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bstract

The assumptions commonly made in dynamic surface tension (DST) measurement using the pendant bubble method are examined. A pendant
ubble changes its shape in response to DST due to surfactant adsorption. The shape change induces motion in the bulk fluid during the relaxation
f surface tension. Three assumptions motivated by which are: (i) negligible influence of the bulk fluid motion, (ii) uniform surface concentration
long the bubble surface, and (iii) negligible convective effects in surfactant mass transfer. The first two are related to the validity of the use of
he Young–Laplace equation for DST measurement, so that DST measurement can be conducted under the conditions of keeping a bubble nearly
ydrostatic and of a constant surface tension at each instant in time. The last assures the transport process to be diffusion-dominated, so that genuine

inetics can be examined without being mediated by the bulk convection. This study invokes a dimensional analysis to inspect these assumptions
ia identifying relative importance among relevant effects. Experimental data are provided for justification. Criteria are not only established in line
or validating these assumptions, but also guide in the choice of appropriate experimental conditions for conducting DST measurement.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

As surfactant lands on an air–liquid interface, it reduces
urface tension. The amount of surfactant on the interface deter-
ines surface tension, and the relaxation of surface tension

epends on (i) the kinetic exchange of surfactant between the
nterface and the bulk phase and (ii) the surfactant diffusion in
ulk phase.

This surfactant transport process is regulated by adsorp-
ion/desorption at the interface and diffusion through the bulk,
hich in turn causes the surface concentration to change with

ime, and hence the surface tension. The surface tension relaxes
uring this transport process and is termed the dynamic surface
ension (DST). DST is often used to characterize the features

f interfacial mass transport, providing a unique signature for a
iven aqueous–air system with surfactant.

∗ Corresponding author. Tel.: +886 2 2737 6648; fax: +886 2 2737 6644.
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The pendant bubble method is commonly employed to
easure DST [1,2]. The working principle is to utilize the
oung–Laplace equation that describes how the shape of a bub-
le adjusts in response to the change in surface tension. Using
he image of the bubble shape at a given time, the surface ten-
ion can be obtained by fitting the Young–Laplace equation, and
hereby DST can be monitored accordingly.

The purpose of this note is to revisit three assumptions com-
only made in DST measurements using the pendant bubble
ethod. First, as a bubble is changing its shape during DST, the

nduced fluid motion is assumed to be sufficiently slow so that
ts effects are negligible. Second, the surface concentration is
ssumed to be uniform along the surface so that the surface ten-
ion keeps constant at any instant during the relaxation. Third,
y assuming the bulk fluid motion is weak, the mass transfer of
urfactant thereof is further assumed to be dictated by diffusion.
he first two assumptions are related to the validity of applica-
ion of the Young–Laplace equation to DST measurement; they
ntail the system to stay nearly hydrostatic. The third offers a
implified way to assess the surfactant transport without the need
n acquiring convective effects from the bulk.

mailto:sylin@mail.ntust.edu.tw
dx.doi.org/10.1016/j.colsurfa.2007.10.035
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Fig. 1. DST data (symbol) for C12E4 adsorption onto a freshly created
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The validity of the first two assumptions has been established
y Wong et al. [3] for an expanding or contracting bubble. Nev-
rtheless, it stills lacks a justification for the pendant bubble
ethod. The main difference between these two methods is that

he motion of an expanding bubble is created by the displace-
ent in response to an applied air flow while that of a pendant

ubble is simply an adjustment due to DST.
In general, an expanding bubble creates a stronger flow field

han a pendant bubble does. More importantly, the former has
definite velocity scale whereas there is no apparent velocity

cale in the latter. While using an expanding bubble appears
useful method for DST measurements, the bulk convection

ould be critical to the surfactant mass transfer since it often
epends on the conditions of applied flows. This could make
he interpretation of DST masked by the influence of flow
4,5]. In this regard, the pendant bubble method might be more
ppealing to identify the genuine kinetics occurring in DST
rovided that the mass transfer of surfactant in the bulk can
e indeed dominated by diffusion, which motivates the third
ssumption.

In this work, we shall devise a dimensional analysis to exam-
ne these assumptions, so that the relative importance among
elevant effects can be identified. We then can derive the con-
itions under which the assumptions hold; hence the criteria
stablished from which can furnish guidance in choosing appro-
riate conditions for conducting DST experiment.

. Dimensional analysis

.1. Fluid motions induced by bubble deformations

We first inspect the first assumption. Letting v and p denote
he velocity field and pressure in an incompressible liquid of
ensity ρ and viscosity μ, the relevant equation involve the
avier–Stokes equation [4,6]:

(vt + v · ∇v) = −∇p + ρgeg + μ∇2v, (1)

nd the normal stress condition at the interface,

air − p + μn · (∇v + ∇vT) · n = γ(∇s · n) (2)

Here, pair is the gas pressure, n is the unit normal along
he interface, γ is the surface tension and g is the gravitational
cceleration. In (2), �s·n represents the mean curvature of the
nterface. To assess the influence of flow relative to the others,
e estimate the scale of each effect. Since motions of a pendant
ubble arise from DST in view of (2), the scale of p should be
he capillary pressure γ0/R0 with γ0 being the surface tension of
clean interface and R0 being the typical size of a bubble. Thus,

he pressure term in (1) has a scale γ0/R
2
0.

Assuming that the velocity scale is U, then the viscous term
n (1) has a scale μU/R2

0, and hence its effects relative to the
apillary pressure can be reflected by μU/γ0 which is usually

eferred to as the capillary number Ca. The inertia terms of
1) have a scale ρU2/R0, so their effects relative to surface ten-
ion are ReCa =ρU2R0/γ , where Re = ρUR0/μ is the Reynolds
umber. The relative effect of buoyancy to surface tension is

U

ir–water interface. The line is the best-fit curve using Langmuir isotherm.

∞ = 3.90 × 10−10 mol/cm2, a (the ratio of desorption to adsorption rate con-
tants) = 4.66 × 10−10 mol/cm3, C0 = 6 × 10−9 mol/cm3.

epresented by the Bond number Bo = ρgR2
0/γ0. Similarly, in

2) viscous and buoyancy effects relative to surface tension are
gain reflected by Ca and Bo, respectively.

The effects of flow can be negligible if Ca � 1 and ReCa � 1,
s we shall check a posteriori using DST data. In this case, (1)
nd (2) reduce to

= −∇p + ρgeg, (3)

air − p = γ(∇s · n) (4)

Accordingly, the system can be regarded as hydrostatic. That
s, for a given γ , the interface reaches the equilibrium shape
nstantly; the influence of fluid motion relative to surface tension
s O(Ca).

Estimate of Ca entails the scale of U. It can be estimated
rom the temporal evolution of a bubble in response to DST.
ince most of the systems are diffusion-controlled, DST can be
nalyzed through its relaxation behavior. Fig. 1 shows a typical
emporal behavior of a DST and suggests that

γ0 − γ

γ0 − γ∞
= f

( t

τ

)
, (5)

here f is a slow time-varying function with f(t = 0) = 0 and
(t → ∞) → 1. Here, γ∞ ≡ γ(t → ∞) is the new equilibrium
urface tension. τ is the relaxation time scale. For a diffusion-
ontrolled process, τ ∼ h2/D with h being the adsorption depth
nd D being the diffusivity of surfactant.

Let R be the mean curvature of the interface, say at the bub-
le apex, and R0 ≡ R(t = 0). Now inspecting (4), suppose that
he hydrostatic pressure of the liquid does not change rapidly
uring the relaxation, R in response to the change in γ can be
pproximated via γ/R ∼ γ0/R0. Thus,

∼ R0

(
1 − γ0 − γ∞

γ0
f

( t

τ

))
. (6)
It follows that

=
∣∣∣∣dR

dt

∣∣∣∣ ∼ R0
(γ0 − γ∞)

γ0τ
. (7)
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Table 1
The speed (v) of the apex relaxation of a pendant bubble at different bulk
concentrations of C12E4

C0 (×109 mol/cm3) Time (s) v (10−5 cm/s)

2
50 < t < 450 3.0, 1.1, 1.4, 1.4
1000 < t < 4000 0.66, 0.73, 1.2, 0.58

6
0 < t < 350 6.6, 6.7, 6.6
600 < t < 3000 −0.62, −0.045, −0.35
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ig. 2. An example of the relaxation of a pendant bubble for C12E4 adsorp-
ion onto a freshly created air–water interface. C0 = 6 × 10−9 mol/cm3. Bubble
ge = 0.8, 203 and 404 s.

As such, we can estimate U based on both DST data
nd bubble dynamics. Fig. 2 is an example of the bubble
volution during a DST relaxation. The reduction of the sur-
ace tension makes R decreased, hence leading the bubble
o be elongated as a consequence of mass conservation. For
0 ∼ 0.1 cm, γ0 = 70 dyne/cm, γ∞ ∼ 50 dyne/cm, and τ ∼ 103

for h ∼ 10−1 cm and D ∼ 10−5 cm2/s), these parameters give
∼ 10−5 cm/s. Fig. 3 shows an example of the history of the

ubble-apex movement. It reveals that both short (t < 400 s)
nd long (600 s < t< 3000 s) time evolutions have speeds of

.6 × 10−5 and 0.35 × 10−5 cm/s, respectively, which agree
ith the scale of U estimated above. Further evidence for sup-
orting this velocity scale is also provided by examining bubble
volutions at different surfactant concentrations, as tabulated in

ig. 3. A history of the bubble-apex movement. The short (t < 400 s) and
ong (600 s < t < 3000 s) time evolutions have speeds of 6.6 × 10−5 and
.35 × 10−5 cm/s, respectively.

n
C
c
s

2

b
a
c
t
e

T
c

d

0
10 < t < 150 9.6, 7.1, 8.5, 10.6
350 < t < 3800 −0.81, −0.59, −0.63, −0.65

able 1. As such, the estimates of Ca and Re are O(10−9) and
(10−4), respectively, thus effects of the fluid motion are rather
eak, and the bubble is virtually hydrostatic.

.2. Uniformity of the surface concentration

We now turn our attention to the second assumption con-
erning if the Young–Laplace equation can be applied for DST
easurement under the spatial-uniformity condition of surface

ension. This requires examining the tangential stress condition.
et y and s denote the directions normal and tangential to the

nterface. We also let v be the tangential velocity. The tangential
tress condition can be expressed in a simple form:

∂v

∂y
= −∂γ

∂s
= RT

1 − (Γ/Γ∞)

∂Γ

∂s
. (8)

ere we have invoked the equation of state: γ − γ0 =
∞RgT ln(1 − (Γ/Γ∞)) where Γ ∞ is the maximum packing
urface concentration, Rg the gas constant, and T the tempera-
ure. The left-hand side of (8) is the viscous stress of an order of
U/R0; the right-hand side of (8) is the Marangoni stress of an
rder of (Γ∞RgT/R0)/(1 − (Γ/Γ∞)). The ratio of the former to
he latter reflects the non-uniformity of Γ along the interface. It
s Ca/E where E = (Γ∞RgT/γ0)/(1 − (Γ/Γ∞)) is the elasticity
umber. For Γ ∞ ∼ 10−10 mol/cm2 at 25 ◦C, E ∼ O(10−2). Since
a ∼ 10−9, we have Ca/E ∼ O(10−7). Consequently, the surface
oncentration is almost uniform, and the spatial uniformity of
urface tension can be now justified.

.3. Effects of convection on surfactant mass transfer

The last issue is concerning if the influence of convection can
e neglected in surfactant mass transfer. Since convection can
ffect transports occurring in both the bulk and the interface, the
orresponding effects are examined separately. We first inspect
he mass transfer in the bulk. Consider the convective-diffusion
quation [6]:

∂C

∂t
+ v · ∇C = D∇2C. (9)
o identify the relative effects of convection to diffusion, we
onsider both far field and near field behaviors below.

In the far field, suppose that one sees bubble dynamics in a
istance of r away from the bubble, viz. r 
 R0. As the bubble
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rows, it looks like a nearly stationary point source in the far-
eld view, and induces an outward flow of a strength ∼ UR2

0/r2.
owever, since the bubble is pinned at the needle, the bubble’s
ecking near the rim also induces an inward flow that looks like
point sink of a strength ∼ UR2

0/r2. Since the bubble volume
emains almost unchanged during its evolution, a pair of source
nd sink works like a dipole having a strength ∼ UR3

0/r3. As
result, the convective term has a scale (UR3

0/r3)(1/R)C0 (C0
he scale of the bulk concentration). Since the diffusive term
s an order of (D/r2) C0, the relative effect of convection to
iffusion is Pe(R0/r)2 where Pe = UR0/D is the Peclet number.
or a sufficient large r, Pe(R0/r)2 is generally small for a typical
endant bubble with surfactant. The time scale in this region
hould be adjusted as r2/D.

As in the near field, bubble deformations now become per-
eptible. Since we are interested in the mass transfer across the
ubble surface, the convective flux should be viewed as a rela-
ive flux with respect to the moving surface. This modifies the
ime-derivative term ∂C/∂t in a frame reference to the bubble.
hysically, as a bubble moves, it displaces the adjacent fluid
aterial near the surface. Since this displaced material moves
ith an almost identical speed to the bubble, the associated con-
ection is nearly offset by the moving surface. If diffusion is
ufficiently fast across the displacement region, the influence
f convection only manifests away from the bubble. But the
ow also decays rapidly in the far field as discussed earlier; it

herefore makes diffusion dominant throughout the entire fluid
omain.

To illustrate the idea above, we consider a spherical bubble;
o (9) can be written in the spherical coordinates (r,θ) with the
orresponding velocity components (u, v). Let η = r/R be a vari-
ble in the moving coordinate where R(t) is the bubble radius.
hen the time-derivative term of (9) becomes

∂C

∂t
= ∂C

∂t η

∣∣∣∣+∂C

∂η

∂η

∂t
= ∂C

∂t

∣∣∣∣
η

+ ∂C

∂η

(−Ṙ

R
η

)
. (10)

Lumping together with the convective term, we have

∂C

∂t

∣∣∣∣
η

+
(

u

R
− Ṙ

R
η

)
∂C

∂η
+ v

Rη

∂C

∂θ
= D

R2η2

∂

∂η

(
η2 ∂C

∂η

)
(11)

he second term of (11) reflects the convective flux rela-
ive to the moving bubble surface. Now consider the region
ear the bubble surface, we have u ∼ Ṙ(1 + O(δ/R0)) where
is the scale of bubble displacements and R0 is the scale

f R. Since η ∼ 1 + O(δ/R0) near the bubble surface (so that
/∂η ∼ δ−1), the second term of (11) is O(UC0/R0). Similarly,
he third term is found to be O(UC0/R0) as well. In compari-
on with the diffusive term of O(DC0/δ2), the relative effect of
onvection to diffusion is O(Uδ2/(R0D)). For U ∼ 10−5 cm/s,
0 ∼ 10−1 cm, δ ∼ 10−2 cm and D ∼ 10−5 cm2/s, these give
δ2/(R0D)∼10−3 � 1. Thereby, diffusion dominates in the near
eld. The time scale in this region demands δ2/D for captur-
ng the change in the bulk concentration due to diffusion. As
uch, since diffusion prevails in both far and near fields, we con-
lude that diffusion dominates the mass transfer in the entire
ulk region.

T
c
c
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We now examine the surface transport of surfactant. For a
niform surface concentration as shown by (8), the transport
long the interface is governed by

dΓ

dt
+ Γ

r

∂

∂s
(usr) + Γun(∇s · n) = −Dn · ∇C. (12)

ere, we again assume that the surface kinetics is diffusion-
ontrolled. The second and the third terms reflect the convective
ffects arising from surface convection and expansion, respec-
ively. These convective terms are O(UΓ 0/R0). The diffusion
erm is O(DC0/δ). The ratio of convection to diffusion is there-
ore (UR0/D)(δ/R0)2(h/δ). Here, we have invoked the adsorption
epth h = Γ 0/C0 for the diffusion term. The time scale for the sur-
ace transport becomes hδ/D which is not necessarily the same
s that for the bulk transport. A typical DST measurement has
∼ 10−5 cm/s, R0 ∼ 10−1 cm, δ ∼ 10−2 cm, h ∼ 10−1 cm and
∼ 10−5 cm2/s. These lead the above ratio to be O(10−2), sug-

esting that the influence of convection is again less important
han diffusion in the surface transport.

. Discussion

In light of the dimensional analysis above, we can establish
riteria for validating the three assumptions in terms of param-
ters used in DST measurement. The parameters include the
nitial bubble size R0, the clean-interface surface tension γ0
nd the equilibrium surface tension γ∞, the adsorption depth
, and the diffusivity of surfactant D. These parameters pro-
ide scales of the bubble displacement δ, the relaxation time
f surface tension τ, and the induced fluid velocity U. Defin-
ng 
γ ≡ γ0 − γ∞, according to (6) and (7), these scales are
ummarized below:

∼ R0
γ

γ0
, τ ∼ h2

D
, U ∼ R0

(

γ

γ0

) (
D

h2

)
(13)

sing these scales, we recast the results of the preceding
imensional analysis and summarize them below. For the first
ssumption both Ca � 1 and ReCa � 1 are necessary for render-
ng a bubble to be nearly hydrostatic; they require, respectively,

μR0 
γD

γ2
0 h2

� 1, (14)

ρR3
0

γ0

(

γ

γ0

)2(
D

h2

)2

� 1. (15)

ondition (14) demands that surface tensions dominate over
iscous forces. Condition (15) necessitates inertial effects to be
uch smaller than surface tension effects. Also note that (15)

oes not involve the liquid viscosity.
The second assumption entails Ca/E � 1 for ensuring the

niformity of the surface concentration. That is,

μR0
(


γ
) (

D

2

)
� 1. (16)
Γ∞RgT γ0 h

his condition suggests that surfactant molecules are sufficiently
rowded so that the interface can be hardly stretched. In this
ase, the interface tends to be tangentially immobile while it
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till can move in its normal direction. The rigidified interface
oes not affect the features of DST as long as convection can
e negligible compared to diffusion in the surfactant transport,
hich is discussed below.
Finally, convective transports of surfactant in both the

ulk and the bubble surface can be negligible if both the
onvection-diffusion ratios Uδ2/(R0D) � 1 (for the bulk) and
h/δ)Uδ2/(R0D) � 1 (for the surface) can be satisfied. These two
onditions are equivalent to, respectively,

R0

h

)2(

γ

γ0

)3

� 1, (17)

R0

h

) (

γ

γ0

)2

� 1. (18)

t is interesting to notice that neither (17) nor (18) depend on D
lbeit the transports are diffusion-controlled. This is because U
s proportional to D according to (13), the ratio of convection to
iffusion makes D cancelled out. Also, since γ0/
γ > 1, (17) is
ufficient to (18).

Conditions (14)–(17) constitute the constraints for fulfill-
ng the requirements based on the assumptions commonly

ade in DST measurement. These conditions are derived
y assuming that the kinetics for transporting surfactant is
iffusion-controlled, as occurring in a typical DST measure-
ent. Nevertheless, they are still applicable to the scenario even
hen the transport is mixed diffusive-kinetics controlled, viz.,

he adsorption/desorption rate is as low as the diffusion rate. In
his case, either the diffusion or the kinetics time scale is appro-
riate for characterizing the relaxation behavior of DST; there
s no fundamental difference from the present ansatz.

In practice, (14)–(16) are usually satisfied so that the use
f the Young–Laplace equation for DST is warranted. (17)

emands R0/h � (γ0/
γ)3/2. This suggests that if the size of
bubble (which can be controlled by the needle size) is too

arge compared to the adsorption depth, then the bulk convection
ould be susceptible to influencing the transport of surfactant,

[

[
[

sicochem. Eng. Aspects 317 (2008) 284–288

nd hence to the corresponding DST. That is, the smaller the
dsorption depth, the smaller bubble size needed for eliminat-
ng the importance of convection. Moreover, if a surfactant has

very strong surface activity of lowering surface tension, the
equired bubble size for neglecting convective effects also has
o be much smaller than the adsorption depth. This is because
he larger 
γ , the greater the bubble displacement in response
o DST. The resulting induced velocity becomes faster, thereby
equiring a smaller bubble to expedite diffusion for diminishing
he influence of convection.

In summary, we have examined the validity of the three com-
on assumptions made for DST measurement using the pendant

ubble method. Utilizing the dimensional analysis, we are able to
dentify the importance of convection in transport processes dur-
ng a DST experiment. We also derive the criteria under which
he influence of convection can be negligible. The criteria fur-
her furnish a guidance of how to choose appropriate conditions
or conducting DST experiments.
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