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A planar or spherical fluid-liquid interface was commonly assumed on studying the surfactant adsorption kinetics
for a pendant bubble in surfactant solutions. However, the shape of a pendant bubble deviates from a sphere unless
the bubble’s capillary constant is close to zero. Up to date, the literature has no report about the shape effect on the
relaxation of surface tension due to the shape difference between a pendant bubble and a sphere. The dynamic surface
tension (DST), based on the actual shape of a pendant bubble with a needle, of the diffusion-controlled process is
simulated using a time-dependent finite element method in this work. The shape effect and the existence of a needle
on DST are investigated. This numerical simulation resolves also the time-dependent bulk surfactant concentration.
The depth of solution needed to satisfy the classical Ward-Tordai infinite-solution assumption was also studied. For
a diffusion-controlled adsorption process, bubble shape and needle size are two major factors affecting the DST. The
existence of a needle accelerates the bulk diffusion for a small bubble; however, the shape of a large pendant bubble
decelerates the bulk diffusion. An example using this method on the DST data of C12E4 is illustrated at the end of
this work.

1. Introduction

Dynamic surface tension (DST) at the liquid-fluid interface
is important to many applications, such as foams, coatings, and
bioprocessings.1-5 For a surfactant solution with a concentration
below the critical micelle concentration (cmc), the DST of a
freshly created surface is governed by the diffusion step from
the bulk phase to the sublayer and the adsorption step from the
sublayer to the fluid surface. With the local equilibrium
assumption, the diffusion-controlled mechanism has been applied
to many surfactants.

DST reflects the interfacial transport phenomena of a surfactant
solution. For a diffusion-controlled process, the classical Ward-
Tordai equation first accounts for the bulk molecular diffusion
onto a planar surface. Numerical solutions are generally needed,
since most of the adsorption isotherms are nonlinear, especially
on interpreting DST data that is extracted from a nonplanar
interface.

A common approach to this calculation is applying the
trapezoidal rule approximation to the Ward-Tordai equation.6,7

The planar diffusion-controlled process can also be solved by
the finite difference or the finite element method.8,9Another way
for solving this problem is the regular perturbation method.10

Analytical solutions from the perturbation method are useful in

the initial adsorption stage, and they have been compared to the
numerical solutions. Many surfaces of interest or those that have
been utilized are, however, not planar.

Droplets and bubbles were frequently encountered in industrial
problems as well as in scientific measurements of interfacial
tension. In such cases, a spherical interface usually results in a
better approximation than a planar one.11 Asymptotic analytical
solutions have been also developed in various spherical drop
systems with a finite solution depth.12 The actual geometry of
the pendant drop also plays an important role in the dynamic
surface tension phenomenon. Yang and Gu13 had simulated the
surfactant mass transport for the case of a pendant drop in air
and studied the shape effect of the liquid drop.

The kinetic barrier may play an important role on DST
relaxation like bulk diffusion does on surfactant adsorption
processes. Some analytical expressions have been derived for
the process of mixed kinetic-diffusive control.14-17

The pendant bubble tensiometer has emerged as a very accurate
and useful tool for measuring the surface tension of a fluid-
liquid interface.6,18-20 Diffusion from the bulk solution to the
bubble surface is commonly approximated as the diffusion to a
spherical suface.6,21

For a spherical bubble inside a surfactant solution, surfactant
molecules diffuse radially toward the bubble surface. Compared
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with a planar surface, the curvature of the bubble surface speeds
up the diffusive flux. The rate of mass transport therefore
accelerates due to the surface curvature.22 It may fail to describe
the DST of a spherical bubble if one neglects the geometric
effect of a bubble and assumes a planar surface. Ignoring the
surface curvature could cause a significant error in evaluating
the bulk diffusivity of surfactant molecules.23

Assuming a spherical interface does give a much better
prediction on the DST for a pendant bubble than a planar one.
Two questions come to mind. Can a spherical interface predict
the same DST as that for a real bubble surface? What is the
difference in the relaxation of DST and bulk concentration for
a spherical interface and for an exact bubble surface?

Of course, the deviation between the spherical and bubble
surfaces depends upon the capillary constant (B) and bubble
volume (V). The DST for surfactants diffusing onto a pendant
bubble surface may depart clearly from that for a spherical one,
especially for a large pendant bubble that has a large absolute
capillary number.

The existence of a needle may cause another significant error
on simulating the DST data. Pendant bubbles are used to being
generated, and therefore hanged, on the tip of a straight (or U
type) cylindrical needle. The bulk diffusive flux at the region
near the needle may have a significant contribution to the adjacent
bubble surface. A larger flux therefore results at the region close
to the three-phase contact circle. It is important to include the
needle effect on fitting the DST data to describe more precisely
the actual experimental environment.

In this work, a theoretical simulation based on an actual pendant
bubble, hanging on the tip of a needle, is performed for calculating
the diffusion-controlled DST due to the mass transport of a
surfactant onto a freshly created surface. A time-dependent
finite element method is applied to simulate the bulk diffusion
and the kinetic adsorption/desorption processes numerically.
With the aim of the present modeling, surfactant adsorption
onto pendant bubbles can be analyzed more precisely. This
numerical simulation resolves further the time-dependent sur-
factant concentration in the bulk phase and the depth of
solution needed to satisfy the Ward-Tordai infinite-solution
assumption.

2. Time-Dependent Mass Transport

The x-z planar projection of the pendant bubble model is
plotted in Figure 1. In this study, it is considered a three-
dimensional diffusion and a surfactant adsorption onto an actual
pendant bubble surface from a static bulk phase (denoted byΩ).
The bulk phase contains an initially uniform distribution of
surfactant, and a pendant bubble is suddenly created on the tip
of a needle att ) 0. The pendant bubble deforms slightly while
the surfactant molecules diffuse and adsorb onto the surface.
The flow in the bubble adjacent to the bulk phase may be induced
by the shape deformation. For a surfactant solution with a
concentration below the cmc, an incompressible bulk phase and
a constant diffusivity can be assumed. The general equation of
convective diffusion for the surfactant exchange in bulk fluid
can be expressed as follows:

wheret is the time,C is the bulk concentration,D is the diffusivity,
andu is the velocity in bulk phase. The convective diffusion
equation can be reduced to a dimensionless form by introducing
a characteristic lengthL and a characteristic flow velocityu0.
Here,L represents the length along which the major change in
concentration takes place andu0 represents the velocity of the
bulk fluid. Equation 1 can be written as follows:

whereC* ) C/C0, t* ) Dt/L2, andu* ) u/u0. In terms of Cartesian
coordinates, the dimensionless coordinates can be expressed as
x* ) x/L, y* ) y/L, andz* ) z/L. The dimensionless ratioPe
) u0L/D is known as the Peclet number. The relationship between
theconvectiveand thediffusive transferof surfactants is, therefore,
described by Peclet number.

In a common pendant bubble experiment, the bubble is hanged
on the tip of a needle in static bulk fluid. The air is enclosed in
the bubble, and the bubble keeps a nearly constant volume during
the measurement. Therefore, the bulk velocity just comes from
the bubble deformation. The deformation-induced flow in bulk
fluid is rather slow. In general, a small Pelect number will be
found in a common pendant bubble experiment. Therefore, the
convective term in eq 2 can be neglected.24 In this case, the
concentration distribution in the bulk phase is caused primarily
by molecular diffusion; at sufficiently lowPe, mass transfer by
convection is negligible.

This work tries to study the roles of the bubble shape and
needle on the DST. The effect of bubble shape change on DST
during the measurements is not significant and is neglected here.
More discussion on this issue is detailed later in the Discussion
section.

For a stationary and well-deformed pendant bubble, the
convective diffusion can be simplified as follows:

The boundary and initial conditions are

(21) Stebe, K.; Lin, S. Y. Dynamic surface tension and surfactant mass transfer
kinetics: measurement techniques and analysis. InHandbook of surfaces and
interfaces of materials: Surface and interface analysis and properties; Nalwa,
H. S., Ed.; Academic Press: San Diego, CA, 2001; Vol. 2, Chapter 2.

(22) Ferri, J. K.; Lin, S. Y.; Stebe, K. J.J. Colloid Interface Sci.2001, 241,
154.

(23) Hsu, C. T.; Chang, C. H.; Lin, S. Y.Langmuir1997, 13, 6204.

(24) In a common DST experiment,CaandReareO(10-9) andO(10-4) from
an order analysis, respectively. The effects of fluid motions are rather small, and
the bubble can be assumed to be hydrostatic. Further discussion is detailed in a
manuscript accepted byColloids Surf., A(ms. ref. no.: COLSUA-14994).

Figure 1. Coordinate system of a pendant bubble in surfactant
solution: Ω ) bulk domain in which the time-dependent mass
transport of surfactant is considered;∂Ω1) an imaginary spherical
boundary surface;∂Ω2 ) the imaginary sublayer right next to
the pendant surface; and∂Ω3 ) solution boundary adjacent to the
needle.

∂C
∂t

+ u‚∇C ) D∇2C in Ω (1)

∂C*
∂t*

+ Pe(u* ‚∇C*) ) ∇2C* in Ω (2)

∂C
∂t

) D∇2C in Ω (3)

C ) C0 on ∂Ω1; t g 0 (4a)
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An imaginary spherical boundary,∂Ω1, far away from the
bubble surface is assumed to remain at a constant concentration
C0 during the whole adsorption process (eq 4a). The position
of the boundary∂Ω1 is set far away from the bubble surface
∂Ω2.

Boundary condition 4b describes the rate of change of the
surface concentrationΓ, being related to the bulk concentration
gradient∇C on the imaginary sublayer∂Ω2. Note that∂Ω2 can
be viewed as the surface of the pendant bubble and∇C changes
with time. Therefore, the rate of the change of surface
concentration varies with time also during the whole process.
The outward normal of the pendant bubble surface is denoted
byn in eq 4b. The dependence betweenΓ andCon the imaginary
sublayer∂Ω2 is unique and is described by the adsorption isotherm
when the process is of diffusion control.

In this work, the contribution from bulk flow and surface
diffusion was neglected and only the bulk diffusion was
considered in the mass transport process.25 The inhomogeneity
of the surface concentration was neglected, since the experimental
bubble profiles in this study can always be fitted perfectly by
the Young-Laplace equation.26 Note that the deviations of the
best-fitting, for the fit between the experimental bubble and
theoretical bubble from the Young-Laplace equation, of a bubble
in pure water and in surfactant solution are nearly identical in
this work.

At the beginning of the process, the bulk phase contains a
uniform concentration distribution (eq 4c) except the imaginary
sublayer∂Ω2 has a zero concentration. For a clean surface
adsorption process, the bubble is suddenly created, and the bubble
surface is fresh and clean with zero surface concentration.
Therefore, a zero sublayer concentration att ) 0 on∂Ω2 (eq 4d)
is assumed to satisfy the adsorption isotherm.

The solution adjacent to the needle wall is represented by
boundary∂Ω3. It is assumed that the needle is in contact with
the surfactant solution for a long time before a bubble is
generated. Therefore, the concentration on boundary∂Ω3 equals
to the initial bulk concentrationC0 att ) 0 (eq 4e). No surfactant
molecules cross through the needle (eq 4f) during the whole
process.

Boundaries∂Ω1, ∂Ω2, and ∂Ω3 enclose the region for the
computational bulk fluid phase. The area enclosed by∂Ω1, ∂Ω2,
and∂Ω3 shown in Figure 1 revolves about thez-axis to generate
a 3-D computational geometric model of a pendant bubble for
the finite element method. On the theoretical simulation, it is
considered only 30°, as shown in Figure 2, about thez-axis in
this enclosed region to have a better convergence. More discussion
on the accuracy is given later on this simplification.

3. The Finite Element Method
The solution of PDEs on complicated geometries can rarely

be expressed in terms of elementary functions. The finite element

method (FEM), the so-called discretization of the original
problem, approximates the PDE problem with a finite number
of unknown parameters. This method involves introducing
finite elements or shape functions that describe the possible
forms of the approximate solution for the original PDE
problem. The complicated geometry is partitioned into small
units of a simple shape via the mesh of the finite element
method. The 3-D FEM is usually utilized to treat complicated
geometry or to obtain more accurate results without any
simplification.27,28

In this work, the FEM for pendant bubbles considers a general
3-D system. In the spatial discretization of the computational
domain, tetrahedron mesh elements are constructed. The faces,
edges, and corners are called mesh faces, mesh edges, and mesh
vertices, respectively. The boundaries in the domain are
partitioned into triangular boundary elements (mesh faces).

A Galerkin finite element method27,28 with quadratic basis
functions for discretization is used to expand the PDE for each
mesh element onΩ at any time. The concentration profile is
expanded in terms of a series of quadratic basis functionsφi:

whereci is the undetermined coefficient. The Galerkin weighted
residuals of eq 3 can be constructed with quadratic basis functions
φi and integrated over the computational domain.

Each of the first three terms in the brackets in eq 6 can be
integrated by parts using the Green-Gauss theorem. Thus, eq
6 can be written as follows:

(25)Ca/E has a value ofO(10-7) from an order analysis. Surface concentra-
tion and surface tension are therefore uniform. Further discussion is detailed
in a manuscript accepted byColloids Surf., A(ms. ref. no.: COLSUA-14994).

(26) Miller, R.; Joos, P.; Fainerman, V. B.AdV. Colloid Interface Sci.1994,
49, 249.

(27) Rao, S. S.The Finite Element Method in Engineering, 2nd ed; Pergamon
Press: New York, 1986.

(28) Reddy, J. N.An Introduction to The Finite Element Method, 2nd ed.;
Mcgraw-Hill: New York, 1993.

dΓ
dt

) n‚D∇C on ∂Ω2; t g 0 (4b)

C ) C0 in Ω; t ) 0 (4c)

Γ ) 0; C ) 0 on∂Ω2; t ) 0 (4d)

C ) C0 on ∂Ω3; t ) 0 (4e)

n‚D∇C ) 0 on∂Ω3; t g 0 (4f)

Figure 2. Illustration of mesh: (a) mesh with 1793 elements for
demonstration and (b) parts of the mesh near the bubble surface
with a total of 5264 mesh elements in the whole computational
domain.

C(x, y, z, t) ) ∑
i

ci(t)φi(x, y, z) (5)

∫∫∫
Ω

φi[ ∂

∂x(D∂C
∂x) + ∂

∂y(D∂C
∂y) + ∂

∂z(D∂C
∂z) - ∂C

∂t ] dV ) 0 (6)
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By applying eq 5 and the boundary conditions (eq 4a and b), eq
7 can be expressed in matrix form as

where

Equation 8 represents the element equation of a mesh element.
The assembly of these equations on the whole domain leads to
the following ordinary differential equation (ODE):

The assembled ODEs of eq 12 can be solved with the initial
conditions (eq 4c and d) and boundary condition (eq 4a).

The set of governing equations, eqs 3 and 4, are solved
numerically by the Galerkin finite element method with the
Lagrange-quadratic basis functions for discretization. An
iterative method, GMRES,29 is then used to solve the integration
system. The convergence criterion is based on the residual. To
get a more accurate surface concentration, one has to work
carefully on the mesh size for the region near the bubble surface.
More discussions on the accuracy and mesh size are given later.

4. Adsorption Equations and Dynamic Surface
Tension

To complete the solution for the surface concentration, the
adsorption kinetics has to be specified. The Langmuir isotherm
was used in this work to describe the surfactant adsorption onto
the bubble surface. At equilibrium, the rate of change of surface
concentration vanishes and the adsorption isotherm is given by

whereΓ∞ andaare the two parameters of the Langmuir adsorption
isotherm which represent the maximum surface concentration
and surfactant activity, respectively.

For a diffusion-controlled process, the kinetic adsorption
process is much faster than the bulk diffusion one. Thus, the bulk
concentration in the sublayer and the surface concentration at
the bubble surface keep at equilibrium at any time. When the
surfactant solution is considered to be an ideal one, the Gibbs
adsorption equation and the equilibrium isotherm allow for the
calculation of the surface tension in terms of

whereγ0 is the clean surface tension.
It is considered only the diffusion-controlled surfactant mass

transport in this work. Therefore, the concentration profile in the
bulk phase can be obtained from eq 12 by FEM. Note that the
subsurface concentration depends upon the position of the bubble
(i.e., function of turning angleφ, as shown in Figure 1). The
surface concentrationΓ is then calculated from eq 13, the
adsorption isotherm, since the process is of diffusion control.Γ
is therefore a function of position also; that is, depends uponφ.
The surface tension is then found out by eq 14 from the average
surface concentration for the whole bubble surface. The variation
of surface concentration on the bubble profile is assumed to be
negligible in this work. The subsurface concentration at different
positions is assigned to be an average concentration calculated
from eq 13 with the average surface concentration. This average
subsurface concentration is then used on the next iteration.

5. Pendant Bubble Profile

Theoretical shapes of pendant bubbles are derived according
to the Young-Laplace equation, which relates the surface tension,
the radii of curvature, and the pressure difference across the
curved fluid interface:30,31

whereγ is the surface tension,R1 andR2 are the two principal
radii of curvature of the bubble surface, and∆P is the pressure
difference across the interface. Equation 15 can be recast as a
set of three first-order differential equations for the spatial
positionsxandzand turning angleφ of the interface as a function
of the arc lengths, and then integrated with boundary conditions
x(0) ) z(0) ) φ(0) ) 0.

The first-order differential equations can be changed into the
following forms by applying the dimensionless variablesx* )
x/R0, z* ) z/R0, ands* ) s/R0.

whereB is the capillary constant ()∆FgR0
2/γ), ∆F is the density

difference between the fluid phases,g is the gravitational
acceleration, andR0 is the radius of curvature at the apex. The
equations are subject to the boundary conditionsx*(0) ) z*(0)
) φ(0) ) 0. Equation 16 was integrated by using the variable
order Adams-Bashforth-Moultion PECE solver in MATLAB
initialized with an approximate solution:

Equation 17 is valid near the apex whereφ , 1.32 Here,Jn(x*)
is the Bessel function of the first kind.

(29) Saad, Y.; Schultz, M. H.SIAM J. Sci. Stat. Comput.1986, 7, 856.

(30) Lin, S. Y.; Chang, H. C.; Lin, L. W.; Huang, P. Y.ReV. Sci. Instrum.1996,
67, 2852.

(31) Rotenberg, Y.; Boruvka, L.; Neumann, A. W.J. Colloid Interface Sci.
1983, 93, 169.

(32) Huh, C.; Reed, R. L.J. Colloid Interface Sci.1983, 91, 472.

-∫∫∫
Ω

D[∂φi

∂x
∂C
∂x

+
∂φi

∂y
∂C
∂y

+
∂φi

∂z
∂C
∂z] dV +

∫∫
∂Ω

Dφi[∂C
∂x

nx + ∂C
∂y

ny + ∂C
∂z

nz] dA - ∫∫∫
Ω

φi(∂C
∂t ) dV ) 0

(7)

[K]c + [K(1)]c′ ) [P] (8)

Kij ) ∫∫∫
Ω

D[∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y
+

∂φi

∂z

∂φj

∂z] dV (9)

Kij
(1) ) ∫∫∫

Ω
φiφj dV (10)

Pij ) ∫∫
∂Ω2

(dΓ
dt )φi dA (11)

[K]c + [K(1)]c′ ) P (12)

Γ
Γ∞

) x ) C
C + a

(13)

γ - γ0 ) Γ∞RT ln(1 - x) (14)

γ[1/R1 + 1/R2] ) ∆P (15)

dφ/ds* ) 2 + Bz* - sinφ/x* (16a)

dx*/ds* ) cosφ (16b)

dz*/ds* ) sinφ (16c)

x* ) s* (17a)

z* ) 2[1 - J0((-B)1/2x*)]/( -B) (17b)

φ ) 2[J1((-B)1/2x*)]/( -B)1/2 (17c)
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6. Simulation Framework

Pendant Bubble. Table 1 illustrates the representative
simulation parameters of the pendant bubble system used in this
study. The concentrations chosen in the study intend to cover the
actual working range applied in the dynamic experiments of
surfactant adsorption. To evaluate the effects of bulk concentration
on the adsorption kinetics, dimensionless concentrations (C0/a)
of 0.5, 2.5, and 10 are studied. Note thata is the surfactant
activity (eq 13).

The deformation of bubbles also depends upon the drop volume
and capillary constant. Pendant bubbles with three different
capillary constants,-B ) 0.1, 0.2, and∼0.3, and three different
R0 (radius of curvature at apex) are studied to evaluate the effect
of bubble shape on the dynamic surface tension. The bubble
profiles studied in this work are shown in Figure 3.

The equilibrium surface tension at different bulk concentrations
can be calculated from eqs 13 and 14. In this study, the needle
is fixed (assumingRn ) 0.535 mm) half of the o.d. of a needle
of gauge no. 19), and theR0 of the pendant bubble can be obtained
from the givenB and equilibriumγ. As mentioned above, the
profiles of pendant bubbles depend only onBandR0. With known
values ofB, R0, andRn, the boundary∂Ω2 of the computational
domainΩ can be generated by the numerical procedure detailed
in above section. The surface areas and volumes of the generated
pendant bubbles are listed in Table 1.

To construct the computational domainΩ for FEM, an
imaginary boundary∂Ω1 is essential. In this study, the imaginary
boundary∂Ω1 was chosen based on a mass balance of surfactant
to simulate the infinite boundary condition, which is used in the
classical spherical case.6,21TheΩ is designed to contain surfactant
around 25-30 times the absorbed surfactant at bubble surfaces

when the system has reached the equilibrium state. Under this
condition, the acceleration of the rate of mass transport due to
the assumption of fixed bulk concentration on∂Ω1 will not affect
the DST profiles. IfΩ contains surfactant less than 10 times the
absorbed surfactant, the effect on DST due to the assumption of
fixed concentration on∂Ω1 may be significant. A normal distance
for Ω containing 30 times the absorbed surfactant on∂Ω2 is
defined asH*. In other words,H* (listed in Table 1) is a normal
distance between∂Ω1 and the bubble surface∂Ω2 in the apex
direction.

Spherical Bubble.To examine the spherical mass transport
model and to investigate the effect of the needle on DST, two
simulations on a spherical surface were performed. The first one
considers a perfect spherical air-water interface, in which the
spherical interface is completely enclosed by surfactant solution
without a needle attached to it. The second one considers a bubble
of spherical shape attached to the tip of a syringe needle with
radiusRn ) 0.535 mm.

Mass transport in the solution bulk phase was commonly
simplified to diffusion onto a sphere.6 An implicit equation for
the evolution of surface concentration to a spherical bubble of
radiusb is6

The last two items in the above equation are the same as the
Ward-Tordai planar expression. The equation becomes the
Ward-Tordai planar expression whenb(bubble radius) is infinity.

Table 1. Representative Simulation Parametersa

no. C0/a xe

γe

(mN m-1) -B
R0

(mm)
H*

(mm)
hp

(mm)
hsp

(mm)
hp-b

(mm)
A

(mm2)
V

(mm3)
VS

(mm3)

1 0.5 0.33 64.9 0.10 0.81 8.0 11.6 2.0 1.9 7.7 2.4 2874
2 0.5 0.33 64.9 0.20 1.15 10.0 11.6 2.5 2.3 18.4 7.9 5805
3 0.5 0.33 64.9 0.29 1.39 11.3 11.6 2.7 2.6 31.5 16.6 8473

4 2.5 0.71 50.3 0.10 0.72 5.4 5.0 1.3 1.2 5.8 1.6 972
5 2.5 0.71 50.3 0.20 1.01 6.7 5.0 1.5 1.3 11.8 5.3 1922
6 2.5 0.71 50.3 0.30 1.24 7.6 5.0 1.7 1.6 25.0 11.9 2885

7 10 0.91 30.5 0.10 0.56 3.0 1.6 0.63 0.58 2.8 0.6 185
8 10 0.91 30.5 0.20 0.79 3.7 1.6 0.72 0.66 8.0 2.4 371
9 10 0.91 30.5 0.33 1.01 4.3 1.6 0.80 0.71 16.8 6.7 607

a Parameters used:Γ∞ ) 7 × 10-10 mol/cm2, a ) 4 × 10-10 mol/cm3, D ) 5 × 10-6 cm2/s, andRn (outer radius of the needle)) 0.535 mm.
A ) bubble surface area,V ) bubble volume,VS ) solution volume, andH* is calculated fromVS in which there is 30 times the surfactant ofAΓe.

Figure 3. Comparison between the pendant-bubble profiles withR0 (solid curves) on the tip of the needle and the spherical bubble with
Ri ) R0 (dashed curves). The numbers 1-9 indicate cases 1-9 in Table 1.C0/a ) (a) 0.5, (b) 2.5, and (c) 10.

Γ(t) ) D
b

[C0t - ∫0

t
Cs(τ) dτ] + 2xD

π
[C0xt -

∫0
xtCs(t - τ) dxτ] (18)
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Adsorption Depth. For a planar fluid-liquid interface, an
adsorption depth is commonly defined based on the mass
balance: VC0 ) AhpC0 ) AΓe. A bulk solution within one
adsorption depth contains the same amount of surfactant as that
which absorbs at the fluid-liquid interface, when the system
reaches equilibrium.33Therefore,hp ) Γe/C0 for a planar surface.

For a spherical bubble, the adsorption depth can be defined
in a similar way in the radial direction. Consider the same mass
balance of surfactant for a spherical surface: (4π/3)(R*3 - Ri

3)-
C0 ) 4πRi

2Γe. Ri is the radius of the spherical bubble, andR*
defines a bulk domain, containing the same amount of surfactant
as that which adsorbs at the spherical interface. Therefore, the
adsorption depth in the radial direction for a spherical bubble is
defined as:hsp) R* - Ri.

For a pendant bubble, the adsorption depth in the radial direction
can be expressed ashpb ) R0* - R0. R0 is the radius of curvature
at the apex of a pendant bubble, andR0* is evaluated from a
similar mass balance of surfactant: (V/R0

3)(R0*3 - R0
3)C0 )

AΓe, whereA and V are the surface area and the volume of
pendant bubble. In other words,R0* is the equivalent radius of
curvature in the apex direction for a pendant bubble (see Figure
1). These three different adsorption depths are listed in Table 1
for the cases shown in Figure 3.

7. Simulation Results

FEM Validation . The spherical FEM implementing the above
algorithms has been conducted for the cases shown in Figure 3.
Dynamic surface tension profiles from the FEM and the classical
spherical model (CSM, eq 18) are demonstrated in Figure 4a and
b for comparison. The DST profiles for the FEM without a needle
(solid curves) and those for the CSM (dashed curves) are nearly
identical. The implemented geometrical model, mesh element,
time-stepping algorithm, and discretization method of the FEM
are therefore verified.

Figure 4c shows DST profiles of a pendant bubble using the
FEM with different mesh numbers. The DST with 1993 mesh
elements shows a slower relaxation (higher tension) than those
with 3649 or 8572 elements. However, the cases for 3649 and
8572 elements resulted in nearly exact same DST profiles. Note
that the mesh size decreases with increasing mesh number, and
a lower mass flux results when the mesh size is too large. To
have an accurate DST profile, over 8600 mesh elements are
utilized in all the simulations in this work.

Needle Effect.In the pendant bubble method, bubbles are
commonly generated at the tip of a syringe needle for DST
measurements. The existence of a needle may affect the surfactant
mass transport due to the significant volume of the needle. Two
representative DST profiles for spherical bubbles with or without
a needle are shown in Figure 4a and b. Note that the spherical

bubble of case 7 is small compared with that of case 3 (as shown
in Figure 3), but the needle diameter is the same for both cases.
The data in Figure 4a show that the DST for run 7 with a needle
(dotted curve) relaxes faster clearly than that without a needle
(dashed curve). For a bigger bubble (case 3), the existence of
a needle does not result a faster relaxation of DST (Figure 4b).
The data in Figure 4 (a and b) imply that the existence of a needle
may accelerate the rate of mass transport when the size of the
needle is comparable to the size of bubble. This is because the
tip of the needle covers parts of the surface of the spherical
bubble. The surfactant within the solution in the neighborhood
of the needle cannot diffuse across the needle. Therefore,
surfactants in this region diffuse and adsorb directly onto the
bubble surface adjacent to the needle tip.

In other words, whenRn (radius of the needle) is close toRi

(radius of the spherical bubble;Ri ) Rb for the CSM), this
acceleration becomes significant, and the DST shows a faster
relaxation. IfRi is much lager thanRn, the deviation is nearly
negligible. Therefore, a larger bubble and/or a smaller needle are
recommended on measuring the DST when one applies a pendant
bubble technique. One can then use the CSM to simulate the
measured DST profiles on studying the adsorption kinetics when
the spherical bubble is large enough.

Pendant Bubble.The FEM simulations on DST for pendant
bubbles and spherical bubbles with a needle are shown in Figure
5. The bubble profiles are shown in Figure 3, and solution
properties are listed in Table 1. Data in Figure 5a and d show
that the DSTs of pendant bubbles (solid curves) are very close
to the DSTs of spherical bubbles with a needle (dashed curves)
when the absolute capillary constant is small (i.e., when a pendant
bubble is close to parts of a sphere). Figure 5a and d shows cases
1 and 7 in Table 1, where-B ) 0.1.

When-B becomes large, that is, the pendant bubble deviates
significantly from a spherical shape, the DST relaxation profiles
of pendant bubbles are slightly higher than those of spherical
bubbles with a needle. Figure 5 (b, c, and f) shows cases 2, 3
and 9 in Table 1, where-B ) 0.2 and∼0.3. The DST of a
pendant bubble (solid curve) with a larger-B departs more
significantly from that of a spherical bubble (dashed curve).

Figure 5d shows again that the needle effect on DST, that is,
the difference between the pendant bubble (solid curve, with
needle, p-b) and classical spherical model (CSM, dotted curve,
without needle), is significant for a small pendant bubble. DST
from the CSM shows a slower relaxation for a small bubble
(with a smaller-B). Recall that the DST profiles from a pendant
bubble and from a spherical bubble with a needle are very close
to each other when the bubble is small. The faster surface tension
relaxation for a small pendant bubble (or a spherical bubble with(33) Ferri, J. K.; Stebe, K. J.AdV. Colloid Interface Sci.2000, 85, 61.

Figure 4. (a and b) DST profiles from (i) the CSM (dashed curves) and (ii) the FEM predictions for spherical bubbles without (solid curves)
and with (dotted curves) the needle for case 7 (a) and case 3 (b). (c) DST profiles of a pendant bubble using FEM with 8572 (solid curve),
3649 (dashed curve), and 1993 (dotted curve) mesh elements for case 7 in Table 1.
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needle) is caused by the mass flux acceleration due to the existence
of a needle. Recall here that the CSM predicts the DST without
a needle.

The simulation data for a large pendant bubble (with a large
-B, solid curves) show a slower DST relaxation (Figure 5c and
f) than that of the CSM (dotted curves) or a spherical bubble with
a needle (dashed curve). These data show the shape effect on
bulk diffusion: the rate of diffusion onto a pendant bubble is
significantly different from that onto a perfectly spherical surface.
Recall that the needle effect is negligible for a large bubble (with
a large-B).

The deviations of the DST between the FEM of a pendant
bubble (solid curves) and the CSM (dotted curves) forC0/a )
0.5 (Figure 5c), 2.5, and 10 (Figure 5f) are nearly identical.
These nearly same deviations indicate that bulk concentration
plays only a minor role here.

In summary, needle size and bubble shape are the two major
factors that affect the DST for surfactant bulk diffusion. The
existence of a needle accelerates bulk diffusion for a small bubble
(Figure 5d). However, a flatter pendant bubble profile (large
-B) decelerates the bulk diffusion. These two factors may
counterbalance each other under certain conditions. For example,
Figure 5e shows a nearly same DST profile for the pendant
bubble FEM as well as the CSM. Note that, in Figure 5c and f,
the deceleration dominates the DST relaxation for a large pendant
bubble.

The CSM has been applied to interpret the DST data measured
using pendant the bubble technique for several surfactants.6,18-20

When the mass transport is a diffusion-controlled process,
diffusivity is the only unknown parameter. Diffusivity can then
be evaluated from the best-fit between the experimental DST
data and the theoretical DST profiles from the CSM. In the
following work, a constant diffusivity,D ) 5.0 × 10-6 cm2/s,
is utilized for theoretical simulations.

Fitting Using the CSM. We assume that the pendant bubble
FEM with a needle predicts the exact DST profiles, and one
applies the CSM without a needle to simulate the bulk diffusion
of surfactant. Figure 6 shows that the CSM can predict the DST
profiles perfectly, however, with a different diffusivity. For a
small bubble (Figure 6a), a larger diffusivity (5.3× 10-6 cm2/s)
results from the CSM. Note that the solid curves have a diffusivity
of 5.0× 10-6 cm2/s. In other words, the needle effect causes an
∼6% deviation in the diffusivity when one applies the CSM to
simulate the DST profiles.

For a large pendant bubble (as illustrated in Figure 6b), the
CSM results in a diffusivity of 4.5× 10-6 cm2/s. A 10% error
results from the shape effect of a fluid-liquid interface for the
case in Figure 6b. Figure 7 gives a summary on the error of
diffusivity when one applies the CSM to fit the exact DST profiles.
The CSM underestimates the diffusivity by 10-12% for a large
bubble and overestimates the diffusivity by 6-10% for a small
bubble.

Note that if the air-water surface is assumed to be planar, the
DST shows a quite different relaxation (the dotted curves in
Figure 6) and a much larger diffusivity results from the best-fit
with the DST data (solid curves). A DST profile from a planar
surface may fit the DST data in a small time region quite well.
However, a larger diffusivity may result, and the deviation is
dependent upon the surfactant bulk concentration.

Figure 5. Comparison of DST profiles from the CSM (dotted curves) and from the FEM for spherical bubbles with the needle (dashed curves,
sph) and for pendant bubbles (solid curves, p-b) for cases 1 (a), 2 (b), 3 (c), 7 (d), 8 (e), and 9 (f), detailed in Table 1.

Figure 6. DST profiles from the pendant bubble FEM (solid curves;
case 4 (a) and case 6 (b) in Table 1;D ) 5.0 × 10-6 cm2/s) and
from the CSM (dashed curves 1-4). D ) 5.0 (1), 5.6 (2), 4.2 (3),
and 4.8 (4) [10-6 cm2/s] for the dashed curves. Dotted curves 5-10
are the DST for a planar surface withD ) 5.0 (5 and 8), 20 (6), 50
(7), 10 (9), and 30 (10) [10-6 cm2/s].
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Bulk Concentration Profile. Figure 8 illustrates an example
of the bulk concentration profiles at different positions in solution
space and at dimensionless timet* ) 1 (here,t* ) Dt/hp-b

2).
Since the surfactant concentrationC(x, y, z, t) is axis-symmetric,
only two variables, C(r, θ, t), are needed to specify the
concentration in the bulk phase. The dimensionless adsorption
depthd* ()(R0* - R0)/hp-b) and an angleΦ are utilized in this
study.

The dimensionlessd* indicates the distance away from the
air-water interface, as shown in Figure 1. A second spatial
variable, angleΦ, in the bulk phase is defined as the direction
passing the point (x ) 0, z ) R0) and the interface with turning
angleΦ. Note that the apex (atx ) 0, z ) 0) has zeroφ andΦ
) 0 indicates a position right below the apex.

For the solution far away from the air-water interface (at
larged*), the surfactant concentration in the bulk phase is quite
uniform in all directions of differentΦ. At smalld* (bulk regions
close to the bubble surface), an increase in bulk concentration
is observed at largeΦ. This increase becomes significant when
the bulk concentration of surfactant solution is high.

A decrease in bulk concentration withΦ was also observed
for large bubbles. For example, at-B ) 0.29, the concentration

profile near the bubble surface (d* ) 0.5 and 1.0) shows a small
decrease at the beginning and then increases with increasingΦ.
This variation of the bulk concentration is probably due to the
effect of the local shape of the pendant bubble on the diffusion
flux.

The concentration increase in the largeΦ section indicates the
needle effect. Surfactants cannot diffuse and adsorb onto the
needle wall (boundary conditions 4f); surfactants therefore diffuse
and adsorb onto the bubble surface adjacent to the tip of the
needle. Thus, a higher surfactant concentration results at the
bulk region close to the needle. This has been also discussed in
above section: the needle effect is more significant for a small
bubble (Figure 8, bubble with-B ) 0.1). However, for the bulk
region far enough away from the bubble surface (d* >1), the
needle effect becomes nearly negligible.

Figure 9 demonstrates the dynamic bulk concentration at
various solution depths (d*) at zeroΦ for a diffusion-controlled
adsorption process. The limited bulk diffusion causes a decrease
in surfactant concentration at a short time, and then it relaxes and
comes back to the initial bulk concentrationC0 as the system
reaches equilibrium. The decrease ofC/C0at a specificd* indicates
that the bulk diffusion rate (AD∇C) of the surfactant to this
position is smaller than that from this position to the subsurface
at this time.C/C0 increases with time when the bulk diffusion
rate to this point is larger than that from this point to the subsurface.
It takes a longer time for theC/C0 profile to reach its minimum
for a largerd* (farther away from the bubble surface). A dilute
solution also takes a longer time for the adsorption onto a freshly
created bubble surface to reach its equilibrium state.

Figure 9 shows also the diffusion flux (per surface area) at
variousd* at zeroΦ. In general, the flux increases with time,
reaches a maximum, and then decreases at the time when the
surface tension relaxation is leveling off. There is a larger flux
at smallerd*, the region close to the air-water surface. Both the
C/C0 and diffusion flux curves specify the region of the mass

Figure 7. Relative diffusivity difference between the pendant bubble
FEM (D1, with a needle) and the best-fit diffusivity from CSM (D2,
without a needle) at various surfactant concentrations. The number
under the symbol indicates the case number listed in Table 1 or
Figure 3.

Figure 8. Bulk concentration profile along angleΦ at different
solution depthsd* at t* ) 1.0: -B ) 0.1 (solid curves) and-B
) ∼0.3 (dashed curves);C0 ) 2.0× 10-10 (a) and 4.0× 10-9 (b)
mol/cm3.

Figure 9. Dynamic bulk concentration (dashed curves) and
diffusion flux (solid curves) at various solution depths at zeroΦ for
case 3 (a,C0/a ) 0.5) and case 9 (b,C0/a ) 10), listed in Table 1.
Solution depthd* ) 0.01 (1), 0.1 (2), 0.5 (3), 1 (4), 2 (5), and 4 (6).
The dotted curve shows the relaxation of adsorption flux at the
air-water surface.
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transport wave due to the sudden creation of a pendant bubble
(i.e., a certain area of the air-water interface) inside a bulk
solution.

The dotted curve in Figure 9 indicates the adsorption flux at
the surface, which is the average of the adsorption flux at all
differentΦ. The dotted curve is very close to, but smaller than,
the one atd* ) 0.01 andΦ ) 0. This implies that the diffusion
flux in the direction ofΦ ) 0 is a little larger than the average
diffusion flux at t < 1000 s. It is noted that the diffusion flux
varies slightly at variousΦ.

The corresponding dimensionless concentration contours
outside the pendant bubble for case 9 (listed in Table 9) are
plotted in Figure 10 at dimensionless timet* ) 0.2, 0.6, 1.0, and
5. Note thatt/t* ) 1019 s for case 9. The contours close to the
bubble surface are enlarged in Figure 11 fort* ) 0.02, 0.2, 0.6,
and 1.0. Figure 10 shows that the depleted surfactant region (for
example, the region forC/C0 < 0.99) grows with time. Att )
200 s, it is only about 1 mm (the size of the bubble radius), and
γ reaches 67 mN/m at this time. It increases to 2.2 mm att )
1000 s and even reaches to around 3.6 mm att ) 5000 s. Note
that the depleted region becomes thinner at the end of the mass
transport process.

Figure 11 shows the variation of the surfactant concentration
adjacent to the bubble surface. Att ) 20-200 s, the surfactant
concentration adjacent to the bubble surface decreases with time
(see also curve 1 in Figure 9) and the depleted surfactant region
increases quickly. Note that the subsurface concentration also
decreases with time during this time period.

The depletion of the surfactant concentration in the bulk phase
is due to the bulk diffusion onto a freshly created bubble surface,
first into the region adjacent to the bubble surface and then deeper
into the bulk phase. A solution depthd* in the bulk phase, where

the surfactant concentration is depleted by 5% (C/C0 ) 0.95),
is defined asd95*. In other words,d95* is a simple index on how
deep the bulk solution is for the surfactant adsorption process
at that specific time. In a similar way, one can defined90* and
d99* for a solution depthd* in the bulk phase where the surfactant
concentration is depleted by 10% and 1%, respectively.

Figure 12 demonstrates the dynamicd95* at two different angles
of pendant bubbles. At dilute concentrations (C0/a ) 0.5 for
curves a-d in Figure 12a), the maximumd95* is roughly twice
the adsorption depth. At a higher concentration (C0/a ) 10 for
curves e-h in Figure 12b), 3 times the adsorption depth is needed
for the maximumd95*. Besides, a bubble with a larger-B(dashed
curves in Figure 12) has a larger maximumd95*.

Someone may prefer using the position withC/C0 ) 0.90 or
0.99 as the affected depletion depth. Figure 13 illustrates the
effects of the capillary constant and bulk concentration on the
maximumd90*, d95*, and d99*. The maximumd90*, d95*, and
d99* values go up to around 2, 3, and 4.8, respectively.

The dynamicd95* increases with time, reaches a maximum,
and then relaxes and comes back to zero. The relaxation ofd95*
indicates the depth of the mass transport wave, that is, the region
with significant surfactant concentration depletion in the bulk
phase. The maximum value of the dynamicd95* or d99* curve
is therefore the minimum solution depth required for a surfactant
solution being designed for this solution system to be claimed
as “a pendant bubble in an infinite solution system”.

8. Illustration Example of C12E4

DST profiles of nonionic surfactant C12E4solutions are utilized
to examine the present FEM model since the Langmuir isotherm

Figure 10. Dimensionless concentration contours outside the pendant bubble for case 9 at timet* ) 0.2, 0.6, 1.0, and 5, wheret/t* )
1019 s.

Figure 11. Dimensionless concentration contours in the neighborhood of the pendant bubble surface (dashed curves) for case 9 at timet*
) 0.02, 0.2, 0.6, and 1.0.
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fits the DST data of C12E4 reasonably well.34,35 The model
constants for C12E4 at 25°C areΓ∞ ) 3.90× 10-10 mol/cm2 and
a ) 4.66× 10-10 mol/cm3, which were obtained by minimizing
the deviation between the experimental equilibrium data and
theoretical curves.

The shape of a pendant bubble relaxes with time during the
surfactant adsorption process, and even the bubble volume keeps
nearly constant. Illustrated in Figure 14 is a representative example
for the relaxation of capillary constant during the surfactant
adsorption process. In this run of 6.0×10-9mol/cm3, the capillary
constantB varies from-0.23 to-0.31. This indicates a bubble
elongation and a decrease of surface tension during this process.
A capillary constant of-0.31 was used for the FEM numerical
simulation in this case.

The diffusivity of C12E4 can be obtained from the DST data
in Figure 15. Theoretical DST profiles from the FEM (solid
curves) and CSM (dashed curves) were computed by adjusting
the diffusivity to achieve the best-fit with the experimental DST
data. DST at two bulk concentrations, 6× 10-9 and 10× 10-9

mol/cm3, were used, and the diffusivities that resulted from the
FEM are roughly 10% higher than those from the CSM. The
fitting between the other DST data of different surfactant
concentrations and the corresponding theoretical curves has a

nearly same result. This 10% increase is similar to the results
shown in Figure 7 (cases 3, 6, and 9) for bubbles with large-B.

In practice, pendant bubbles deform under gravity during
dynamic surface tension measurements. In Figure 14, the capillary
constant (-B) remains nearly constant fort < 50 s at this
concentration, whereγ goes down slowly also.R0, -B, andγ
all level off at large times, where the mass transport process
approaches nearly the equilibrium state. A dramatic increase of

(34) Hsu, C. T.; Shao, M. J.; Lin, S. Y.Langmuir2000, 16, 3187.
(35) Hsu, C. T.; Shao, M. J.; Lee, Y. C.; Lin, S. Y.Langmuir2000, 16, 4846.

Figure 12. Dynamic 95% depletion depth of pendant bubbles at
a small and a largeΦ for runs 1, 3, 7, and 9, listed in Table 1.

Figure 13. Maximumd90*, d95*, andd99* as a function of capillary
constantB and bulk concentrationC0 for the cases listed in
Table 1.

Figure 14. Relaxation of the capillary constant and bubble volume
for a pendant bubble of C12E4 during surfactant adsorption forC0
) 6 × 10-9 mol/cm3.

Figure 15. DST data for C12E4 adsorption onto a freshly created
air-water interface and the best-fit theoretical curves from FEM
(solid curves) and CSM (dashed curves) forC0 ) 6 (a) and 10 (b)
[10-9 mol/cm3].

Figure 16. Comparison between the DST profiles predicted using
R0 andB at t ) 100 s (R0 ) 1.30 mm,B ) -0.235; dashed curve)
and t ) 3000 s (R0 ) 1.22 mm,B ) -0.310; solid curve) forC0
) 6 × 10-9 mol/cm3. Circles represent the measured DST data.
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-B takes place at a short time (100-400 s) region, whereγ
decreases dramatically.

To evaluate the effect of bubble deformation on DST, two sets
of R0 and-B were chosen for the FEM simulation. One set is
the values at equilibrium, and the other is those att ) 100 s,
whereR0, -B, andγ start to change abruptly. Figure 16 shows
the DST profiles for these two sets of parameters for C12E4.
These two DST profiles are nearly identical. Similar results are
also observed for the other three C12E4 concentrations. Therefore,
bubble deformation (shown by the change of-B andR0) during
the surfactant adsorption process has a negligible contribution
to DST.

9. Conclusion and Discussions

A finite element method (FEM) for simulating surfactant
adsorption onto a freshly created pendant bubble was successfully
applied to analyze the adsorption kinetics of a diffusion-controlled
process. The FEM applied to the surfactant adsorption process
in this study was based on the pendant bubble shape and needle
used in the experimental measurements.

The simulation results indicate that the needle size and bubble
shape are the two major factors affecting the DST of the surfactant
bulk diffusion process. The existence of a needle, where a pendant
bubble is hanging on the tip, accelerates the bulk diffusion for
a small bubble. However, the shape of a large pendant bubble
decelerates the bulk diffusion.

Furthermore, the FEM is capable to study the relaxation of the
surfactant concentration in the bulk phase. One is therefore able

to monitor the flux and direction of the surfactant diffusion process
by using the FEM.

When one uses the classical spherical model (CSM) to simulate
the DST data, the CSM may underestimate the diffusivity by
10-12% for a large pendant bubble and overestimate the
diffusivity by 6-10% for a small bubble. The DST data of C12E4

was also used to verify this phenomenon at the end of the above
section.

In this work, the Langmuir adsorption isotherm was applied
for modeling the adsorption/desorption behavior. Since the
molecular interaction between the adsorbed surfactants has been
verified to be important for many surfactants, the use of an
isotherm including the intermolecular interaction forces should
be considered. The study using the Frumkin adsorption isotherm
is now in process in our lab.

It is noted that the simulation in this study will work only for
the diffusion-controlled mass transport of nonionic surfactants
with C < cmc. For ionic surfactants with significant ionic forces
between surfactant molecules,36,37the assumptions of diffusion
control and the Langmuir adsorption isotherm used in this work
may fail.
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