
Electroosmotic Flow in a Microcavity with Nonuniform Surface
Charges

David Halpern† and Hsien-Hung Wei*,‡

Department of Mathematics, UniVersity of Alabama, and Department of Chemical Engineering, National
Cheng Kung UniVersity, Tainan 701, Taiwan

ReceiVed May 9, 2007. In Final Form: June 12, 2007

In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with
nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation
because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the
cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading
to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that
possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ
a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow
structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures,
depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned
EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for
electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective
mixing in microgrooves.

1. Introduction

Thanks to the recent advance of micro/nanotechnology, parallel
processing and automation on a small scale are now possible and
have provided new paradigms for fulfilling various functions in
an integrated, miniaturized device under the theme of microf-
luidics. Because fluid/mass transport processes such as pumping,
mixing, and separation are indispensable to almost every
microchip-based analysis, the key to successfully realizing desired
operations often relies on the ability to control and manipulate
the underlying transport processes. Although considerable efforts
have been made toward this aim, electrokinetics actuation has
recently emerged as a promising means to transport analytes on
a small scale because it can be achieved on a portable device
with embedded microelectrodes and, more importantly, it offers
a diversity of manipulation capabilities without moving parts.

The most common way to convey fluids using electrokinetic
effects is through electroosmostic flow (EOF). The phenomenon
arises from the movement of space charges under the action of
an applied electric field. Because these charges (mostly coun-
terions) are typically bound to the surface within a thin (10-100
nm) electric double layer, they create large surface fields and
establish Poisson-Boltzmann equilibrium instantly (∼10-7 s)
across the layer. This short-range surface charge effect im-
mediately allows the double layer to screen external fields
normally, making the double layer act like an insulator. Because
this thin charge cloud acts as a mobile “sheath” next to the surface
and can migrate onlytangentiallyin response to an applied field,
its motion in turn drags the adjacent fluid through the effect of
viscosity, and the resulting fluid motion will look as if the surface
is sliding. This creates an EOF with a characteristic Smoluchowski
velocity1

whereε and µ stand for the permittivity and viscosity of the
fluid, respectively,ú* is the surface zeta potential across the
double layer, andE is the applied tangential field along the surface.

Because EOF appears as a macroscopic slip flow and is
independent of the channel widthd, it looks like a plug flow and
hence eliminates significant Taylor dispersion commonly en-
countered in hydrodynamic pressure-driven flow. Because the
flow rate is now proportional tod2, EOF has a smaller flow
resistance than pressure-driven flow (whose velocity scale and
flow rate are proportional tod2 andd4, respectively). In addition,
because much stronger electric fields can be rendered on small
length scales, EOF is more effective for transporting fluids than
for pressure-driven flow in microdevices.

Although EOF appears to be advantageous to transport fluids
on a small scale, apure EOF on uniformly charged surfaces
often suffers from mixing deficiencies and lacks other manipula-
tion abilities (e.g., the trapping of particles) because its irrotational
nature does not permit vortices or recirculating streaming
necessary for these processes. One way to overcome these
shortcomings is to impose nonuniform charges on the surfaces.
Because the analogy between electrostatics and hydrodynamics
now breaks down, this in turn provides an alternative route to
creating vortices needed for engineering the flow. Anderson and
Idol2 first demonstrated this idea and found secondary flows in
a capillary with axial variation in the surface zeta potential. Ajdari3

later showed a variety of recirculating EOF structures through
spatial modulation of the surface charge densities of the channel
walls. Stroock et al.4 experimentally investigated EOF with
charge-patterned strips and verified the existence of recirculating
flow structures predicted by theory. As such, the concept of
patterned EOF can indeed be realized and justified.
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The ideas of utilizing patterned EOF have been explored in
various microfluidic manipulations. By making use of time
periodic alternations of zeta potentials5 or surface patterning,6

one can generate chaotic advection or 3D flow structures to
enhance mixing. An EOF with obliquely patterned surface charges
in a straight microchannel has also been shown to be capable of
generating significant swirling/secondary flows for mixing.7

Strategies using patterned EOF are also developed for designing
micropumps through asymmetric channels or electrode designs
under ac fields.3,8 It could also have the potential to stretch or
trap macromolecules.9 A patterned EOF can further work with
another imposed flow (e.g., pressure-driven flow) and yield a
variety of flow structures (e.g., closed streamlines or even saddle
points), depending on the relative flow strength.10 Judicious
control of these flows might fulfill a variety of particle
manipulations (e.g., mixing, trapping, separation, etc). A recent
study11 with a cross-slot channel design demonstrated that
nontrivial interactions between a patterned EOF and electro-
phoresis can result in various types of motion of charged colloids,
which further extends the ability to manipulate colloidal
suspensions.

Although nonuniformly charged EOF has revealed rich flow
features, most efforts are based on simple straight-channel
geometry. In microfluidic or MEMS applications, however, a
featured device, which often comprises of composite materials
or a number of different layers, could display structures (e.g.,
grooves or slits) with nonuniform depths in the channel geometry.
If there is any defect, for example, due to imperfect coating or
etching, nonuniform charges could be exposed on the uneven
surfaces and hence be susceptible to EOF vortices in the presence
of electric fields, which could be undesirable if dispersion is
critical to the process. However, the mixing of analytes or the
performance of precise manipulations in such a device using
pure EOF would be unattainable unless one imposes nonuniform
surface charges or other electrokinetic effects are included.12

Motivated by the above, it seems that there is a need to
understand how non-straight-channel geometry affects the
structures of nonuniformly charged EOF. There are two effects
arising from non-straight geometries. First, the electric field is
no longer uniform, as it must be larger (smaller) in a narrower
(wider) cross section according to Gauss’s law. It thus follows
that the Smoluchowski velocities are not all the same along the
channel surfaces even with the same surface charge. If the
walls are charge patterned, then this electric field can produce
EOF recirculating patterns that are qualitatively different from
those in the straight-channel case. Second, the flow field can be
further mediated by geometric effects due to a nonuniform cross-
sectional area. Because the fluid must fulfill the requirement of
a constant flow rate across the channel, this effect inevitably
causes adverse pressure gradients and hence affects the flow
structure because of the suppression or extension of the patterned
EOF rolls.10

There have been only a few attempts to understand the EOFs
in nonstraight geometries with nonuniform surface charges. Qian
and Bau13 studied the EOF in a closed cavity whose top and

bottom walls have different surface charges and are subjected
to a uniform electric field generated by sidewall electrodes. They
solved the flow analytically and demonstrated a variety of
recirculating flow patterns, depending on the distributions of the
surface charges. Furthermore, they modulated these flows
alternatively to create chaotic mixing in which a blob of
nondiffusive tracers can undergo rapid folding and unfolding as
a result of the temporal change of the flow structure. Hahm et
al.14 recently carried out simulations to study electrokinetic flow
in a grooved microchannel having patterned charges on its side
surfaces. In their model, the top and bottom surfaces of the channel
are electrodes, which are able to generate an electric field that
acts vertically across the groove. The resulting flow again
exhibited various streamline patterns, depending on the surface
charges of the side surfaces and the interaction between
hydrodynamic flow and EOF. They also explored solute transport
using these flows and demonstrated the ability to control the
behavior of the transport.

In this work, we examine the flow behavior of EOF in an open
microcavity with nonuniform surface charges. Recall that a
uniformly charged EOF does not permit any flow separation
because of its irrotational nature, yet an EOF with nonuniform
surface charges will render vorticity. It is therefore our intent to
examine its susceptibility to flow separation as compared to the
classical benchmark problem, viz., viscous flow through a no-
slip cavity. Because the latter case often accompanies the
formation of Moffatt eddies,15 it is also interesting to determine
if an EOF in a nonuniformly charged cavity will bear similar
features due to nontrivial vorticity generation. More importantly,
interactions between patterned EOF vortex and Moffatt eddies
could exist, which will also be explored in the present study. The
article is organized as follows. We formulate the problem in
section 2. The solution method is provided in section 3. Various
flow structures will be presented and discussed in section 4. In
section 5, comparisons are made between the present work and
previous studies. Conclusions are given in section 6.

2. Problem Formulation: Geometry, Governing
Equations, and Boundary Conditions

In this work, we consider 2D steady electroosmotic flow inside
a rectangular cavity of widthWand depthD. The upper corners
of the cavity are rounded to avoid singularities in the electric and
flow fields. The effect of having rounded corners will be discussed
in the next section. Cartesian coordinates (x*, y*), with the origin
defined at the center on the upper-surface plane, are used to
describe the geometry, with the side walls of the cavity defined
atx* ) (W/2 for -D e y* e -δD whereδD , D is the radius
of the rounded corner and the bottom wall defined aty* ) -D
for |x* | e W/2.

Here we are interested only in the region outside the thin
double layer in which the solution remains electroneutral (the
Ohmic region). Writing the electric fieldE* ) -∇φ* in terms
of the electric potentialφ*, Gauss’s law demands that the field
in the Ohmic region must satisfy the Laplace equation:

Because double-layer screening does not permit normal
penetration from the external field, it furnishes the insulating
boundary condition at the boundaries

(5) Qian, S. Z.; Bau, H. H.Anal. Chem.2002, 74, 3616-3625.
(6) Biddiss, E.; Erickson, D.; Li, D.Anal. Chem.2004, 76, 3208-3213.
(7) Chang, C. C.; Yang, R. J.J. Micromech. Microeng.2006, 16, 1453-1462.
(8) Ajdari, A. Phys. ReV. E 2000, 61, R45-48.
(9) Panwar, A. S.; Kumar, S.J. Chem. Phys.2003, 118, 925-936.
(10) Wei, H. H.J. Colloid Interface Sci.2005, 284, 742-752.
(11) Juang, Y. J.; Hu, X.; Wang, S. N.; Lee, L. J.; Lu, C. M.; Guan, J. J.Appl.

Phys. Lett.2005, 87, 244105.
(12) Hu, X.; Wang, S. N.; Juang, Y. J.; Lee, L. J.Appl. Phys. Lett.2006, 89,

084101.
(13) Qian, S. Z.; Bau, H. H.Appl. Math. Modell.2005, 29, 726-753.

(14) Hahm, J.; Balasubramanian, A.; Beskok, A.Phys. Fluids2007,19, 013601.
(15) Moffatt, H. K. J. Fluid Mech.1964, 18, 1-18.
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φ* ) 0 (2)
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wheren is the unit normal vector to the surface (pointing toward
the liquid). Far away from the cavity, the field is uniform,E*f

(E∞
/ , 0) as|x* |f ∞, which is rewritten as

The motion of the electrolyte is governed by the Stokes and
continuity equations

whereu* ) (u*, V*) is the fluid velocity with horizontal and
vertical componentsu* andV*, andp* is the fluid pressure. The
flow is driven by the slip walls subject to eq 1

with different zeta potentials at the walls

where the sides of the cavity AB, BB′, B′C, CD, DE′, E′E, and
EF are as shown in Figure 1 andθ is the angle between thex
axis and the cavity wall. Here we assume thatú∞

/ > 0 for the flat
surface outside the cavity, so EOF sufficiently far away from the
cavity is subjected to a uniform flow

whereU∞ ) εú∞
/E∞

/ /µ is the Smoluchowski velocity scale. We
nondimensionalize the problem by normalizing the following
quantities:

Hereafter, we will solve the following dimensionless governing
equations and boundary conditions and discuss the results that
follow:

3. Boundary Integral Methods for Solving Electric and
Flow Fields

We employ boundary integral methods to solve numerically
for the electric potential distribution and EOF field. As shown
in Figure 1, the domain includes the rectangular cavity and the
far field (AA′, FF′, and A′F′) where both the electric and velocity
fields are set to be uniform.

By applying Green’s theorem to the Laplace equation for the
electric potential (eq 2), we obtain the following integral equation

for φ and the normal gradient∂φ/∂nalong surfaceS, the boundary
of the computational domain shown in Figure 1

whereG(x, y) ) -1/2π log(|x - y|) is the free-space Green
function andC ) 1/2 if x is on the boundary butC ) 0 otherwise.
As for the flow field, the Stokes equation (eqs 5) are also solved
in a similar fashion, yielding the following integral equation
linking the velocity and the stress on the domainS

wherex is a point on surfaceS,τ ) σn is the stress vector,Cki

is a tensor that allows for a jump in normal stress, andUik and
Tik are kernels based on the free-space Green function:

We apply the boundary element method16,17 to determineφ,
∂φ/∂n,u, andτ onSand within the cavity. DomainSis discretized
into N quadratic elements, each having three nodes. Along each
element,φ, ∂φ/∂n, u, andτ are approximated using quadratic
polynomials and expressed in terms of a local arclength
coordinate. The potentialφ and the velocity fieldu are assumed
to be continuous everywhere. To ensure this at the upper rounded
corners of the cavity, the zeta potentialú is allowed to vary
smoothly from its prescribed value outside the cavity,ú ) 1, to
its prescribed value along the side walls of the cavity,ú ) ús,
according to the dimensionless form of eq 7. Two systems of
linear equations are then obtained, one for the unknownφ or
∂φ/∂nalong each of the boundaries that compriseSand the other
for eitheru or τ

whereHφ, Gφ, Hu, andGu are respectively 2N × 2N, 3N × 3N,
4N × 4N, and 6N × 6N matrices whose elements are computed
using Gaussian quadrature rules. These matrices are solved using
Gaussian elimination with partial pivoting for the unknownφ,
∂φ/∂n, u, andτ alongS. The electric and velocity fields within
the cavity can then be readily computed from eqs 13 and 14 by
choosing the appropriate values for the scalarC and tensorCki.

Care must be taken concerning the numerical simulation of
the electric field. It is well known from classical electrostatic
theory that there is a singularity of the electric field at a corner
if the wedge angleθ (measured on the fluid side) is greater than
π, as analogous to theory for potential flow.18 Namely, the local
electric field in the neighborhood of the corner is identified as
E ∝ r(π/θ) - 1 and so is the corresponding slip EOF velocity,
wherer is the distance from the corner. Therefore, singularities
occur at the upper corners of the cavity if the unit normal vector

(16) Brebbia, C. A.; Dominguez, J.Boundary Elements: An Introductory
Course; McGraw-Hill: New York, 1992.

(17) Pozrikidis, C.Boundary Integral and Singularity Methods for Linearized
Viscous Flow; Cambridge University Press: Cambridge, U.K., 1992.

(18) Batchelor, G. K.An Introduction to Fluid Dynamics; Cambridge University
Press: Cambridge, UK, 1967.

n‚∇*φ* ) 0 (3)

φ* f -E∞
/ x* as |x* |f ∞ (4)

∇*p* ) µ∇*2u*, ∇* ‚u* ) 0 (5)

u* ) ε

µ
ú*(x*) ∇*φ* (6)

ú* ) {ú∞
/ on AB and EF;

1
2
(ú∞

/ + ús
/ + [ú∞

/ - ús
/]cos 2θ) on

BB′(-π eθ e -π/2) and E′E(-π/2 eθ e 0);

ús
/ on B′C and DE′;

úb
/ on CD

(7)

u f (-U∞, 0) as|x* | f ∞ (8)

x ) x*
W

, y ) y*
W

, u ) u*
U∞

, p ) p*
(µU∞/W)

, E ) E*

E∞
/
, ú ) ú*

ú∞
/

(9)

∇2
φ ) 0, ∇p ) ∇2u, ∇‚u ) 0 (10)

n‚∇φ ) 0, u ) ú∇φ on the boundary ABB′CDE′EF
(11)

φ f -x, u f (-1, 0) as|x| f∞
(along AA′, FF′, and A′F′) (12)

Cφ(x) + ∫S
φ(y)

∂G
∂n

dS(y) ) ∫S

∂φ

∂n
(y) G(x, y) dS(y) (13)

Ckiui(x) + ∫S
Tik(x, y) ui(y) dS(y) )

∫S
Uik(x, y) τi(y) dS(y) (14)

Uik ) - 1
4π(δik log|x - y| -

(xi - yi)(xk - yk)

|x - y|2 )
Tik ) - 1

π
(xi - yi)(xj - yj)(xk - yk)nj(y)

|x - y|4
(15)

Hφφ ) Gφ

∂φ

∂n
, Huu ) Guτ (16)
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changes abruptly at these locations (from pointing horizontally/
vertically just inside/outside the cavity). Fortunately, the sin-
gularities in fact manifest themselves only over the length scale
on the order of the double layer near the corners. Also, as long
as the wall’s permittivity is sufficiently small compared to the
fluid’s,19 field penetration across the corner could be weak and
the effect could thus be considered only local; the field at a
distance sufficiently far away from the corners is regular. Besides,
a practical microdevice hardly has perfectly sharp edges. In view
of the above, we circumvent the singularity problem by making
the upper corners rounded so that the potential and velocity fields
are continuous everywhere. Also, we choose the radius of
curvature,δ, of these corners to be sufficiently small compared
to macroscopic length scales so that the results do not vary with
δ significantly. Here we useδ ) 0.03 throughout the simulations.

4. Flow Characterization of Electroosmotic Flow in a
Charged Patterned Cavity

The problem depends on the following parameters: the depth
to width ratioD/W, the zeta potential along the two vertical side
walls, ús, and the zeta potential along the bottom wall of the
cavity,úb. Outside the cavity,ú ) 1. First, we test the simplest
case: a square cavity (D/W) 1) having a uniform zeta potential
everywhere along the boundaries. Figure 2 shows the resulting
electric field and streamlines. Here the dashed lines correspond
to isopotential contours that must be perpendicular to the electric
field lines. This result clearly shows that the electric field lines
and streamlines coincide as a consequence of the electrostatics-
hydrodynamics similitude. Because the flow is proved to be
irrotational, neither flow separation nor vortex formation occurs
in this case. Increasing the depth of the cavity, no matter how
deep, does not give rise to any flow separation because of the

irrotational nature of this flow. This feature could be advantageous
for transporting fluids into deep grooves with high aspect ratios,
as opposed to pure hydrodynamics-driven flow in which Moffatt
eddies are often present within the cavity and hence significantly
reduce flow penetration depth.

Figure 3 shows the case in which we place no surface charge
on the cavity walls (i.e.,ús ) úb ) 0). This case can be thought
as uniform flow past a no-slip cavity. The cavity wall now serves
as a source of vorticity because there must exist substantial
velocity gradients on the no-slip wall. Meanwhile, an adverse
pressure gradient must develop to counterbalance the viscous
force within the cavity in order to fulfill the requirement of
constant flow rate across the depth. As a result, the flow exhibits
a large counterclockwise circulating eddy within the cavity.(19) Thamida, S. K.; Chang, H.-C.Phys. Fluids2002, 14, 4315-4328.

Figure 1. Computational domain used to solve for flow and electric fields inside a 2D rectangular cavity of widthW and depthD. Here,
L andH are chosen to be sufficiently large so that the far-field conditions are applied along edges AA′, FF′, and A′F′. The right panel shows
an enlarged view of the upper left corner of the cavity.

Figure 2. Streamlines (solid lines), electric field lines (red lines),
and lines of constant electric potential (dashed lines) inside a square
cavity for the case whereú ) 1 on all surfaces. The color scale
indicates the electric potential distribution. In this case, the flow is
irrotational, and streamlines and electric field lines coincide.

9508 Langmuir, Vol. 23, No. 18, 2007 Halpern and Wei



We now consider the effect of increasing the zeta potential
along the bottom wall but retainingús ) 1 along the sides of the
cavity. Here we set the slip velocity at the bottom wall to be in
the same direction as the free stream. Because the electric field
attenuates rapidly as it penetrates the cavity, for small and
moderate values ofúb the bottom-wall velocity is generally no
faster than the free-stream velocity. In this case, the fluid simply
enters and then leaves the cavity, as depicted in Figure 4.

However, when the velocity along the bottom wall exceeds
the free-stream velocity at some critical value ofúb (i.e., úb

/ ≈
12.5), this causes the streamlines at the bottom to turn clockwise,
giving rise to a small vortex and the appearance of a saddle point
within the cavity, as shown in Figure 5. This vortex grows in
size whenús is decreased (Figure 6), which is attributed to the
lack of lateral suppression from the slip flow set by the side
walls.

Whenúsvanishes, the clockwise vortex virtually fills the whole
cavity, as shown in Figure 7. In addition, there are two
counterclockwise microvortices formed between the saddle point
and the side walls. Such peculiar flow behavior can be explained
below. Whereas the free stream (toward the left) and the primary
vortex (in a clockwise direction) must join at the saddle point,
the streamlines that separate these flows create “wedges” between
themselves and the side walls, making the fluid in effect confined

within the wedges. Because the streams along the two sides of
each wedge follow the same direction and the nearby no-slip
side wall tends to retard the flow, a vortex must develop in this
confined region as a result of fluid mass conservation.

If we now decrease the zeta potentialúb on the bottom wall
for Figure 7, a new flow feature emerges, as shown in Figure

Figure 3. Uniform flow outside the cavity drives a large
counterclockwise circulating eddy within the cavity whose walls are
no-slip because of zero surface charge. For the bottom vortex,∆ψ
) 0.00225, and above it,∆ψ ) 0.02. Here,∆ψ stands for the interval
of the stream function values.

Figure 4. Effect of the bottom zeta potentialúb on the flow structure.
For small and moderate values ofúb, the flow simply enters and
leaves the cavity without eddies. Here, the interval of the stream
function values is∆ψ ) 0.013.

Figure 5. Saddle point appearing in the flow with a small vortex
if the bottom zeta potential exceeds some critical value. Here, the
interval of the stream function values is∆ψ ) 0.01235.

Figure 6. As compared to Figure 5, the vortex in the cavity grows
in size as the bottom zeta potential decreases. Here, the interval of
the stream function values is∆ψ ) 0.01185.

Figure 7. Streamlines for the case where no-slip is applied along
the side walls of the cavity. The flow field consists of a large eddy
rotating in a clockwise manner and two small counterclockwise
vortices near the top of the cavity. For the small vortices,∆ψ ) 6.3
× 10-5; otherwise,∆ψ ) 0.0057. Here,∆ψ stands for the interval
of the stream function values.

Electroosmotic Flow in a MicrocaVity Langmuir, Vol. 23, No. 18, 20079509



8. Although the central primary eddy diminishes in size (because
of the decreased driving velocity set at the bottom wall), the two
smaller vortices are now encompassed by one larger counter-
clockwise rotating roll but are separated by a saddle point in
between. Asúb is further decreased, these two smaller vortices
merge, forming a larger counterclockwise roll in the upper portion
of the cavity (Figure 9). Asúb f 0, the counterclockwise roll
eventually suppresses the bottom vortex as shown in Figure 3.

The results shown above are for the case in which the surface
charge on the bottom cavity is the same sign as that on the
exterior surface; that is, the slip motion on the bottom wall is
in the same direction as the free stream. We now examine the
úb < 0 scenario where the bottom-wall slip motion is in the
opposite direction to the free stream velocity. If there is no surface
charge on the side walls, then a counterclockwise circulating
vortex must develop in the cavity (Figure 10), which can be
thought of as a flow sandwiched by two oppositely moving lids.

However, ifús g 1, the slip side-wall flow, working together
with the free stream, is able to suppress the vortex and hence

confine it to the lower portion of the cavity, preventing the fluid
from further penetrating the cavity (Figure 11). In this case, the
external flow essentially sees a shallower cavity.

As shown above, we have identified a diversity of flow patterns
arising from a variety of surface charge conditions inside the
cavity. In particular, when the bottom surface charge is of the
same sign as the exterior surface, the flow behavior can exhibit
a simple in-and-out stream (Figure 4), various saddle-point flow
structures (Figures 5-8), or two vortices (Figure 9). Because the
changes between these flow characteristics for this case depend
on whether the saddle point appears or disappears, we construct
a flow map in Figure 12 to see how the flow structure changes
from one surface charge condition to another.

For smallús (<0.3), the criticalúb for the appearance of a
saddle point (Figure 8) decreases withús because a smallús

causes the generation of vorticity on the side walls, which is
prone to create a vortex in the top portion of the cavity. Because
this side-wall vortex grows with decreasingús, the formation of
a saddle point must entail a sufficiently large EOF roll to prevent
the fusion of the two side-wall vortices, which requires a larger
úb. As ús becomes larger (>0.3), the side walls become more
slippery, and the resulting criticalúb increases withús. For large
ús, the fluid tends to enter and leave the cavity without the
formation of vortices (Figure 4). In this case, the formation of

Figure 8. As compared to Figure 7, a reduction in the zeta potential
of the bottom wall results in a small vortex near the bottom wall and
the coalescence of the two smaller vortices near the top of the cavity.
The circular marker denotes the location of the saddle point. For the
bottom vortex and the streamlines near the entrance to the cavity,
∆ψ ) 0.005, and for the streamlines in the vicinity of the saddle
point,∆ψ ) 0.0006. Here,∆ψ stands for the interval of the stream
function values.

Figure 9. Decreasing size of the vortex near the bottom of the
cavity with decreasingúb. At the same time, the second vortex in
the upper portion of the cavity grows in size and eventually suppresses
the bottom one asúb f 0 (Figure 3). For the bottom vortex and the
streamlines near the entrance to the cavity,∆ψ ) 0.005, and for the
middle vortex,∆ψ ) 0.0012. Here,∆ψ stands for the interval of
the stream function values.

Figure 10. Single counterclockwise-rotating eddy filling the whole
cavity for the case whereúb < 0 and no-slip is applied along the
side walls,ús ) 0. Here, the interval between the stream function
values is∆ψ ) 0.0045.

Figure 11. Eddy close to the bottom wall shrinks in size if there
is some slip along the side walls,ús) 1. The external flow effectively
sees a shallower cavity.∆ψ ) 0.004 for the bottom vortex, and∆ψ
) 0.02 above it. Here,∆ψ stands for the interval of the stream
function values.

9510 Langmuir, Vol. 23, No. 18, 2007 Halpern and Wei



a saddle point requires a sufficiently large mismatch between the
free stream and the bottom slip velocities. In addition, the electric
field at the bottom is weaker than that outside the cavity. Therefore,
the bottom wall demands a larger surface charge to produce a
sufficiently fast slip velocity to compete with the free stream so
as to change the flow structure qualitatively.

After examining the flows in square cavities (D/W ) 1), we
now inspect a few cases to illustrate the effects of the aspect ratio
D/W on the flow structure. We first examineD/W > 1, which
corresponds to a deep cavity. Here, the primary focus is to explore
the interaction between Moffatt eddies and patterned EOF rolls.
To do this, we set the side walls to zero charge, which makes
the side walls nonslip so that the flow is susceptible to the
formation of Moffatt eddies inside the cavity. As a reference
case, we first show streamlines within a no-slip cavity withD/W
) 3 in Figure 13a and confirm the formation of Moffatt eddies.
When the bottom zeta potential is positive and sufficiently large,
we find two recirculating vortices with a saddle pointsa
combination of a Moffatt vortex in the upper cavity and an EOF-
induced vortex near the bottom wall, as shown in Figure 13b.
This is because, whereas a series of Moffatt eddies tends to
develop along the depth of the cavity, the flow will be mediated
by the EOF-induced vortex at the bottom. The adjustment between
these two flow structures thus leads to the formation of a saddle
point.

As forD/W< 1, which corresponds to a shallow cavity, Figure
14a-d shows various stream patterns forD/W ) 0.5 withús )
0. For úb ) 0, the flow exhibits two vortices separated by a
saddle point (Figure 14a). These vortices are suppressed and
separated by increasingúb (Figure 14b). At moderateúb, the
vortices vanish, and the flow turns into a simple in-and-out pattern
(Figure 14c), as the bottom-wall slip velocity tends to assist the
free-stream flow that attenuates when penetrating the cavity. At

sufficiently largeúb, however, the free stream cannot match the
flow created by the bottom wall. Hence, we find a saddle-point
structure (Figure 14d).

5. Comparison with Previous Studies

Although there are only a few reports13,14 of EOFs within
microcavities with nonuniform surface charges, it is worthwhile
to compare our work with these studies. Note that our geometry
and boundary conditions are different from theirs. So, the
comparison is merely qualitative and is made through the
observation of flow patterns. This also provides additional
verification for our numerical simulations and the physics thereof.

We first compare our work with Qian and Bau’s13 in which
the flow is confined within a closed cavity. For flow in an open
cavity as considered in the present study, we set up the free
stream as a uniform flow passing over the cavity, which can
somewhat be thought to act like a sliding lid by analogy to a
closed cavity. This can be seen by the observation that for a
no-slip square cavity our benchmark recirculating flow shown
in Figure 3 is similar to their Figure 7c. In addition, when the

Figure 12. Line ú b
crit(ús) indicating the criticalúb value for the

appearance of a saddle point in the flow field inside a square cavity.

Figure 13. (a) Streamlines in a no-slip, deep cavity with an aspect
ratio of D/W ) 3. The result clearly shows two Moffatt eddies
within the cavity. For the two vortices,∆ψ ) -6.24× 10-6 for the
one near the bottom wall, and∆ψ ) 0.00235 for the one near the
entrance to the cavity. The color scale indicates the electric potential
distribution. (b) For the same cavity as in part a but with a charged
bottom wall instead, a saddle-point flow structure forms in the lower
portion of the cavity as a result of the interaction between the Moffatt
eddies and the EOF vortex. For the bottom vortex,∆ψ ) 1.03×
10-5, for the top vortex,∆ψ ) 0.002, and near the entrance to the
cavity, ∆ψ ) 0.03. Here,∆ψ stands for the interval of the stream
function values.
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bottom wall is charged and has a moderate slip velocity in the
same direction as the free stream, we find in Figure 9 that two
vortices are formed in a square cavity. This result is also in
qualitative agreement with their Figure 7b,d for which the slip
velocities of the top and bottom walls are in the same direction.

We also make comparisons with Hahm et al.,14 who studied
EOF in a grooved microchannel. As shown in our Figure 2 for
the case with a uniformly charged surface, we identify that pure
EOF is irrotational without flow separation. This result is virtually
identical to that in their Figure 2b. For a no-slip cavity, our
Figure 3 exhibits a single vortex, similar to that in their Figure
2a. If the surface charges are not uniform within the cavity, then
the flow can exhibit vortices accompanied by the formation of
saddle points, as shown in our Figures 5-8. This feature is
qualitatively similar to those in their Figures 4 and 5.

6. Concluding Remarks

We have systematically investigated the flow character of
EOF inside a microcavity with nonuniform surface charges. We
have demonstrated that the flow exhibits a variety of patterns,
depending on the surface charge distribution inside the cavity
and the aspect ratio. Different flow structures are attributed to
various interactions between the uniformly charged irrotational
EOF free stream, Moffatt eddies generated from no-slip surfaces,
and an EOF vortex created by patterned charged surfaces.

Our findings could have several implications in microfluidic
applications. First, EOF vortices created by nonuniform surface
charges will inevitably reduce the flow penetration depth in a
cavity. This could be an undesirable effect for conveying solutes
into the cavity. In other words, successful solute penetration
must rely on the surfaces being uniformly charged to render the

flow irrotational so as to eliminate these EOF vortices. Second,
a surface defect or anomalous adsorption on the surfaces could
cause nonuniform surface charges and hence generate undesired
EOF patterns. Quite frequently, microfluidic applications involve
geometric/surface patterning for specific purposes. Because the
flow structure could be sensitive to the zeta potentials under
certain geometric conditions (e.g., Figure 14), it is necessary to
have adequate surface treatments in concert with geometric design
to fulfill desired functions or to prevent unwanted dispersion.

Finally, a variety of recirculating flow patterns found in the
present study obviously have the potential to create effective
mixing. Because mixing must involve solutes crossing stream-
lines, if one employed an appropriate scheme (e.g., time periodic
electric fields or zeta potentials) to change the flow pattern from
one to another, it could be possible to create successive folding
or unfolding of fluid elements for enhanced mixing.5,10 In
particular, because a flow pattern could exhibit a saddle-point
flow structure that is dynamically unstable, one could even utilize
such to create chaotic motion. This could provide an added
advantage for creating mixing without appealing to complicated
designs. Yet, it is worth noticing that although one could generate
more complicated flow structures using a deep cavity to render
mixing (e.g., Figure 13), the flow could be too sluggish to have
noticeable convective effects. In this regard, optimization is
needed in designing an efficient micromixer.
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Figure 14. Effects of varyingúb on the flow structure inside a shallow cavity withD/W ) 0.5 andús ) 0: (a) úb ) 0. Near the entrance
to the cavity,∆ψ ) 0.025, and for the vortices in the cavity,∆ψ ) 2.5× 10-4. The color scale indicates the electric potential distribution.
(b) úb ) 0.01. Near the entrance,∆ψ ) 0.01, and for the vortices,∆ψ ) 3 × 10-4. (c) úb ) 1 and∆ψ ) 0.01. (d)úb ) 15 and∆ψ ) 0.0708.
Here,∆ψ stands for the interval of the stream function values.
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