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Role of base flows on surfactant-driven interfacial instabilities
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In this paper, we examine how base flows affect interfacial stabilities in the presence of surfactants. A
thin-film flow model, subjected to various base-flow conditions, is employed to mimic a wide class of practical
interfacial flows. The base flow can be driven by an external force (e.g., pressure forcing or gravity), an
interfacial stress, or their combination. For long-wave perturbations, we show that the stability is governed by
a coupled set of evolution equations for the interface and surfactant concentration, so the origin of the stability
can be unraveled analytically in line with simpler physical arguments. We also demonstrate that the system can
exhibit a variety of stability states; it can be neutral, conditionally stable or unstable, or definitely stable or
unstable, determined solely by the nature of the base flow and how it regulates surfactant transport. Two modes
are found to determine the stability, the interface and surfactant modes, and characterized by the ratio of the
basic interfacial shear force to the external force. The routes to the instability are also identified through the
action of the base flow. The base flow plays a dual role in affecting the stability: although the imposition of an
interfacial shear destabilizes the interface, an external force can cause stabilization. The competition between
these two effects gives rise to stability or instability in a range of the force ratio. The underlying mechanisms
are elucidated in detail. A generalized criterion for the onset of instability is also established for one- or

two-fluid interfacial flows.
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I. INTRODUCTION

The hydrodynamic stability of coating flows is a subject
of long-standing interest in the fundamentals of fluid me-
chanics as well as in a variety of engineering processes [1].
The issue is often how the interface develops in response to
perturbations so as to determine the subsequent fate of the
system. In some cases, a liquid can retain its integrity, while
in others rupture might occur, depending on flow conditions
and fluid properties. It is therefore essential to understand the
underlying mechanisms so that one can properly manage
instability for a desired process.

In most applications, surfactants or surface-active agents
are often present, so their effects can be vital to stability. It is
generally believed that the dominant effect of surfactants on
stability is the surface-tension-gradient (Marangoni) force
due to the nonuniform surfactant distribution along the inter-
face. Since the Marangoni force often serves as a counteract-
ing force to the prevailing flow, the conventional wisdom is
that this force tends to recoil the interface from stretch, mak-
ing the dynamics more sluggish [2-5]. However, as we will
demonstrate, this effect is far from trivial under the influ-
ences of base flows, which is the main theme of this paper.
To see how the problem is motivated, we give a brief account
of related research developments below.

Early studies on the stability of surfactant-laden falling
film flow have provided some hints to how surfactant affects
the stability. A long-wave analysis [2] showed that an in-
soluble surfactant yields a stabilizing correction to the clas-
sical Yih interfacial instability [6]. The stability features can
be further complicated by mass transfer processes (e.g., bulk
diffusion and sorption) [7,8]. In the case of Stokes flow, a
surfactant can make the system less stable than in surfactant-
free case [9]. In related work [10], the imposition of “wind
shear” is shown to have stabilizing or destabilizing effects
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when surfactant is present. Studies on two-fluid channel flow
with surfactants [11] indicated that a surfactant can destabi-
lize a system that is inherently stable without a surfactant.
Such surfactant destabilization is not limited to planar flows,
but can also be found in cylindrical flows wherein capillary
instability prevails [12]. Indeed, experimental evidence indi-
cates that surfactant-laden systems with applied flows can
become more unstable than those without [13]. Similar
surfactant-induced instabilities can also be found in oscillat-
ing film flows [14] or fingering phenomena [15].

These previous studies suggest that surfactants can have
nontrivial effects on stabilities for a wide class of flows. A
part of the explanation seems to point toward the response of
the Marangoni effect to a base flow. Yet the puzzle here is
how a base flow redistributes surfactant along the interface
so as to determine the subsequent development of the Ma-
rangoni force. Although mechanisms were given in part by
some early studies [10-12,16], the detailed route to the in-
stability for given base flow conditions is still not under-
stood. It also entails a rationale to explain the diversity of
outcomes found in previous studies. In this work, we con-
sider a surfactant-covered liquid layer flow and examine the
stability subjected to a variety of base-flow conditions. As
we will show, this simple model suffices to illuminate the
role of the base flow in determining the stability characteris-
tics. As we will also demonstrate, the true origin of the sta-
bility or instability can be attributed purely to the interplay
between the Marangoni effect and base-flow actions.

The paper is organized as follows. We begin with the
formulation in Sec. II, and then show stability results for
various base-flow conditions in Sec. III. In Sec. IV, we iden-
tify how base flows regulate Marangoni effects and mediate
the stability. We further generalize our analysis for one- and
two-fluid systems in Sec. V. Concluding remarks are made in
Sec. VL.
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II. PROBLEM FORMULATION

Consider a liquid layer of density p* and viscosity u
coated on a flat plate. In the unperturbed state, the liquid has
a uniform thickness of i". The air-liquid interface is covered
by an insoluble surfactant of a uniform surface concentration
F;, and the corresponding surface tension is a'z;. The length,
velocity, and pressure (or stress) are scaled by i, 0'(*,/ ', and
03/ h”, respectively. The system is defined in Cartesian coor-
dinates in which x is the direction aligned with the plane, and
y is the outward direction normal to the wall defined at y
=0. Also let u and v be the velocity components in the x and
y directions, respectively, and let p be the pressure. The base
flow can be driven by an external force F (e.g., pressure
forcing or gravity), by shearing of an interfacial stress 7
(e.g., wind shear or thermocapillary force), or by their
combination:

U=—§(y2—2y)+fy~ (1)

We are interested in five cases: (i) >0 and 7=0, (ii) F
>0 and 7#0, (iii) F=0 and 7#0, (iv) F=-37/2, and (v)
Q=F/3+7/2>0 and 7<<0. These cases simulate a wide
range of practical interfacial flows. Case (i) describes a freely
falling film flow [2]. Case (ii) models a falling liquid flow
subjected to an additional wind shear. It can also serve as a
simplified model to analyze the motion of a liquid layer over-
laid by another thicker fluid layer. In this case, part of the
thin-layer motion can be thought of as being sheared by the
thicker layer. Case (iii) is a pure surface shear flow. Case (iv)
simulates a surface shear flow in a closed, shallow cavity in
which an adverse pressure gradient must necessarily develop
to oppose the applied shear to satisfy the requirement of a
zero net flow rate across the layer [17]. Case (v) can model a
pump generated by a surface force, e.g., thermocapillarity.
The device is sealed at one end but left open at the other. As
a surface force is applied toward the closed end, an adverse
pressure must be established and hence pump the fluid to-
ward the open end. The required surface force depends on
the desired pumping flow rate Q.

Now consider the stability problem. Flow quantities are
decomposed into the base-state quantities plus small pertur-
bations. By linearizing the system with respect to the base
state, the stability problem can be formulated in terms of
perturbation quantities. Let 7 and I'" be the interfacial and
surfactant perturbations, respectively. To facilitate an under-
standing of the underlying physics, we focus on long-
wavelength perturbations, i.e., the wave number k
=2mh"/L" <1 with L" being the wavelength, so the problem
can be formulated by lubrication theory. Further, assume that
the Bond number Bo=p“gh™?/ o, and the Reynolds number
Re=p*a'(*)h*/ w2 are small, so we can exclude buoyancy and
inertial effects. This can isolate the problem from these ef-
fects and hence allow us to focus on the impact arising
merely from the surfactant. We solve the perturbation flow
field up to O(k), the lowest order that can capture all ingre-
dients determining the system’s stability. This will also re-
duce the problem to a coupled set of evolution equations for
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the interface and surfactant concentration. The resulting evo-
lution equations will take form up to O(k?) and determine the
stability at that order.

The governing equations of the perturbation flow are

u+v,=0, u,=0, p,=0. (2)

vy
Here, the capillary pressure due to surface tension is O(k?)
from the normal stress condition at the interface; its effects
on the perturbation velocity field are O(k?) and thus negli-
gible. As a result, u is linear in y and can be determined by
the tangential stress condition at the interface:

uy(l)=_Uyy(1)7]_er’ (3)

where M =—(l":;/ 0':;)((90'*/ ar *)FS is the Marangoni number

and assumed to be O(1). The resulting perturbation flow field

is given by
u=(F7]_MFx)yv U=_(F7]x_MFxx)y2/2- (4)

We further require the kinematic condition and the surfactant
transport equation. In the frame moving with the basic inter-
facial velocity U(1)=F/2+ 7, they are

v(l) =7, (5)

L+ U(D) 7+ [u(1)],=0. (6)

In (6), the surface diffusion is assumed negligible. Applying
(4)—(6), we derive a coupled set of evolution equations for
the interface and surfactant concentration:

r 1MF 0 (7)
oy —= =0,
7’[ 27])6 2 XX
I+ (r+ F)np,—MI',=0. (8)

These equations, though simple, suffice to reveal the essence
of the underlying physics and play a central part in this
analysis. Three consequences immediately follow. First, a
clean-interface flow is neutrally stable, as indicated by Eq.
(7) with I'=0. Second, a stationary surfactant system
(F=7=0) is stable because of the diffusion nature of Eq. (8).
Last, since neither clean-interface flow nor a stationary base
state with surfactant gives rise to instability, we conclude that
an instability, if any, must arise from effects combining the
base flow and surfactant.

III. STABILITY CHARACTERISTICS UNDER VARIOUS
BASE-FLOW CONDITIONS

The stability of Egs. (7) and (8) is analyzed by taking
normal modes (n,F):(f],f)exp(ikx+st) where s is the com-
plex growth rate whose real part determines the stability. s
can be obtained analytically from a quadratic equation. Since
the stability or instability is determined by the Marangoni
terms that are O(k?), we expand s up to O(k?). We now
examine the stability for each base-flow condition. For case
(i), F>0 and 7=0 as in freely falling film, we find
s;=—ikF/2—-k*M and s,=0; thus the system remains neutral
because of s,. The first mode is stabilizing and corresponds
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to the usual Yih mode [2,6]. The second mode arises from
the surfactant and impacts the stability at O(k%).

Now consider case (ii), >0 and 7#0. We obtain the
growth rates s,=—ikF/2—k?M(1+7/F) and s,=k’M1/F.
Compared to case (i), the role of the second mode in deter-
mining the stability is now manifest in the presence of an
imposed shear. It is destabilizing (stabilizing) if the direction
of the shear is the same as (opposite to) that of the external
forcing. For the first mode, however, the effect of the im-
posed shear is the opposite. Overall, we find an instability if
7/F<-1 or 7/F>0 [note that 7/F=-1 reduces Eq. (8) to a
diffusion equation and is clearly stabilizing, and it is also
obvious that 7/F=0 recovers case (i)]. The above analysis
holds for 7/F of O(1); it is inapplicable when 7/F is un-
bounded, as in case (iii). In case (iii), F=0 and 7#0, Egs.
(7) and (8) become 7,—MTI',,/2=0 and I',+77,—MT =0,
and the corresponding growth rate is s
==+(i/2)"2|72M" 2|32, irrespective of the direction of the
applied shear. Hence, the system is completely destabilized
by the surfactant. The instability now occurs at O(k¥?),
which is more dangerous than the O(k?) found in case (ii). A
closer inspection further reveals that the Marangoni term in
(8) does not contribute to the leading order growth rate in
this case.

As for case (iv), F=—37/2, as in shearing of a film within
a shallow cavity, we arrive at s;=—ikF/ 2-k2M/3 and
s,==2k?M /3. In contrast to case (iii), which is always un-
stable due to surfactant, the system now is completely stabi-
lized by surfactant. Although this case can be considered as a
special scenario of case (ii) from a mathematical viewpoint,
the base flow in part is created by a returning flow due to the
zero-net-flow constraint, which differs, in principle, from the
unconfined flow case (ii). Finally, we examine case (v), Q
=F/3+7/2>0 and 7<0, for surface-force-driven pumping.
It again follows the same growth rates as in case (ii). Yet 7/F
must be less than 0 as the required pressure force for pump-
ing must oppose the applied shear; it thus follows that the
system is stable only if —2/3 <7/F <.

As demonstrated above, a liquid film with surfactant can
experience all possible stability states, as summarized in
Table I. It can be neutral, conditionally stable or unstable, or
definitely stable or unstable, determined solely by the nature
of the base flow and by how it regulates the Marangoni
effect.

IV. MARANGONI MODULATION INDUCED BY BASE
FLOWS

How a base flow mediates the stability of an interface
with surfactant is reflected by the 7 terms in Egs. (7) and (8).
As the 7 term of Eq. (7) comes from the jump of the basic
interfacial stress —U,,(1)n=F7 in (3), its effect on the fluid
mass balance is reflected only by the external force F. The 7
term of Eq. (8) is attributed to the surface convection arising
from the interface deflection. In addition to the contribution
from F, it also involves the effect from the perturbation to
the basic interfacial velocity, Uy(1)n=77 in (6). Thus the
surface advection effect on the surfactant distribution is fur-
ther mediated by the surface shear 7. As such, the effects of
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TABLE 1. Results of stability with surfactant under various
base-flow conditions. These conditions model a wide class of prac-
tical flows: (i) freely falling film flow, (ii) thin-film flow sheared by
another thicker layer, (iii) pure surface shear flow, (iv) sheared lig-
uid in a shallow cavity, and (v) flow generated by shearing liquid
against the wall.

Case Growth rates s, and s, Stability state
(1) F>0,7=0 —ikF 12-k*M , 0 neutral
(ii) F>0,7#0 —ikF |2-k*M (1+7/F), kM ¢/ F stable if —1<7/F <0
(iii) F=0,7#0 +i/2)" |,[|”2 MK unstable
(iv) F=-37/2 —ikF [2-KM /3, ~2k*M /3 stable
(V) Q=F/3+7/2>0 | same as (ii) stable if —2/3<7/F <0

with 7<0

() (ii) T
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S
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the base flow are twofold. On the one hand, the base flow
can rearrange the surfactant distribution [via (F+ 7) 7, in (8)],
inducing a Marangoni flow to impact the interface dynamics.
On the other hand, it can also modulate the interface evolu-
tion [via F7,/2 in (7)] and hence the subsequent develop-
ment of the interface. Below, we illustrate how these effects
interplay in more detail.

We first discuss the effects of (F+7) 7, in (8). Consider a
system initially subjected to a sinusoidal perturbation of am-
plitude & (<1) to the interface. The initial surfactant concen-
tration is assumed uniform. Suppose F'+ 7>0. The advection
of surfactant due to (F+7)7, increases (decreases) I' in an
amount of O(kd) for 7,<0 (>0), making I lead 7 by /2.
As a normal Marangoni flow of O(k*8) is induced through
MT /2 in (7), this flow is out of phase with I' and acts to
increase (decrease) 7 on the portion of the interface with
7,>0 (<0). That is, it tends to increase the interface ampli-
tude in such a way that the interface looks as if it is traveling
backward. Suppose that the traveling term F#,/2 in (7) is
absent. Then the amplification in # will keep steepening I"
while the Marangoni diffusion [of O(k*8)] from MT ., in (8)
is too weak to attenuate that steepening [of O(ké)]. This in
turn exaggerates the interface’s amplification, and thereby
destabilizes the system. As this destabilization persists for a
time scale T, the interface amplitude will grow like O(k*ST)
due to the flow-induced Marangoni effect. Balancing that
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FIG. 1. Mechanisms of base-flow regulation of the Marangoni
instability. Interface mode (a), (b) and surfactant mode (c), (d).
Arrows along the interface n show the directions of Marangoni
forces; those in I indicate changes in the surface concentration of
surfactant.

growth with 7,~O(8T™") in (7), we find T~ O(k™*?) in ac-
cord with the O(k*?) growth rate found in case (iii).

As explained above, the base flow can rearrange the sur-
factant distribution through (F+7)7, in (8), and the induced
Marangoni effect tends to stimulate interface growth, as
manifested by the absence of F7,/2 in (7). If Fz,/2 comes
into play, it will make the interface travel at O(k), hence
overriding the aforementioned base-flow-induced Marangoni
promotion of the interface growth. At O(k), viz., neglecting
Marangoni  effects, Eqs. (7) and (8) suggest
I')=2(1+7/F) 7, As a result, there is no instability and I
simply travels with 7 in one of two ways: either in phase
with # for 1+7/F>0, or out of phase with » for 1+7/F
<0. As the stability lies in the O(k?>) Marangoni terms, the
I'- 7 phase configuration at O(k) will determine the way Ma-
rangoni forces act on the interface [see Figs. 1(a) and 1(b)].
If I" and % are in phase, the Marangoni forces tend to pull the
fluid away from the peaks of 7, which decreases the 7 am-
plitude and hence is stabilizing. On the other hand, the out-
of-phase case will be destabilizing because the correspond-
ing Marangoni action is the opposite. Since this explains the
stability corresponding to the s; mode due to the traveling
interface, we refer to it as an interface mode.

In addition to the interface mode above, Eqgs. (7) and (8)
also admit a stationary solution (i.e., s=0) at O(k’) even
when F#0. At O(kY), the interface is flat, but permits a
nonzero surfactant perturbation I'. In contrast to the interface
mode, the base flow does not participate in the O(k°) solu-
tion; its effects come into the O(k?) problem. At O(k?), Eq.
(8) suggests that the O(k°) I sets off a Marangoni effect of
O(K?) to induce an interfacial deflection 7 of O(k) through
the base flow. This yields Fz,—MTI' =0 [provided F is
O(1)] leading 7 to lag behind I" by /2. From (8), the base
flow’s advection set by this interfacial deflection redistributes
I along the interface, causing I" to be in or out of phase with
7,- Combining Egs. (7) and (8) we have I',+(7/F)MTI",,=0
which is just the s, mode. It is simply a diffusion equation
that admits stability for 7/F<<0 and instability otherwise
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FIG. 2. Long-wave growth rates for the interface and surfactant
modes. The competition between the two modes leads to a stability
window —1 <7/F<0.

[see Figs. 1(c) and 1(d)]. Note that the influence of the base
flow on the stability only appears as 7/F, as a result of the
interface movement F7, in (7) followed by the advection of
surfactant (F+ 7) 7, in (8). Since the stability here arises from
the imbalance of the surfactant mass, we call this mode the
surfactant mode. A similar mechanism can also serve as an
alternative account for the F—0 limit (i.e., large |7/F) dis-
cussed earlier, but Egs. (7) and (8) take a form in which
MT ', is neglected in (8) and F=0.

As shown above, the base flow influences the stability of
an interface with a surfactant through two modes, the inter-
face and surfactant modes. In the interface mode, a traveling
interface accommodates a surfactant wave that develops Ma-
rangoni forces to affect the subsequent fate of the interface.
The stability depends on the phase difference between these
two waves, and is modulated through the base flow by 1
+7/F: 1+7/F>0 (<0) stabilizes (destabilizes). In the sur-
factant mode, a surfactant perturbation triggers an interfacial
deflection. As the surfactant distribution is rearranged by the
base flow’s advection, the imbalance of the surfactant mass
will determine the stability. The stability depends on whether
T acts to assist or oppose F: 7/F>0 (<0) destabilizes (sta-
bilizes). As such, both modes are characterized only by 7/F,
but the corresponding effects on the stability differ, as shown
in Fig. 2. As increasing the magnitude of 7/F enhances the
effect for one mode but does the opposite for the other, the
competition will lead to instability if 7/F<—1 (the interface
mode dominates) or 7/F>0 (the surfactant mode domi-
nates). Therefore, imposing an interfacial shear—even if it is
minuscule—in favor of the flow driven by an external forc-
ing will activate an instability. However, if the surface shear
acts to oppose the external forcing, the system can be stabi-
lized unless the former is sufficiently strong. In view of the
above, we conclude that, when surfactant is present, the ef-
fect of 7tends to induce destabilization, but F renders stabi-
lization since increasing its magnitude discourages the insta-
bility. Thus, the reason why a surfactant-laden interfacial
flow can exhibit a diversity of stability states under different
base-flow conditions can now be understood. In case (i),
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there is no interfacial shear; hence no instability can be ac-
tivated. Case (ii) is a general scenario, as discussed above. In
case (iii), the shear-induced Marangoni destabilization pre-
vails because there is no external forcing to mitigate the in-
stability. Case (iv) is stable since the developed adverse pres-
sure gradient is sufficiently strong to dampen the instability
excited by the interfacial shear. Case (v) is conditionally
stable in a range of 7/F, as F must necessarily oppose 7 and
a too large 7 will destabilize the interface.

V. GENERALIZED VIEW OF STABILITY
IN ONE- AND TWO-FLUID INTERFACIAL FLOW
WITH A SURFACTANT

Although the Marangoni modulation of interfacial stabil-
ity was illustrated on the basis of a single-fluid flow, similar
effects could also, in principle, appear in two-fluid flows. In
that case, a similar set of evolution equations can be derived
by further taking into account the fluid volumes and differ-
ences between the fluids” mechanical properties [16]. In fact,
for most single- or two-fluid flows, we find that the evolution
equations that govern the long-wave stability with surfactant
can be written in the generalized form

7]t+a7]x_Berx=0’ (9)

I+ yn,—vMI', . =0. (10)

These equations also appear in cylindrical systems at suffi-
ciently low surface tension [12]. Again, the effects of the
base flow are reflected by @ and 7y. Note that v must be
positive to assure Marangoni-diffusion damping in the ab-
sence of base flows. Using normal mode analysis, we find
that an instability will occur if the following criterion is
satisfied

BY(By—av)>0. (11)

It is worth noting that (11) does not depend on M even
though the instability requires the participation of Marangoni
effects. As suggested by (11), the base-flow-induced Ma-
rangoni effect By is necessary to instability; but it is medi-
ated by av—the combined effects of the traveling interface
wave and the Marangoni diffusion. Thus, the generalization
of the Marangoni modulation on the stability is now
furnished.

For our model equations (7) and (8), applying
(a,B,7,v)=(FI2,1/2,(F+7)/2,1) to the criterion (11), we
find (F+7)7>0 for the onset of instability. This suggests that
the base flow has two competing effects on the stability:
while an interfacial shear 7 tends to destabilize because 7
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>0, an external force F can be stabilizing if F acts to oppose
7. It is this competition responsible for the variety of stability
states.

VI. CONCLUDING REMARKS

We have studied the interfacial stability of a surfactant-
laden liquid film flow. The emphasis is placed on understand-
ing the Marangoni instability due to the nontrivial interplay
between surfactant and base flows. Using a long-wave
theory, we reduce the stability problem to a coupled set of
evolution equations for the interface and surfactant concen-
tration perturbations. The stability characteristics are demon-
strated under a variety of base-flow conditions that can simu-
late a wide class of practical interfacial flows. The results
reveal that the system can experience all possible stability
states, determined solely by the nature of the base flow and
how it regulates the Marangoni actions. More importantly,
the instability can occur in the absence of buoyancy (i.e.,
Rayleigh-Taylor instability) and inertial effects. For cylindri-
cal interfacial flows where capillary instability often domi-
nates, this flow-induced Marangoni destabilization can make
the flows even more unstable [12]. There is also an implica-
tion for coating flows. As the interface of a thin film could be
surfactant rich or susceptible to surface contamination, the
stability or instability arising from different flow conditions
will determine whether the film ruptures or retains its integ-
rity, which is critical to the efficiency of a coating process.

We show that the stability characteristics are determined
by the interface and surfactant modes. As the behaviors of
these modes can be characterized solely by the force ratio of
the imposed interfacial shear to the external forcing, we find
that the base flow plays a dual role in affecting the stability
of an interface with a surfactant. On the one hand, the impo-
sition of a surface shear tends to induce destabilization; on
the other hand, an external force can cause stabilization.
Therefore, the competition between the two modes gives rise
to a variety of stability states in a range of the force ratio.

Although previous studies on one- or two-fluid flows have
revealed some features of the flow-induced Marangoni insta-
bility [2,7-16], our one-fluid ansatz gives a simple but com-
prehensive account of the effects at work. It not only eluci-
dates how base flows mediate stability of an interface with a
surfactant, but also provides a rationale to explain the diver-
sity of stability results under various flow conditions.
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