potentials and dimensions
of the strips. Written in the dimensional form, this flow rate
reads Q*)-ε(�1a1 + �2a2)E/(πη) in which �1a1 + �2a2 reflects
the total number of surface charges through �i ≈ -λσsi/ε, where
λ is the double-layer thickness and σsi is the surface charge density
of the strip i. It is also evident that Q is independent of the strip
separation γ.

As indicated by eq 19, for 1 + R� > 0 (< 0), strip 1 is more
(less) charged than strip 2, and hence there is forward (backward)
pumping with a flow rate of Q* > 0 (< 0) with respect to the
direction of the applied field. Compared to the single-strip case,
it is obvious that the flow rate will be increased by the addition
of the second like-charge strip. If the two strips are oppositely
charged (R < 0), then the net flow rate is controlled by the strip
with more charges. Because the vortices must be asymmetric in
this case, a closed eddy must develop on the strip with less
charges to match the flow direction of the free stream generated
by the excess surface charge. At 1 + R� ) 0, there will be no
net flow at all because the surface charge of one strip is offset
exactly by the opposite charge of the other. In this case, if the
strips are of different sizes (� )-1/R), then the two vortices will
be separated by a nearly vertical streamline, as shown in Figure 10.

Figure 7. Effects of surface charge ratio R on the EOF pattern on two strips with (�, γ) ) (1, 0.2). (a) R ) 1, (b) R ) 0.5, (c) R ) -1, and (d)
R ) -0.3. In c and d, red dashed lines are either the streamline that separates the two vortices or the bounded streamline that encloses the confined
eddy.
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Figure 11 summarizes how different flow topologies depend
onR and �. The lineR) 0 defines the boundary between straight
pumping of like-charge EOFs (R > 0) and the occurrence of
unlike-charge EOF vortices (R < 0). Strip size ratio � does not
alter the flow structure of the former but does change that of the
latter because it controls the formation of vortices as well as flow
reversal.

III.C. Formation of a Confined Eddy on Two Oppositely
Charged Strips. As shown in the preceding sections, for two
oppositely charged strips the flow can exhibit a closed recirculating
eddy whose formation depends on the surface charge and strip
dimensions. In particular, we are interested in the formation of
such a confined eddy because it could play a vital role in transport
processes involving samples with small diffusion coefficients.
Because this eddy occurs within the confined streamline with
two stagnation points, its size can be measured by the distance
between these points. To determine the locations of the stagnation
points, we set the stream function in eq 17 equal to zero and seek
the interception of the bounded streamline to the surface.
Mathematically speaking, these stagnation points, which exist
only forR< 0, are exactly the interception points of the associated
ideal flow that is part of the solution structure as shown in section

II.B. We also find that the locations of these points can be
analytically determined only if R is a negative rational number.
In practice, this analytical approach is sufficient because any
arbitrary R can be approximated by a rational number. As such,
we arrive at the following quadratic equation whose roots
determine the locations of the stagnation points:

1
4
- x2 )-R-1�-1[�2

4
- (x- d)2] (20)

The left- and right-hand sides in eq 20 come from 	1 and 	2 in
eq 17, respectively. The stagnation points are thus located at

x()
2d( √4d2 - (R�+ 1)(4d2 - �2 -R�)

2(R�+ 1)
(21)

where x+ and x- denote the respective locations of the two
stagnation points. The distance L between these points then
determines the size of the eddy and is given by

L ≡ x+- x-)
√4d2 - (R�+ 1)(4d2 - �2 -R�)

R�+ 1
(22)

Note that both eqs 21 and 22 are applicable only for R� < 0 and
R� + 1 * 0 because the formation of a closed eddy can be
realized only by two oppositely charged surfaces with nonzero
net charge, as already discussed in section III.B. These conditions
for R and � also ensure the validity of this analysis (via keeping
the expression inside the square root in L always positive). In
addition, L > 0 (<0) means that the eddy is located on the right
(left), corresponding toR�+1>0 (<0), viz., forward (backward)
pumping with strip 1 having more (fewer) charges. To seek a
better understanding of how the formation of a closed eddy
depends on the strip charge and dimensions, below we restrict
our attention to both small and large separation limits and discuss
the results that follow.

In the γf 0 limit, the separation between the two strips is
negligible compared to their dimensions (i.e., γ , min(1, �)).
The resulting stagnation points can be simplified as x+ ) -1/2

+ (1 + �)/(1 +R�) and x-) 1/2, and the latter is simply the right
edge of strip 1, which is the junction between the two strips. The
corresponding eddy size is therefore

L(γf 0)) �(1-R)/(R�+ 1) (23)

Recall here that R < 0. If the number of charges on strip 1 is
greater than the number on strip 2 (i.e., R� + 1 > 0), then a
closed eddy must form over strip 2 because of flow suppression
by the larger vortex on strip 1, which is in accordance with x+
> 1/2 found here. In this case, eddy size L will grow monotonically
with � because flow suppression is diminished by increasing the
number of surface charges on strip 2. Further increasing � beyond
1/|R| will lead to flow reversal in which the vortex on strip 2 can
grow so large as to turn the confined eddy over onto strip 1 (viz.,
L < 0). For large �, we find that L ≈ 1/R - 1 and hence the
confined eddy formed on strip 1 will be larger than the strip.
Because the eddy size is now independent of the strip dimensions,
it is determined solely by (�1/�2) - 1, the relative difference
between the two surface zeta potentials: the smaller the difference,
the larger the eddy size. Large � might be relevant to the scenario
where there is a defect, for example, as a result of undesired
deposition or incomplete etching, on the edge of a long strip. In
that case, because a confined eddy can be triggered by minuscule
variations in surface charge and transporting solutes across the
eddy can be achieved only by diffusion, its appearance could be
critical to mass transport processes. IfR is allowed to be increased
while keeping � fixed, we find that L ≈ -1 for large R, which

Figure 8. Effects of strip dimension ratio � on the EOF pattern on two
oppositely charged strips with (R, γ)) (-1, 0.2): (a) � ) 0.75, (b) �
) 0.5, and (c) � ) 0.25. Red dashed lines are the bounded streamlines
that enclose the confined eddies.
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causes the eddy to be the same size as strip 1. The above results
suggest that the eddy size is better controlled by the surface zeta
potential difference, but the difference here cannot be too great
if the eddy size is allowed to be adjustable.

As for the large separation limit, we find

L(γf∞)) ( -2R�
R�+ 1)γ (24)

suggesting that the eddy size grows linearly with the strip
separation. In addition, the eddy size and its turning direction
are further mediated by R�, the ratio of the total surface charge
on strip 2 to that on strip 1. For |R� | , 1, eddy size L ≈ -R�γ
is controlled by strip 2. However, if |R� | . 1, then we have L
≈-2γ, yielding the eddy of twice the size of the strip separation.

IV. Particle Trapping Assisted by EOF Vortices

In practical microfluidic applications, nonuniformly charged
EOF can be used to facilitate the assembly of colloidal

particles,11,29 assist in concentrating pathogens for increasing
detection susceptibility,30 or enhance heterogeneous assays.31

The idea behind such a manipulation is that EOF vortices can
work with near-surface effects such as electrostatic attraction or
dielectrophoresis to promote the trapping of particles on the
surface by rapidly bringing suspended particles down onto the
surface. Alternatively, from a kinetic point of view, transport
processes driven by common colloidal forces or short-range effects
are often limited by diffusion or lack the ability to capture particles
distantly and hence are less efficient at trapping or concentrating
suspended particles. The use of EOF vortices can facilitate short-
range particle trapping by overcoming such a deficiency in such
a way that particle are first brought onto the strips by the vortices
with a converging stagnation point and then focused by the surface

(29) Islam, N.; Lian, M.; Wu, J. Microfluid. Nanofluid. 2007, 3, 369–375.
(30) Gagnon, Z.; Chang, H. C. Electrophoresis 2005, 26, 3725–3737.
(31) Feldman, H. C.; Sigurdson, M.; Meinhart, C. D. Lab Chip 2007, 7, 1553–

1559.

Figure 9. Effects of strip separation on the EOF pattern on two oppositely charged strips: (R, �, γ)) (a) (-1, 1, 0.2), (b) (-1, 1, 5), (c) (-0.3, 1,
0.2), and (d) (-0.3, 1, 5). Red dashed lines are either the streamlines that separate the two vortices or the bounded streamlines that enclose the confined
eddies.

Figure 10. EOF streamlines when two oppositely charged strips are
unequal in size but carry an identical number of charges: R ) -1/3, �
) 3, and γ ) 0.2. Two vortices now are separated by a nearly vertical
streamline (red dashed line) in between.

Figure 11. EOF map in the �-R plane for two uniformly charged strips
in a uniform applied field. Various flow topologies can also be
distinguished by the range of flow rate Q.
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streams toward that point. And yet, we have to emphasize that
the vortices alone do not trap particles because the flow is
divergence-free and particles can still be dispersed away by the
upward flow after focusing at the stagnation pointsshort-range
attraction effects must be incorporated for realizing the trapping
by holding particles against the upward flow near the stagnation
point.

In this section, we employ the EOF solution developed in the
preceding sections to illustrate numerically the use of EOF vortices
in particle trapping. While the actual phenomenon has been
reported previously using ac fields,30,32 our dc-based ansatz
complements these studies in the sense that it provides a relatively
simple approach for eliciting qualitative features of the phe-
nomenon. To do so, we consider the motion of nondiffusive
particles in EOF vortices set up by a pair of oppositely charged
strips of equal width. For simplicity, hydrodynamic interactions
between the particles and the surface are assumed to be negligible.
Interparticle interactions are also neglected. The instant particle
position xp(t) ≡ (xp(t), yp(t)) is then determined by the following
(dimensionless) equation

dxp

dt
) v + vtrap (25)

with v being the flow field given by eq 18 and t the dimensionless
time scaled by a/U0. Here vtrap ) -|vtrap| iy is the additional
velocity accounting for the short-range attraction by the strips
and is applicable only near the strips, outside of which vtrap )
0. This velocity is assumed to be of the following form

vtrap )-V0 exp(-y/δ)iy (26)

where V0 (> 0) is the trapping susceptibility and is reflected by
the velocity magnitude of the short-range effect relative to the
characteristic Smoluchowski velocity U0 and δ measures the
range of the attraction force, beyond which the force decays very
rapidly. Equation 26 can be used to describe the motion of a
charged particle due to electrostatic attraction by an oppositely
charged surface if the particle comes close to the surface within
a certain distance of the electric double layer δ.33 It can also

model particle trapping by dielectrophoresis (DEP) due to local
field gradients when a particle is in close proximity to an
electrode.34 In this case, δ represents the penetration depth of
the electric field.

Equation 25 is integrated numerically using the explicit Euler
method with a time step of 0.01. Throughout the simulations, we
assume that the particle’s normal velocity vanishes when it hits
the strips but still allows the particle to move horizontally on the
strips. Figure 12 depicts the simulated particle movement in a
pair of symmetric EOF vortices with a converging stagnation
point in the middle of the surface. Initially, a particle is placed
at an arbitrary position above the left strip. The particle is then
carried by the vortex in a counterclockwise manner. Because of
vtrap, there are small deviations from the streamlines in the particle
trajectory, making the particle move spirally toward the surface.
When it is close to the strip (i.e., within δ), it will perceive a
more pronounced attraction force and hence in turn will be
redirected toward the strip with an abrupt change in its motion.
Upon attaching to the strip surface, the particle is then advected
by the surface flow toward the stagnation point, at which the
particle will eventually be at rest because of zero velocity. Because
a similar phenomenon equally occurs on the right strip, the effect
looks as if particles were brought down by the vortices and
focused toward the middle of the surface.

If the flow (or field) direction is reversed, then the local flow
field near the stagnation point now becomes diverging. In this
case, our simulation (not shown) indicates that instead of being
focused, particles are diverted away from the middle when coming
down toward the surface. A closer further inspection reveals that
particles will eventually be recycled back to the bulk. Conse-
quently, there is no trapping at all on the strips. Near a diverging
stagnation point, the flow is coming from the top toward the
point and then turning away from it when impinging the surface.
The closer to the surface, the faster a particle is diverted away
by the flow, making the particle recirculate back to the bulk.
These observations confirm the idea that the use of EOF vortices
in particle trapping must be accomplished with a converging

(32) Wu, J.; Ben, Y.; Battigelli, D.; Chang, H. C. Ind. Eng. Chem. Res. 2005,
44, 2815–2822.

(33) Hunter, R. J. Foundations of Colloid Science, 2nd ed.; Oxford University
Press: New York, 2001.

(34) For DEP in a nonuniform electric field created by, for instance, an array
of interdigitated electrodes, it can be easily seen by solving the Laplace equation
that the electric field decays exponentially in y and hence does the corresponding
DEP velocity.

Figure 12. Particle trajectories (in blue dashed lines) in a pair of symmetric EOF vortices (in black lines) with a converging stagnation point in the
middle of the surface: R ) -1, � ) 1, γ ) 0.2, V0 ) 0.45, and δ ) 0.1.
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stagnation point, which can be simply controlled by the direction
of an applied field.

To illuminate further such EOF-assisted particle trapping, we
carry out simulations for a suspension consisting of two particle
populations with different trapping susceptibilities (via V0). As
shown in Figure 13, the particles of the larger V0 are quickly
brought onto the strip surface, whereas those of the smaller V0

tend to be recirculated in the bulk and take a longer time to land
on the surface. To quantify the results observed above, Figure
14 plots the fraction of particles trapped on the strip surface as
a function of time and clearly shows that the trapping is indeed
more efficient for particles of larger V0. Because V0 can reflect
part of the particle identity (e.g., size, charge, conductivity, etc.),
the present results suggest that particle sorting can be achieved
more efficiently with the assistance of EOF vortices, which is
in accordance with experimental observations.30 For a given

particle population, however, decreasing V0 can also indicate the
increasing speed of the flow. This suggests that the ability to
capture particles could be compromised if the vortices are too
fast because particles are recirculated more rapidly in the bulk
and thus less susceptible to being captured by the surface through
the short-range attraction.

It is also interesting to see what happens to a suspension of
particles if the vortices become asymmetric as a result of unequal
numbers of opposite surface charges. This might simulate the
scenario where there is anomalous adsorption or nonuniform
particle deposition on the surface, which could modify the surface
zeta potential and hence the flow structure. Because there are
two stagnation points on the edges of the confined eddy and the
corresponding local flow fields can be either converging or
diverging, the trapping behavior obviously depends on the flow
direction (and hence the direction of the applied field). Also,

Figure 13. Evolution of a particle suspension consisting of two particle populations: V0 ) 0.45 (blue) and 0.045 (red) with 50 particles for each.
Flow conditions are the same as in Figure 12. Arrows represent instant velocity vectors of these particles. The number in the t ) 1000 panel is for
a referenced velocity scale. Most of the blue particles are captured by the strips before t ≈ 500, whereas only a small fraction of red particles have
landed for t > 1000.
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because the flow structure now is asymmetric the ultimate fate
of a particle seems to depend on where it is located and how it
is influenced by the flow field during its journey.

Figure 15 shows the evolution of the motion of a particle
suspension in which there is a net flow toward the right with a
converging (diverging) stagnation point on the left (right) of the
confined eddy. We find that the particles on the left are quickly
brought onto the surface by the larger vortex and focused toward
the left stagnation point by the converging surface flow, similar
to the result in symmetric vortex case. As for the particles on
the right, however, because of the presence of the confined eddy,
the particles outside the eddy are depleted by the free stream
whereas those inside can still be focused toward the left stagnation
point. Note here that the right stagnation point of the confined
eddy does not permit focusing because the local surface flow
diverges away from that point. As such, there exists a depletion
zone between the vortices in which it is unlikely that trapping
occurs.

Figure 14. Comparisonbetweenthe trapped-particle fractionsfor twoparticle
populations with different trapping susceptibilities. Flow conditions are the
same as in Figure 12.

Figure 15. Evolution of particle motion in asymmetric EOF vortices with a stream pattern shown in the t ) 0.01 panel. Fifty particles are used in this case:
R ) -0.3, � ) 1, γ ) 0.2, V0 ) 0.45, δ ) 0.1. The number in the t ) 300 panel is a referenced velocity scale.
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Figure 16 is the result with the field direction opposite to that
in Figure 15. We find that particles can no longer be focused at
the left stagnation point around which the local surface flow
becomes diverging. Because the converging stagnation point
now is switched to the right, it seems that particles can be trapped
only there. However, because most of the particles are gradually
dispersed toward the left by the counterclockwise vortex, there
are virtually no trapping effects in this case.

A comparison between the trapping efficiencies using sym-
metric and asymmetric vortices is shown in Figure 17, suggesting
that it is more desirable to use symmetric vortices with conVerging
stagnation in the trapping. Hence, we speculate that any
nonuniformity in surface charge could be critical to actual trapping
processes. For instance, if particles are charged and deposited
unevenly on the surface, then the surface zeta potentials could
be altered by these deposited particles, making the vortex structure
asymmetric and thereby affecting subsequent particle motion
behavior.

It is instructive to compare EOF-based particle trapping with
trapping by DEP that is widely used in microfluidic systems and
has been proven to be quite successful. In DEP trapping, the
particle movement is caused by charge polarization of a particle
under the action of a nonuniform electric field. The particle’s
DEP velocity is described by VDEP ) (εm/3η)R2K∇ |E|2 with K
being the effective polarizability and R being the particle size.2

For most of the common colloids, because of the quadratic
dependence on R, VDEP is on the order of 10 µm/s under typical
experimental conditions. This is much slower than an EOF
velocity of about 100 µm/s under similar conditions. Also because
sufficiently large field gradients are required to render apparent
particle movement, trapping usually occurs in areas such as sharp
electrode edges or within a short distance to a surface. Despite
the small mobility and short-range characteristics, DEP trapping
is rather selective in view of its dependence on particle/solvent
properties (via K) and hence has advantages in sorting particles.

Figure 16. Evolution of the particle motion with the opposite applied field direction to that in Figure 15. The stream pattern is shown in the t )
0.01 panel. Fifty particles are used in this case.
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In contrast to DEP trapping, EOF-based particle trapping is
a collaborative phenomenon of long-range convective transport
and short-range surface attraction effects. Although it has the
ability to trap particles distantly at much faster rates than DEP,
the efficiency will depend on the detailed flow structure and the
nature of the short-range effects. In some cases, the trapping
could be compromised if subjected to inadequate flow conditions
(e.g., when the vortices are turned outward or are asymmetric).
Also, because of advection by the flow, the trapping might not
be as definite or selective as DEP.

V. Concluding Remarks

In this article, we have analyzed theoretically the detailed
characteristics of EOF on charged strips. Our approach invokes
the ideal-flow analogy that not only enables us to construct an
analytical solution for the flow but also furnishes a lucid way
to identify the flow behavior. For an EOF on a single charged
strip, we find that the flow can exhibit a simple in-and-out
streaming, a pair of symmetric vortices, and an asymmetric vortex
structure, depending on the surface charge distribution. Our
analysis can also be applicable to systems with nonuniform applied
fields. In this case, the combined effects of surface charge and
applied field can lead to more complicated flow structures
involving multiple vortices or saddle points. An extension to
EOF on two uniformly charged strips is also carried out, and the
solution can be readily constructed by a superposition of the
solutions to single-strip problems. We demonstrate how the flow
structure varies with the strip surface charges and dimensions.
A variety of flow topologies can also be identified analytically
in line with how the flow rate and the formation of a confined
eddy are mediated by these factors.

Our study also reveals that the fluid velocity here decays at
a rate of 1/r or 1/r2. This long-range hydrodynamic nature suggests
that the effects of proximate boundaries on fluid motion could
be important, for instance, if there is a boundary above the surface
with separation comparable to the strip size10 or if the flow occurs
in an open cavity20 or closed box.21 In addition, because the
velocity now attenuates much more slowly than 1/r3 in elec-
trophoretic interactions,27 hydrodynamic interactions between
suspended particles and the surface could become important,
which could play a crucial role in the dispersion behavior of

colloidal suspensions. Although real systems are always bounded,
our analysis provides a more thorough understanding of the local
flow behavior near the surface, and the results here might not
be too qualitatively different from those in confined systems if
proximate boundaries are not too close to the surface.

Finally, we demonstrate numerically the use of EOF in particle
trapping. By including short-range attraction effects in the particle
velocity, we show that the trapping can be expedited by symmetric
EOF vortices in such a way that suspended particles are quickly
brought by the vortices onto the surface, followed by hydro-
dynamic focusing toward the stagnation point. Our results also
suggest that it is less desirable to use asymmetric vortices to trap
particles because of depletion by free streams. Actual trapping
processes could involve colloidal/hydrodynamic interactions
between particles and surfaces, the dispersion/aggregation
behavior of particles, and changes in surface zeta potentials due
to particle deposition. Nevertheless, to the best of our knowledge,
this is the first attempt of modeling the use of EOF in particle
trapping and might provide some insights into trapping processes
in practice.

In conclusion, the present study not only provides a systematic
framework for analyzing EOF and its use in particle trapping but
also offers useful guidance for the design of microfluidic devices.
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Appendix I: Far-Field Behaviors of the Two
Ideal-Flow Solutions

As rf∞ the two ideal-flow solutions (eqs 11a and 11b) have
the following asymptotic behaviors:

�1
∞ ) 2 sin θ

πr
+O(r-2),

u1
∞ ) 2 cos(2θ)

πr2
+O(r-3),

V1
∞ ) 2 sin(2θ)

πr2
+O(r-3) (A1)

Figure 17. Comparison between trapped-particle fractions using symmetric and asymmetric EOF vortices. The former and the latter are the data
from Figures 13 and 15, respectively. There is virtually no particle trapping in Figure 16.
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�2
∞ ) 2 cos θ

πr
+O(r-2),

u2
∞ )-2 sin(2θ)

πr2
+O(r-3),

V2
∞ ) 2 cos(2θ)

πr2
+O(r-3) (A2)

Appendix II: Far-Field Behavior of EOF on a
Charged Strip

This appendix provides the corresponding r f ∞ behaviors
for the EOF solutions (eqs 13-16).

f) 1: u) 2 sin(2θ) cos θ
πr

+O(r-3),

V) 2 sin(2θ) sin θ
πr

+O(r-3) (A3)

f) x: u) 2 sin(4θ)

3πr2
+O(r-4),

V) 4 sin(3θ) sin θ
3πr2

+O(r-4) (A4)

f) x2: u) 2 sin(2θ) cos θ
3πr

+O(r-3),

V) 2 sin(2θ) sin θ
3πr

+O(r-3) (A5)

f) x3: u) 2 sin(4θ)

5πr2
+O(r-4),

V) 4 sin(3θ) sin θ
5πr2

+O(r-4) (A6)

Appendix III: EOF Solution with an Arbitrary
Integer-Power Charge Distribution

For an arbitrary integer-power charge distribution f ) xn, we
can also obtain a solution for the stream function which can be
expressed in a complex-variable form below. Let z ) x + iy. For
symmetric charge distributions of n ) 2N (N ) 0, 1, 2,...),

ψ) y[(-1)2NRe((-iz)2N)�1 + (-1)2N-1Im((-iz)2N)�2 +

2
π∑

p)1

N
(-1)p-1

2(N- p)+ 1
Re((-iz)2p-1)] (A7)

For antisymmetric charge distributions of n ) 2M -1 (M )
1,2,3,...),

ψ) y[(-1)MIm((-iz)2M-1)�1 + (-1)MRe((-iz)2M-1)�2 +

2
π∑

q)1

M
(-1)q-1

2(M- q)+ 1
Im((-iz)2q-2)] (A8)

where �1 and �2 are defined in eq 11.
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