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The author theoretically demonstrates a gel-free electrophoretic ratchet under a nearly unidirectional
traveling electric field whose wavelength is much longer than the transverse dimension. Because of
length scale separation, a charged particle can migrate synchronously or asynchronously with the
field as if it was surfing on the wave. The author shows, with a dynamical phase portrait, that if the
wave speed is slower than the characteristic electrophoretic velocity, a suspension of charged
particles can be trapped into distinct particle bands synchronizing with the field. A tunable sieving
capability of this ratchet provides the potential for continuous fractionation and characterization of
colloidal suspensions. © 2007 American Institute of Physics. �DOI: 10.1063/1.2740176�

Electrophoresis �EP� is the motion of charged particles
under the actions of an applied electric field. It has been
widely used in separation of charged species and recently
explored under the theme of microfluidics.1 The electro-
phoretic velocity U of a charged particle in response to an
electric field E is described by

U = �E . �1�

Here � is the particle mobility of a scale �� /�, where � and
� represent, respectively, dielectric constant and viscosity of
the solution and � is the surface zeta potential.

In this letter, we demonstrate an alternative EP scheme
based on ac electric fields for separation of charged colloids.
Our strategy is to utilize traveling-wave fields to produce an
electrophoretic ratchet capable of trapping charged particles
selectively, called traveling-wave electrophoresis �TWEP�.
In contrast to conventional EP ratchets2,3 which often re-
quires working with gel for rendering field/size dependent
mobilities, a TWEP ratchet can sieve charged particles
purely on a free-EP basis. The core of this ratchet invokes a
length scale disparity in the field whose wavelength � is
sufficiently long compared to the transverse dimension d.
Because Gauss’s law with electroneutrality demands that the
field must be divergence-free �it is obvious that a rigorously
one-dimensional traveling field is impossible because it will
inevitably lead to space charges�, the field in the traveling
direction and hence the electrophoretic velocity are much
higher than those in the transverse direction. In analogy to
hydrodynamic lubrication flow,4 the resulting particle move-
ment looks nearly unidirectional. As this character can sup-
press lateral drift in a much smaller dimension, it allows the
particle to move synchronously or asynchronously with the
field as if it were “surfing” on the wave.5 We thus refer to
such motion as a nearly one-dimensional TWEP despite its
two-dimensional origin. We should also emphasize that our
strategy differs fundamentally from those in previous
studies5–8 using traveling-wave signals. In these early stud-
ies, there involve non-equilibrium dynamics of charged
toner,5,6 space charge injection,7 or high-frequency ac
polarization,8 so their systems are not electro-neutral and

hence involve significant Coulombic forces. In our study, on
the contrary, common colloids are typically dielectric and
hence the charges are usually confined within the thin
�10–100 nm� Debye screening layer at Poisson-Boltzmann
equilibrium. There is virtually no electrostatic attraction/
repulsion between particles even if they aggregate.9 As we
shall demonstrate, our ratchet can permit non-Coulombic ag-
gregation of like-charge colloids in the context of electro-
phoresis; it seems unlikely to realize like-charge aggregation
in these previous studies.

Let x and y stand, respectively, for the wave propagating
and transverse directions with y=0 defined at the channel
bottom surface embedded with electrodes. Define the wave
number k=2� /���1/d�. The longitudinal, traveling field is
taken in a simple sinusoidal form satisfying Laplace equa-
tion: Ex=E0 cosh�k�y−d��cos�k�x−ct��, with the correspond-
ing transverse field Ey =E0 sinh�k�y−d��sin�k�x−ct�� that
satisfies zero normal field penetration Ey =0 at the top bound-
ary y=d, where E0 is the characteristic field strength, c the
wave speed, and t time. Owing to much smaller transverse
dimension ky�kd�1, Ex=E0 cosh�k�x−ct��� which does
not vary in y. In addition, Ey now becomes O�E0 kd��Ex in
magnitude and hence the velocity Uy �Ux, making trans-
verse drift confined in a much smaller dimension. These two
characters deduced by length scale separation stipulate that
the particle motion will be dictated by the longitudinal field
and hence can be viewed as nearly one dimensional. While
the particle migrates in response to the traveling field, the
particle position changes with time and hence the spatial
influence of the field on the particle. To capture this effect,
the local field E �=Ex� in Eq. �1� must be evaluated at the
particle instant position xp�t�, viz., x=xp�t��x0+�0

t U�t1�dt1,
where x0 is the initial position of the particle. This yields the
following equation governing the particle motion under
nearly one-dimensional �1D� TWEP:

U = �E0 cos�kL�, with L = �
0

t

U�t1�dt1 − ct + x0. �2�

As a result, U is determined simultaneously by the particle
displacement relative to the wave, L. L�0 ��0� corresponds
to the particle ahead of �behind� the wave. As the local fielda�Electronic mail: hhwei@mail.ncku.edu.tw
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exerting on the particle depends on the history of the time-
varying particle-field phase difference, the apparent particle
mobility � cosh�kL� now becomes nonlinear in U. Hence the
particle motion is not reversible even though � is indepen-
dent of the applied field—it is this irreversibility that fur-
nishes the unique ratchet capable of trapping/separating
charged particles, as we will show shortly.

Without loss of generality, hereinafter we consider only
the motion of a positively charged ���0� particle. Letting
�X ,X0�=k�L ,x0�, V=U /U0, and 	=kU0t, with U0=� E0 be-
ing the velocity at dc fields, we rewrite Eq. �2� in the dimen-
sionless form,

X� = cos�X� − ĉ, with X = �
0

	

V�	1�d	1 − ĉ	 + X0, �3�

where ĉ=c /U0 is the ratio of the wave speed to the charac-
teristic electrophoretic velocity. Prime denotes the derivative
with respect to 	. Instead of directly observing the particle
trajectory in space, we adopt an alternative approach to iden-
tify the nature of the particle motion. Here we employ a
dynamical phase diagram10 to elicit the evolution of the mo-
tion in the displacement-velocity space. This approach does
not require solving the solution in detail. More importantly, it
can immediately reveal the stabilities of various stationary
solutions �i.e., fixed points�, so that the ultimate fate of the
particle can be graphically identified without needs in carry-
ing out integration or numerical simulations.

Figure 1�a� shows the phase diagram for Eq. �3�. The
path of the dynamical state for X��0 is toward right,
whereas that for X��0 goes left. At X�=0, there are a num-
ber of fixed points Xe at which the particle stays stationary.
However, these points are not all dynamically stable, de-

pending on how the two paths intercept at the X�=0 axis. For
a field with negative gradients, the fixed points toward which
the two paths converge are stable; otherwise they are un-
stable. Therefore, when the particle is close to the stable
�unstable� fixed points, it will be trapped toward �repelled
from� there. Since the fixed points are critical to the fate of
the particle and their locations depend on ĉ, below we dis-
cuss three cases: �i� 	ĉ	�1, �ii� 	ĉ	�1, and �iii� 	ĉ	=1.

For 	ĉ	�1 there are two fixed points within the wave-
length: Xe

±= ±cos−1�ĉ�+2�n−1�� �n is an integer�. Xe
+ is a

stable fixed point and hence will trap the particle from any
positions X� �Xe

+−2 cos�ĉ� ,Xe
+−2 cos�ĉ�+2��. On the con-

trary, Xe
− is an unstable fixed point, so the particle near which

will be repelled; yet it will take a time of at least
O�ln	sin�Xe

−�	� to be arrested again by one of the neighboring
stable fixed points. In the special case of ĉ=0, the field is
stationary, so all the particles will be trapped at the zero-field
points: Xe

+=� /2+2n�, regardless of the amounts of the
charges.

As for 	ĉ	�1, there are no fixed points at all, so the
particle is never able to be trapped by the field. Also since
X�=cos�X�− ĉ�0��0� for ĉ�1��−1� from Eq. �3�, the par-
ticle always lags �leads� the wave; it will move back and
forth with a nonzero net displacement during a cycle.

Finally, for 	ĉ	=1 case, we have fixed points: Xe=2n�,
where X� has zero maxima/minima. In this case, as indicated
by Fig. 1�a�, if 	ĉ	 is slightly different from unity, either a
fixed point can split into two when 	ĉ	�1 or there is no fixed
point at all when 	ĉ	�1. As this bifurcation phenomenon
always occurs at the neighborhood of 	ĉ	=1 and the associ-
ated fixed points, it is identified to be saddle-point bifurca-
tion, as shown in Fig. 1�b�.

How a charged particle surfs in a traveling-wave field
and is trapped by the ratchet can be pictured in Fig. 2. In
short, the key to trapping a particle is that the particle must
have a speed not slower than the wave speed during its jour-
ney. Consequently, such trapping is feasible only when U0
�c. As such, it is possible to sort charged particles by choos-
ing an appropriate wave speed of the applied field. The ex-
istence of stable fixed points suggests that a suspension of
uniformly charged particles will be attracted toward these
points, forming an organized band structure. Since these
fixed points are viewed in the frame moving with the field,
the particle band will synchronize with the field once it
forms. As the band locates according to the particle charge
�via U0�, particles with different charges will sooner or later
be locked into their designated positions at a given wave

FIG. 1. �a� Phase portrait for a particle with ��0. The arrows indicate the
directions of how the dynamical state of the particle motion evolves. �b� A
saddle-node bifurcation.

FIG. 2. Surfing and trapping of a charged particle under a traveling-wave
electric field. Consider a particle starting with some speed faster than the
wave speed. Suppose its initial position �at A� ahead of the wave �solid
curve�. At the next instant, the particle �at A�� will be slowed down since it
experiences a weaker field �dashed curve�. This process continues until the
particle speed matches the wave’s, after which the particle movement will
be synchronized with the wave. If the particle trails behind the wave �at B�,
it will first accelerate �at B�� before reaching the maximum of the field, and
then decelerate afterwards as in the A-A� process.
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speed of the field, leading to a number of distinct particle
clouds moving with the field. We carry out numerical simu-
lations for Eq. �3� to identify this phenomenon in Fig. 3.
Such a ratchet can be applied to particle sorting or detection
for a solution consisting of a variety of particle populations.
As a colloidal suspensions can be characterized by correlat-
ing band positions/intensities to amounts of charges/
particles, a fingerprint will be readily obtained for the
suspension.

In previous studies,5,6 the particle motion can exhibit
various drifting behaviors due to two-dimensional traveling
fields. Our work is distinct from these studies. Our nearly 1D
TWEP ratchet possesses a length scale disparity in the field
and hence significantly reduces lateral drift during the
trapping—it is this scale/field separation that can sustain the
trapped particle clouds without being dispersed indefinitely.

It is possible to trap particles using nearly 1D TWEP in
microdevices. Similar to the setup in traveling-wave

dielectrophoresis,8 a traveling field can be generated by an
array of interdigitated electrodes subject to sequential phase-
shifted voltages. With the electrodes of ��102 �m
�or k�10−2 �m−1�, the device needs 10 �m or smaller in
depth d for minimizing lateral drift. A typical electrophoretic
mobility � for colloids is about 104 �m2/ �s V�. At an ap-
plied voltage of Ve=10 V, one can trap particles with the
wave speed c slower than U0=�E0��Ve /��103 �m/s.
Therefore, the applied frequency 
=kc must be not faster
than kU0�10 Hz for the effect at work. With the conditions
above and from Fig. 3, it takes about 10 cycles �less than
100 s� for a colloidal suspension to form discrete particle
bands. Such a ratchet does not require a field-dependent mo-
bility for realizing biased trapping. In addition, it has a tun-
able sieving capability which can be controlled by the ap-
plied frequency and voltage. This nearly 1D TWEP ratchet
not only provides a renewed strategy for electrophoretic
separation on a gel-free basis but also offers an added advan-
tage for continuous particle sorting and functional fraction-
ation of colloidal suspensions.
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FIG. 3. �Color online� Selective trapping of charged particles in a nearly 1d
TWEP ratchet shown in the frame moving with the traveling field. The
suspension consists of two types of positively charged particles: red �U0

=0.2c� and green �U0=0.8c�, and 100 particles for each. Initially, the par-
ticles are randomly distributed with −��X��. Upon the field is applied,
the particles gradually migrate toward their own trapping locations, forming
respective band structures. T= t�kc� / �2�� measures the time normalized by
the cycling period of the field.
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