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Combined effects of shear-flow and thermocapillary instabilities in a two-layer Couette flow are
asymptotically examined in the thin-layer limit. The basic features of the system instability are
revealed by first analyzing the two-dimensional stability problem. A scaling analysis is devised to
identify dominant mechanisms in various parameter regimes. With an appropriate scaling, the
leading order linear stability is reduced to a one-dimensional evolution equation containing a
nonlocal contribution from viscosity stratification. Viscosity stratification destabilizes �stabilizes�
the system with a more �less� viscous film, but the effect can be compromised by thermocapillary
stabilization �destabilization� as the film is cooled �heated�. Thermocapillary effects dominate over
viscosity stratification effects for short-wave perturbations albeit the latter could be stronger than the
former for long waves. The competition between these two effects gives rise to the critical Reynolds
number for the onset of stability/instability. A nontrivial interplay is found within a window in the
weak interfacial-tension regime. It demonstrates a possibility of the existence of two neutral states
in the wavenumber space. The three-dimensional problem is also examined. For the first time, a
two-dimensional film evolution equation with the inclusion of a nonlocal term is systematically
derived for the corresponding stability. It can be shown analytically that three-dimensional
perturbations can be more unstable than two-dimensional ones due to thermocapillarity in line with
the nonexistence of Squires’ theorem. The three-dimensional problem has the critical Reynolds
number larger than the two-dimensional problem, but an instability in the latter does not necessarily
suggest an instability in the former. An extension of each problem to the weakly nonlinear regime
is also discussed in the context of the Kuramoto-Sivashinsky equation. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2213279�
I. INTRODUCTION

As two immiscible fluids undergo shearing motions, in-
terfacial instability could occur due to the fluids’ viscosity
difference. Yih1 first identified this instability by showing
that plane Couette flow of two superposed fluids is unstable
to long waves when the thinner layer is more viscous. Later,
Hooper2 studied the long-wave stability of two-fluid Couette
flow in which one fluid is overlaid by another semi-infinite
layer. She also showed an instability if the lower fluid is
more viscous, which was termed the “thin-layer” effect.
Renardy3 analyzed the stability of two-layer Couette flow for
arbitrary wavelength disturbances. For the two fluids having
similar mechanical properties, the growth rate can be derived
in a closed form. In the thin-layer limit, the role of viscosity
stratification in determining the stability was further high-
lighted in accordance with the long-wave limit of Hooper.2

Notice that this “thin-layer effect” is not restricted to two-
layer plane flows; it also appears in multilayer systems4 and
in core-annular flows.5

The above-mentioned instabilities arising from viscosity
stratification mainly occur when wavelengths of disturbances
are sufficiently long compared to the layer thickness. Viscos-
ity stratification can also cause an instability for sufficiently
short waves.6,7 However, this short-wave instability can be
compromised by stabilizing effects of interfacial tension. In

any case, the instability associated with viscosity stratifica-
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tion must be accommodated with interfacial deflections; it is
thus refereed to as an “interfacial mode.” Besides, there is
another type of instability arising from a “wall mode.” It
corresponds to the classical instability of shear flow, and
typically occurs at high shear rates when wavelengths are
comparable to or shorter than the layer thickness.8 The iden-
tification of types of instabilities in two-layer flow can be
found in the study of Charru and Hinch.9

Most of the studies on two-fluid stability are under the
isothermal condition, and the stability features are fairly un-
derstood. In practice, however, fluids are often heated or
cooled in processes. This could induce thermal effects and
modify the features of stability. The dominant effects due to
temperature variations are thermocapillarity and buoyancy. If
a liquid layer is sufficiently thin, thermocapillarity generally
dominates over buoyancy.10 Thermocapillarity occurs when
the temperature along the fluid-fluid interface is not uniform.
It induces a tension-gradient force, driving the fluid toward
the higher-tension �lower-temperature� regions. Early
studies10,11 on the thermocapillary instability of a stationary
liquid layer suggested that thermocapillarity destabilizes sys-
tems with heated walls. Goussis and Kelly12 examined the
instability of a liquid film flowing down an inclined heated
wall. They pointed out that there are two mechanisms re-
sponsible for thermocapillary instability. One arises from the

interaction between the basic temperature and the disturbed
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velocity field. The other is due to the modulation of the basic
temperature at the deflected interface.

Gumerman and Homsy �hereafter referred to as GH� per-
formed a series of studies on the stability of a two-fluid
Couette-Bénard problem. Their setting appears more general
since they include all ingredients affecting the stability:
buoyancy, interfacial-tension gradient and shear flow. We
briefly review their work below. Part I13 of GH’s work ex-
amined linear stability. One among their major findings is the
nonexistence of Squire’s theorem due to the competition be-
tween the three effects mentioned above. In fact, Squire’s
theorem does not always hold in the presence of gravity.14

Using a long-wavelength analysis,1 GH illustrated the insta-
bility mainly driven by buoyancy and its modulation with the
shear flow; thermocapillarity seems to merely serve a correc-
tion to their analysis. Part II15 applied an energy method to
determine global stability. Under certain conditions, the glo-
bal stability results are close to those of existing linear analy-
ses only for low Reynolds numbers. In Part III,16 they ex-
perimentally examined effects of shear on instabilities that
arise from interfacial tension gradient, buoyancy, and their
combination. Their observations are generally in qualitative
agreement with their theoretical predictions.

While GH’s studies include all relevant effects, their ef-
forts are mainly focused on the buoyancy-dominated insta-
bility. In this regime, their results are relatively insensitive to
the details of the basic flow; the effect of the basic flow on
the stability �via the classical one-fluid shear instability� ap-
pears merely important when the Reynolds number is suffi-
ciently high.13 At another extreme, however, thermocapillary
and shear effects could dominate the instability at low/
moderate Reynolds numbers. In this case, the shear flow can
affect the stability through viscosity stratification, rather than
through the classical shear instability occurring in the high
Reynolds-number regime. Therefore, the interplay between
thermocapillarity and the shear flow might lead the instabil-
ity characteristics to differ from those found by GH. In ad-
dition, since GH did not explore all ranges of the parameters
�see Ref. 13�, it is also not clear how various effects play
roles in determining stabilities in different parameter re-
gimes. If one can understand instabilities in certain limiting
cases, insights gained from which might provide some useful
information about the complete instability pictures including
all effects.

The main theme of this paper is to study combined ef-
fects of thermocapillarity and shear flow on the stability of
two-layer Couette flow. We assume that the fluids’ densities
are matched, so gravity/buoyancy effects are excluded. To
ensure negligible natural convection compared to thermocap-
illarity, we also assume that for each fluid layer the ratio of
natural convection velocity scale �Tlc

2g �T* /� to thermocap-
illary velocity scale E*lc �T* / ��L� is sufficiently small; that
is �Tlc

2�L / lc�g �T* /E*�1. Here �T is the thermal expansion
coefficient, lc is the fluid thickness, L is the longitudinal
length scale, g is the gravitational acceleration, �T* is the
temperature difference between the two plates, � is the vis-
cosity, and E* is a measure of the susceptibility of the

interfacial-tension change to temperature variation. From the
above criterion, it is clear that for a given �T* a sufficiently
thin layer �large L / lc� will make thermocapillarity outweigh
buoyancy. We also restrict our attention to the case where
one fluid thickness is much thinner than the other. This en-
ables us to apply lubrication theory to asymptotically exam-
ine the features of stability. As we will demonstrate, the sta-
bility is dictated by the dynamics of the film and can be
characterized by an evolution equation for the interface. It
not only provides complementary views to previous
studies,3,13 but also offers a lucid way to illuminate interplays
among various effects. The paper is organized as follows. We
begin with the base state, governing equations and boundary
conditions in Sec. II. For simplicity, we first consider the
stability problem to be two dimensional. In Sec. III, we de-
vise a scaling analysis to identify dominant instability
mechanisms. The leading order linear stability is formulated
in Sec. IV. In Sec. V, we examine the three-dimensional sta-
bility and compare it with the two-dimensional counterpart.
Extension to the weakly nonlinear regime is discussed in
Sec. VI. We conclude the paper in Sec. VII.

II. BASE STATE, GOVERNING EQUATIONS,
AND BOUNDARY CONDITIONS

Consider two immiscible liquid layers flowing in a chan-
nel as undergoing a shear action exerted by two parallel
plates. The bottom layer is occupied by the fluid 1 of viscos-
ity �1 and thickness d1. It is overlaid by the second fluid of
viscosity �2 and thickness d2. Densities of both fluids are
matched and denoted by �. It is more convenient to analyze
the system in a frame moving with the steady-state interfa-
cial velocity. With respect to the interface, the bottom plate
moves with a speed of Uw, and the top does with �1Uw /�2 in
the opposite direction. The characteristic length and velocity
are chosen as d1 and Uw, respectively. The pressure scale is
�1Uw /d1 and time is scaled by d1 /Uw. The flow system is
defined in Cartesian coordinates aligned with the plates: x is
the streamwise direction, and y is the direction normal to the
interface defined at y=0, see Fig. 1. Let u and v be the
velocity components in the x and y directions, respectively,
and p be the pressure. Defining the viscosity ratio m
=�2 /�1 and the thickness ratio d=d2 /d1, we write the basic

FIG. 1. Two-layer Couette flow in a channel.
flows in the dimensionless form
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Ū = y, − 1 � y � 0,

�1�
Ū = y/m, 0 � y � d .

The temperatures of the top and bottom plates are maintained
at Tw2

* and Tw1
* , respectively. Define the dimensionless tem-

perature T= �T*−Tw1
* � / �Tw2

* −Tw1
* � and the thermal-

conductivity ratio �=k2 /k1. The basic temperature profile for
each fluid can be expressed as

T =
�

� + d
�y + 1�, for − 1 � y � 0,

�2�

T =
1

� + d
�y − d� + 1, for 0 � y � d .

For the stability problem, we first consider it to be two
dimensional for simplicity. Extension to the three-
dimensional problem will be analyzed later in Sec. V. Since a
dynamic flow system consists of contributions from both
base state and perturbations, we start with general formula-
tion prior to performing linearization. For the two-
dimensional problem, the nondimensional equations of each
layer are governed by the continuity and the Navier-Stokes
equations:

ux + vy = 0, �3�

Re1�ut + uux + vuy� = − px + mi �2u , �4a�

Re1�vt + uvx + vvy� = − py + mi �2v . �4b�

Re1=�Uwd1 /�1 is the Reynolds number based on the bottom
layer. Here mi=1, for i=1, or � m for i=2. The system is
subject to the following boundary conditions. On the walls:

u1 = − 1, v1 = 0, at y = − 1, �5�

u2 = d/m, v2 = 0, at y = d . �6�

Define the jump notation � � : = � �1− � �2. Continuous veloci-
ties at the deformed interface y=��x , t� demand

�u� = �v� = 0. �7�

The tangential stress and normal stress conditions are applied
at y=��x , t�:

1

�1 + �x
2�

��uy + vx��1 − �x
2� + 2�vy − ux��x� =

1

Ca
	x, �8�

− �p − 2vy − �− p + 2ux��x
2 + 2�vy + ux��x�

=
	�T�
Ca

�xx�1 + �x
2�−3/2, �9�

where Ca=�1Uw /	0
* is the capillary number with 	0

* being
the interfacial tension at the reference temperature T0

*. We
assume the dependence of the interfacial tension on tempera-

ture to be linear:
	 = 1 − E�T − T0� , �10�

where E=−�Tw2
* −Tw1

* ���	* /�T*�T0
* /	0

* is a dimensionless pa-
rameter that reflects the change of the interfacial tension
in response to the temperature variation. Here E
0��0�
corresponds to heating �cooling� the top layer, viz., Tw1

*

�Tw2
* �Tw1

* 
Tw2
* �. Finally, we require the kinematic condi-

tion at the interface:

v = �t + u�x. �11�

For the heat transfer problem, the governing equation for
each layer is

Tt + uTx + vTy =
1

Pei
�2T , �12�

where Pei=Uwd1 /�i �i=1,2� is the Peclet number.
�i=ki /�cp is the thermal diffusivity with the specific heat
capacity cp. The boundary conditions are given by

T1 = 0, at y = − 1, T2 = 1, at y = d . �13�

T1 = T2 ,at y = ��x,t� , �14�

T1y − �xT1x = ��T2y − �xT2x� , at y = ��x,t� . �15�

III. SCALING ANALYSIS

With the base state above, we now begin to analyze the
corresponding stability. To asymptotically examine the sta-
bility in the thin-layer limit, we shall first carry out a scaling
analysis to identify dominant mechanisms of stability. It also
provides approximation for the sizes of perturbation quanti-
ties. We then expand governing equations and boundary con-
ditions with perturbation quantities to derive the relevant
equations governing the system’s leading order stability.

Suppose that the top layer thickness is much thinner
compared to the bottom layer, i.e., d=�1. We introduce a
stretched variable Y =y / to the problem so that one can
separate the transverse length scale of the thin layer from that
of the thick layer. For m=O�1�, the basic flows can be re-

written as Ū1=y and Ū2=Y /m for the bottom and top lay-
ers, respectively. Also, assuming �=O�1�, the leading order
basic temperature profiles are expressed as

T1 = 1 + y −


�
�1 + y� + O�2� �− 1 � y � 0� ,

�16�

T2 = 1 +


�
�Y − 1� + O�2� �0 � Y � 1� .

Now consider the system perturbed by temperature distur-
bances, say, T1� and T2� for the thick and the thin layers, re-
spectively. Suppose that T1� for the thick layer is of size
�T��1�. Then a continuous heat flux �15� across the inter-
face demands T2���T /� for the film. In what follows, for
�=O�1� the interface feels most of the temperature varia-
tions from the thick layer, and so does the subsequent ther-
mocapillary force.

To estimate the sizes of perturbation flow quantities, we

consider the system perturbed by an interfacial disturbance
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of size ����. Let �u� ,v� , p�� and �U� ,V� , P�� denote the
perturbation flow quantities for the thin and the thick layers,
respectively. In the thin-layer limit, the system stability is
usually dictated by the dynamics of the film; we thus first
inspect the relevant scales. The size of u� depends on flow
mechanisms; the film flow can be sheared either by the ad-
jacent thick fluid through viscosity stratification or by ther-
mocapillary forces. It can be further driven by capillary pres-
sures furnished by interfacial tension forces. Below we first
consider viscosity stratification and thermocapillary effects,
and then discuss the influence of the interfacial tension later.

We begin with estimating the scale of u� due to viscosity
stratification. To do so, one has to find its scale relationship
with U�. With the aid of the boundary condition �8�, we find
u��� /m�U�. Expanding �u�=0 in �7� and writing it in the

linearized form: U�+ Ū1y�y=0 ��=u�+ Ū2y�y=0 �� �where �� is
an interfacial perturbation and � is an O�1� function�, we find
that a perturbation to the interface causes a jump in the dis-
turbance of the horizontal velocity across the unperturbed
interface due to viscosity stratification. Since u��� /m�U�,
this perturbation will be perceived most by the thick layer
and induces a velocity of scale U���1−m−1�� to the thick
layer. Both V� and P� have the same scales as U� due to a
lack of separation in length scales in the thick layer. This
velocity then generates a tangential stress on the interface,
shearing the thin layer through �8� and in turn giving rise to
u���1−m−1�� /m.

The temperature jump at the interface due to the
thermal-conductivity difference in �14� provides a scale rela-
tionship between the interfacial and temperature perturba-
tions: �T��1−�−1��. Hence, the thermocapillary force in �8�
has a scale of E�T /Ca��1−�−1�E� /Ca and induces a veloc-
ity u���1−�−1�E� / �m Ca� to the thin layer. Compared to
the viscosity-stratification velocity scale u���1−m−1�� /m,
the relative importance of thermocapillary to viscosity-
stratification effects can be reflected by �1−m−1�−1�1
−�−1�E /Ca. If the contrasts of mechanical and thermal prop-
erties between the two fluids are sufficiently manifest, say,
both �1−m−1� and �1−�−1� are O�1�, the prior scaling ratio
can be approximated as E /Ca.

The above discussion is focused on the perturbation
flows induced by viscosity stratification and thermocapillar-
ity. We now include the influence of the interfacial tension
and discuss the relevant scaling. In the thin-layer limit, for a
sufficiently strong tension the capillary force usually domi-
nates in the normal stress �9�, and furnishes a pressure force
p��� /Ca for the film. This pressure drives the film flow
with u��2� / �m Ca� according to �4a�. The ratio of this cap-
illary velocity scale to the viscosity-stratification-induced ve-
locity of O�� /m� is thus  /Ca, which reflects their relative
influence on the stability.

As discussed above, we have established the relative ve-
locity scales E /Ca and  /Ca for thermocapillarity and cap-
illarity, respectively, compared to viscosity stratification.
With these scaling ratios, dominant effects can be identified
when all the three effects are present. In view of the fact that
both scaling ratios depend on Ca, we consider three different

cases: �i� Ca�; �ii� Ca�; and �iii� Ca�. For case �i�,
capillary effects are weak. The instability is determined by
thermocapillarity �when E�Ca�, viscosity stratification
�when E�Ca�, or their combination �when E�Ca�. For
case �ii� the tension is moderately strong, so its influence on
the stability is comparable to viscosity stratification. Ther-
mocapillary effects are not comparable to the other two until
E�. As for case �iii�, capillary effects dominate over vis-
cosity stratification effects. The stability is mediated by ther-
mocapillary effects if E�Ca.

In fact, the Ansatz can be generalized under the condi-
tion Ca�E� in which all the three effects are comparable
since other scenarios can be treated by taking appropriate
limits, as discussed above. Using this scaling, we find
u��� ,v��2�, and p��−1� for the film. In order to cap-
ture nontrivial dynamics for the interface, we require a long
time scale t�−2 in the kinematic condition �11�.

A few remarks on our analysis are made below. Since
our approach is based on lubrication theory in the film, it
requires 3 Re1 /m�1 for neglecting the film’s inertia. To
further ensure the validity of the theory, disturbance wave-
lengths must be longer than the film thickness, viz. k−1�.
Hence the results that follow are not limited to wavelengths
longer than the film thickness, but applicable to any wave-
lengths as long as the above constraint for k is satisfied.
Finally, we assume the absence of gravity effects because of
matched densities, so Rayleigh-Taylor instability will not oc-
cur in our system. Nevertheless, as we will show, gravity
appears to have similar effects on the system’s stability as
thermocapillarity even though instability mechanisms of
these two are seemingly different.

In the next section, we outline the formulation for the
leading order stability based upon the above scaling, and
then discuss the results derived therefrom.

IV. ANALYSIS OF THE LEADING ORDER LINEAR
STABILITY

Define M =E /Ca be the Marangoni number. For Ca�
and E�, we let Ca= Ca0, with Ca0=O�1� and M =O�1�.
Dynamic quantities relevant to the stability can be expanded
as follows:

u1 = Ū1 + �U + O���, v1 = �V + O���,

p1 = �P + O��� ,

u2 = Ū2 +  �u + O�2��, v2 = 2 �v + O�3��,
�17�

p2 = −1 �p + O��� ,

� = �� + O���, T1 = T1 + ��1 + O���,

T2 = T2 +  ��2 + O�2�� .

After substituting the above into �3�–�15� and expanding
them with respect to the base state, the leading order govern-
ing equations of the perturbation film flow become
ux + vY = 0, �18a�
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0 = − px + muYY , �18b�

0 = − pY . �18c�

The film flow field that satisfies the no-slip conditions at the
wall Y =1 is

u =
1

2m
px�Y2 − 1� + A�Y − 1� , �19a�

v = −
1

2m
pxx�Y3

3
− Y +

2

3
� − Ax�Y2

2
− Y +

1

2
� , �19b�

where A is an as-yet-undetermined coefficient. The leading
order tangential and normal stress conditions at the unper-
turbed interface are

muY�Y = 0� − �Uy + Vx�y=0 = M�� + �1�y = 0��x, �20�

p =
�xx

Ca0
. �21�

Note that in �20�, the temperature perturbation involves the
variation of the basic temperature T1y�y=0� due to deflections
of the interface. The leading order kinematic condition is

v = ��, �22�

where we have invoked the long time scale �=2t.
To determine the film flow solution �19� further requires

the thick-layer flow solution due to their coupling through
�20�. For the thick layer the leading order governing equa-
tions are

Ux + Vy = 0, �23a�

Re1�yUx + V� = − Px + �2U , �23b�

Re1 yVx = − Py + �2V . �23c�

Note that the time-derivative terms are negligible because
the time scale is O�−2� here. The boundary conditions for
�23� include the no-slip conditions at the bottom wall �5�,
and the continuity of velocities at the interface �7�. The latter,
to leading order, becomes

U�y = 0� = � 1

m
− 1�� , �24a�

V�y = 0� = 0. �24b�

To solve Eqs. �23�, we introduce the streamfunction �
such that U=�y and V=−�x for satisfying the continuity
equation �23a�. Further, taking the Fourier transform,

�̂=	−�
� �e−ikx dx, we reduce �23b� and �23c� to

ik Re1y�D2 − k2��̂ = �D2 − k2�2�̂ , �25�
where D
d /dy. The solution is given by
�̂ = k−1â�
−1

y

sinh�k�y − y����g2f1�y�� − g1f2�y���dy�,

�26�

with

â =
� 1

m
− 1��̂

�
−1

0

cosh�ky��g2f1�y� − g1f2�y��dy

,

f1�y� = Ai�ei�/6�k Re1�1/3�y − ik Re1
−1��,

f2�y� = Ai�ei5�/6�k Re1�1/3�y − ik Re1
−1�� ,

g1 = �
−1

0

sinh�ky�f1�y�dy, g2 = �
−1

0

sinh�ky�f2�y�dy .

Here Ai is Airy’s function. With the solution above, we first
rewrite �Ux+Vy�y=0=�yy�y=0� for �20� in the Fourier space
as

�̂yy�y = 0� = â�
−1

0

sinh�ky��f2�y�f1�0� − f1�y�f2�0��dy;

�27�

�Uy +Vx�y=0 can then be expressed in terms of � by taking the
inverse Fourier transform for �27�.

Finally, we need the perturbed temperature field in the
thick layer for describing thermocapillary forces in �20�. To
leading order, �14� yields

�1�y = 0� = ��−1 − 1�� . �28�

Combining T1y�y=0�, we reduce the perturbed thermocapillary
force in �20� to M�−1�. As such, how the temperature varies
along the interface can be simply reflected by an interfacial
deflection. The effects of the induced thermocapillary force
on the interface motion can be understood below. Consider a
sinusoidal perturbation to the interface. For a heated film
layer �M 
0�, the interface crests �the thinnest portion of the
film� are hotter than the troughs �the thickest portion of the
film�. This induces a tension-gradient force and shears the
fluid toward the troughs, making the interfacial deflection
amplify as a consequence of mass conservation. Similarly,
M �0 does the opposite, and hence has a stabilizing influ-
ence on the system.

Furthermore, the strength of the thermocapillary force
depends on the thermal-conductivity contrast between the
two fluids. This can be explained below. If the thin layer is
less conductive ���1�, its basic temperature profile is
steeper for a given temperature difference across the channel.
It follows that a small perturbation to the interface will give
rise to a large temperature variation along the deflected in-
terface, thereby inducing a greater thermocapillary force.

As such, the film velocities �19� can be solved in terms

of �; there is no need in solving the detailed solution of �1.
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Substituting the film solution into �22� yields the following
evolution equation that governs the leading order linear sta-
bility:

�� +
M

2m�
�xx +

1

3m Ca0
�xxxx +

1

2�m

�� 1

m
− 1��

−�

�

G�k��
−�

�

��x�,��eik�x−x�� dx� dk = 0,

�29�

with

G =

ik�
−1

0

sinh�ky��f2�y�f1�0� − f1�y�f2�0��dy

2�
−1

0

cosh�ky��g2f1�y� − g2f2�y��dy

.

As shown by �29�, physics associated with each term now
emerge. The second-derivative term arises from thermocap-
illarity. A similar term can also arise from hydrostatic effects
if the fluids’ densities are mismatched.17 The fourth-
derivative term is attributed to capillarity. The nonlocal term
reflects viscosity stratification effects through the coupling to
the dynamics of the thick layer. Although Eq. �29� is derived
based on Ca� and M =E /Ca�O�1�, it is still applicable in
various limits, as discussed in the scaling analysis. That is,
Ca0→0 and Ca0→� should be regarded as Ca� �strong
tension limit� and Ca� �weak tension limit�, respectively.
Both small and large M limits can also be interpreted in a
similar manner.

To analyze the linear stability, we use a normal mode:

�= �̂ exp�ikx+s�� where k is the wave number and s is the
complex growth rate. The system is unstable when the real
part of s, sr, is positive. The normal-mode form of �29� then
becomes

s =
M

2m�
k2 −

1

3m Ca0
k4 +

1

m
�1 −

1

m
�G�k,Re1� . �30�

Note that all the terms in �30� have a common factor 1 /m.
Since s is measured with respect to the basic flow velocity
scale of the thick layer, i.e., the dimensional growth rate
scale is 2Uw /d1, the growth rate m ·s should be understood
on the basis of the thin-layer flow scale.

To gain more insight into the instability features, we first
inspect �30� in the long-wave limit. Making use of the
k→0 asymptote of G :G=2ik+ �Re1/60�k2+O�k3� �see Ap-
pendix�, we find

s =
2i

m
�1 −

1

m
�k + � M

2m�
+

Re1

60m
�1 −

1

m
�k2 + O�k3� .

�31�

As a result, the O�k� effect is only dispersive to the long-
wave stability. The long-wave stability is determined at
O�k2� by both thermocapillarity and viscosity stratification.
The effect of the interfacial tension is O�k4� unless the ten-
sion is strong enough �viz., Ca0�O�k2�� to compete with the

other two. Thermocapillary effects are destabilizing �stabiliz-
ing� for M 
0��0�. The viscosity-stratification term agrees
with Yih1 in the thin-layer limit. It reveals that m
1 �i.e., a
more viscous thin layer� is destabilizing to long waves,
whereas m�1 is stabilizing. Therefore, a competition be-
tween thermocapillarity and viscosity stratification can take
place either when M 
0 and m�1 or when M �0 and m

1. In these situations, there exists a critical Reynolds num-
ber, Re1

*, at the marginal stability state by setting the O�k2�
part of �31� to be zero:

Re1
* =

30m

�
� M

�m − 1�
� . �32�

For M 
0 and m�1, �32� provides the minimum Re1 re-
quired for stability while for M �0 and m
1, it is the maxi-
mum Re1 below which stability can be sustained. Since the
velocity scale in �32� appears in both Re1

* and M, the dimen-
sional velocity U* at the criticality given by �32� is

U* = � 30m

� d��� �	*

�T*�
T0

*

�Tw1
* − Tw2

* �
�m − 1� ��1/2

. �33�

For given fluid properties and heat conditions, this is the
critical velocity for the onset of stability/instability. Physi-
cally, for long-wave perturbations, dominant driving forces
to perturbation flows are the thermocapillary force and the
thick-layer shear stress in view of �20�. Following this line,
we can also obtain �33� using a simple scaling argument
below. The thick-layer shear stress through viscosity stratifi-
cation needs to accompany the inertia in order to make the
instability at work �since an inertialess flow will not have
instability due to the reversibility of Stokes flow�; thus it
has a scale of O��U2�1−m−1�d /L�, where L is the perturba-
tion wavelength. Define �T
Tw1

* −Tw2
* . The thermocapillary

force is O���	* /�T*��T* / ��L��. The critical velocity
occurs when these two forces counterbalance. This at
least requires balancing their scales: �U2�1−m−1�d /L
���	* /�T*��T* / ��L�, which arrives at the same result given
by �33�. Also, note that U* here does not depend on the
interfacial tension 	0

* as a consequence of negligible
interfacial-tension effects on the long-wave stability.

In the short-wave limit, with the aid of the k→� asymp-
tote of G :G= ik2− ik+

Re1

4 +O�k−1�, we have

s = −
1

3m Ca0
k4 + � i

m
�1 −

1

m
� +

M

2m�
k2 −

i

m
�1 −

1

m
�k

+
Re1

4m
�1 −

1

m
� + O�k−1� . �34�

Equation �34� holds in the sense that 1�k�−1, for ensur-
ing the validity of lubrication in the film. More precisely, to
retain the strongest effect O�k4� in �34� due to the interfacial
tension, it entails the unsteady term Re1ut��Re1 2k4� to be
much smaller than the viscous term uyy��−2� in �4a�, viz.,
k�Re1

−1/4 −1 for preserving lubrication in the film. In addi-
tion, k�−1/2 is also required for neglecting the unsteady
term in the motion of the thick layer, i.e., Ut�2k4�V
�O�1� in �23b�. Thereby, for Re1�O�1� �more precisely,
smaller than −2�, the restriction k�−1/2 suffices to most of

the situations of interest.
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As indicated by �34�, viscosity stratification determines
the short-wave stability at O�k0�, making the growth rate
approach a constant. Clearly, such an O�k0� short-wave
growth rate due to viscosity stratification will be either rap-
idly damped by the interfacial tension �of O�k4��, or over-
whelmed by thermocapillarity �of O�k2��.

Intuitively, short-wave disturbances do not perceive the
presence of the walls; the induced effects arising from vis-
cosity stratification should be only localized in the neighbor-
hood of the interface, just as in the unbounded problem.6

However, the present analysis is different from the un-
bounded problem since in the latter the short-wave instability
occurs at O�k−2�. In fact, the short-wave analysis of the
bounded problem does not necessarily deduce to that of the
unbounded problem.8,18 The discrepancy lies in the fact that
the only length scale in the unbounded problem is the trans-
verse scale of the viscous momentum, whereas the bounded
problem further involves a scale of the plate separation. Be-
sides, our thin-layer Ansatz further imposes a restriction on
k��−1� for assuring lubrication in the film, making the
transverse length scale of the film separated from that of the
thick layer. Below, we apply a scaling argument to illustrate
how these length scales can lead to different orders of mag-
nitudes for the short-wave growth rates caused merely by
viscosity stratification.

With respect to the plate separation, there are three
length scales in the problem: wavelength L�=2� /k�, viscous
length scale l, and the thickness of the thin layer . For the
thick-layer flow, the disturbed velocity has a scale U���
�more precisely, ��1−m−1��� through the jump of the per-
turbed interfacial velocities due to viscosity stratification.
Since the instability requires participation of the inertia of

the thick layer, it entails the inertial term Re1 ŪUx�
�Re1 lk� to balance the viscous term �2U��Uxx� �k2� in
the x-momentum equation. This yields the viscous length
scale l�k Re1

−1. The resulting shear stress at y=0 thus can be
estimated by Uy��k−1 Re1 � �because y=0 is near the wall

2

FIG. 2. The growth rates versus the wavenumber k. Here m=2; M =0;
Re1=1, 2, 4, and 8. The dashed lines are the corresponding long-wave
asymptotes.
y=, the normal velocity therein V��v�� Re1 � nearly
vanishes, making Vx��Uy� in the shear stress, as we can jus-
tify a posteriori�. This stress drives the thin layer within
which the transverse scale in the film remains O�� and is
much shorter than the viscous length scale in the thick layer,
viz., � l. Balancing the shear stresses of the two fluids:
m−1uY� �Uy�, we arrive at u��k−1 Re1 �, and hence
v��2 Re1 � due to the continuity. Using v��� / t from the
kinematic condition, the growth rate therefore has a scale of
t−1�2 Re1 or �−1�Re1, which agrees with the O�k0� term
in �34�.

We also demonstrate that if the above scaling scheme is
not devised by balancing the inertia, then the resulting
growth rate scale will be O�k2�. The viscous length l is ob-
tained by balancing Uyy� � l−2� with Uxx� �k2� in the viscous
term �2U�. This leads to l�k−1���. Following similar ar-
guments outlined earlier, we have Uy��k� ,u��k�, and
v��2k2�. Thereby, the growth rate has a scale t−1�2k2 or
�−1�k2. This is again consistent with the O�k2� term of �34�.
Note that the growth rate of this case is purely
imaginary—an instability will not occur simply because of
the Stokes-flow reversibility for the lack of inertia.

With the above features gleaned in the limits of both
long and short waves, we now analyze the stability for arbi-
trary wavelength disturbances. We first consider an isother-
mal system with a sufficiently weak tension �i.e., Ca��, so
the instability manifests solely due to viscosity stratification.
Figure 2 shows the growth rate curves for a more viscous
thin layer �m=2�. Here, the growth rate is represented by msr

in measure with respect to the basic velocity scale of the
film. As revealed by Fig. 2, for a fixed Re1 the system is
unstable and the growth rate increases as the wavelength
becomes shorter. Increasing Re1 exacerbates the instability.
The results are also compared with those of long waves, and
show an excellent agreement for k�2. The agreement is also
fairly good up to k�3. For m�1 �not shown�, it is clear that
the system is stable because �1−m−1��0 in �30�. It thus
follows that increasing Re1 expedites the stabilization in con-
trast to m
1. The above stability features are consistent with

3

FIG. 3. Effects of thermocapillarity on the growth rate. Re1=3; m=2;
�=1. The inset is for M =−0.05.
those found by Renardy for the fluids with nearly matched
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viscosities. The present work also complements her study in
a sense that here we provide an alternative view for under-
standing the thin-layer effects.

Figure 3 shows the effects of thermocapillarity on the
system stability with Re1=3,�=1 and m=2. Since M 
0
�the heated thin layer� is destabilizing, it makes the growth
rate faster than that of the isothermal case �M =0�. M �0
�the cooled thin layer� is stabilizing and hence suppresses the
growth. The critical state between instability and stability
occurs at M �−0.05 below which the system is completely
stabilized by thermocapillarity. This critical M also agrees
with the long-wave estimate given by �34�. Also, for M =
−0.05 �see the inset of Fig. 3�, the growth rate for small k is
positive and increases with k. It reaches a maximum at k
�2, and then decays to a negative value at larger k with a
neutral state at k�2.5. This can be explained by the fact that
the viscosity-stratification destabilization is slightly stronger
than the thermocapillary stabilization for small and moderate
waves, but the former is suppressed by the latter for short
waves, in view of �34�.

Figure 3 suggests that a slight change in M gives rise to
a large change of the growth rate. In practice, the system
stability is rather sensitive to thermocapillary effects. This
can be seen by inspecting both long and short-wave results.
For long waves as in �31�, the growth rate due to viscosity
stratification is proportional to k2 Re1 /60 as opposed to
k2M /� of thermocapillarity; thus thermocapillarity is gener-
ally more prevailing than viscosity stratification unless Re1

or � is sufficiently large. As for short waves as in �34�,
thermocapillarity clearly dominates over viscosity stratifica-
tion. Therefore, for a given arbitrary wavelength thermo-
capillarity generally outweighs viscosity stratification effects
even if the temperature difference across the plates is small.
For example, consider a system with −��	* /�T*�
�0.1 dyne/cm °C and �1=0.1 poise. Suppose that
M �0.1 suffices to cause an effect. For U*�1 cm/s, the
required temperature difference for thermocapillarity at work
is merely 0.1 °C!

In fact, when the interfacial tension is negligible, the
combined effects of viscosity stratification and thermocapil-
larity on the stability for m
1 can be used to infer those for
m�1, or vice versa. It can be shown as follows. Letting
s��M ,m�=ms�M ,m�, we find

s��− M,m/�2m − 1�� = − s��M,m� . �35�

Since m�=m / �2m−1��1 for m
1, a stability for m
1 and
M �0 suggests an instability for m�1 and M 
0 via the
property �35�. That is, if there is a critical M*��0� below
which a flow with m
1 is stable, then there must exist
M*→−M*�
0� beyond which a flow with m→m / �2m−1�
�1 is unstable.

The discussion so far excludes capillary effects, or is
concerning a scenario that capillary forces are too weak �i.e.,
Ca�� to influence the stability compared to viscosity
stratification or thermocapillarity. Since capillarity is always
stabilizing, it breaks the symmetry of �35�. Also, since the
capillary growth rate decays at the rate of O�k4�, the stabi-
lizing effect is strong for moderate or short waves. In gen-

eral, capillarity is often robust to completely stabilize the
system. If capillarity is sufficiently weak �but not too weak�,
however, it could have some nontrivial effects on the stabil-
ity for m�1. Such an incident occurs when M is equal or
close to the critical M* estimated by �32�. This is illustrated
by Fig. 4 for Re1=6, m=0.5, �=1, and M =M*=0.2. The
result reveals that there are two critical wavenumbers kc’s in
a range of large Ca0. In the long-wave regime, the viscosity-
stratification stabilization is offset by the thermocapillary de-
stabilization at M =M* according to �32�. In this regime, the
capillary stabilization is of a higher order �of O�k4�� in view
of �31�, and hence has no noticeable influence on the stabil-
ity, as evidenced in Fig. 4. For moderate waves, the capillary
stabilization becomes stronger; it works together with the
m�1 stabilizing effect, making the growth rate negative,
and decreased with k. Meanwhile, the thermocapillary desta-
bilization starts to become important, thus the growth rate
increases with k and reaches the first neural state at some k.
The growth rate keeps increasing with k until a sufficiently
large k for which the capillary stabilization becomes robust.
The growth rate then decreases with k again, leading to the
second neutral state.

The above result arises from the competition among all
the three effects in a range of k, and only occurs in an ap-
propriate window of Ca. If Ca is too small, then the system is
completely stabilized by capillarity for all k. If Ca is too
large, on the other hand, then only viscosity stratification and
thermocapillarity compete to determine the stability. For pa-
rameters given in Fig. 4, the window occurs within 180
�Ca0�1000. For =0.1, the corresponding Ca ranges from
O�−1� to O�−2�, indicating that the required tension for
such an occurrence is small.

V. THREE-DIMENSIONAL LINEAR STABILITY
AND SQUIRE’S THEOREM

In the preceding sections, we consider the system sub-
jected to two-dimensional perturbations and characterize the

FIG. 4. An example of the existence of two critical states in the k- space in
the weak tension regime. Here Re1=6; m=0.5; �=1; M =0.05. Here M is
chosen such that viscosity-stratification stabilization is nearly offset by ther-
mocapillary destabilization according to �32�.
linear stability. If perturbations are three dimensional, two
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issues will be raised. First, the condition at the criticality
between stability and instability might change. Second, it is
not clear if three-dimensional perturbations can grow more
rapidly than two-dimensional ones, which is, in particular,
critical to determining the fate of the interface.

The relationship between the behavior of three-
dimensional perturbations and that of two-dimensional per-
turbations has been established by Squire.19 The theorem
states that if there is an instability in the three-dimensional
problem at a certain Reynolds number, then the equivalent
two-dimensional problem given by Squire’s transformation
have an instability at a lower Reynolds number. In addition,
the growth rate of the three-dimensional problem is also
smaller than the corresponding transformed two-dimensional
problem, so considering only two-dimensional perturbations
will be sufficient. Note that at a given Reynolds number a
three-dimensional perturbation is not necessarily more stable
than a two-dimensional one.

Although Squire’s theorem holds for a large class of
flows, it could be invalid under the nonisothermal condition.
GH13 showed previously for thermally stratified two-fluid
flow that Squire’s theorem does not hold even though
Squire’s transformation exists. Kallidasis et al.20 studied
thermocapillary instability on falling film flow and demon-
strated the nonexistence of Squire’s transformation. There-
fore, the two issues mentioned in the beginning of the section
will become more apparent. In this section, we will examine
the three-dimensional stability problem and the validity of
Squire’s theorem. We again focus on the thin-film limit, so it
can allow us to examine the problem analytically.

Let w� and W� denote the perturbation velocities in the
cross-stream �z� direction for the thin and thick layers, re-
spectively. Following the scaling procedures outlined in Sec.
III, it can be shown that these velocities have the same scale
as the corresponding x components. Thus we let w�= �w
and W�=�W. The scales of the other perturbation quantities
remain the same as those in Sec. III. We now write the lead-
ing order linear-stability equations and boundary conditions.
They are then formulated in terms of the normal-mode form
q̂ by setting q= q̂ exp�ikx+ inz+s�� for a given perturbation
quantity q, where n is the wavenumber of perturbations in
the z direction. Also recall that the long time scale �=2t is
used.

At leading order in , the film equations are

ikû + inŵ + v̂Y = 0, �36a�

mûYY = ikp̂ , �36b�

mŵYY = inp̂ . �36c�

Here p̂ is again independent of y because of pY =0 from the
y-momentum at leading order. As for the thick layer, using
D
d /dy, we have

ikÛ + inŴ + DV̂ = 0, �37a�

¯ ˆ ˆ ¯ ˆ 2 2 2 ˆ
Re1�ikUU + VDU� = ikP + �D − �k + n ��U , �37b�
Re1 DŪV̂ = DP̂ + �D2 − �k2 + n2��V̂ , �37c�

Re1 ikŪŴ = inP̂ + �D2 − �k2 + n2��Ŵ . �37d�

The boundary conditions are as follows.
At the walls:

û = v̂ = ŵ = 0, at Y = 1, �38a�

Û = V̂ = Ŵ = 0 at y = − 1. �38b�

At the unperturbed interface �y=Y =0�:

m Dû = �DÛ + ikV̂� + ik�−1M�̂ , �39a�

m Dŵ = �DŴ + inV̂� + in�−1M�̂ , �39b�

p̂ = − �k2 + n2��̂/Ca0, �40�

Û = �m−1 − 1��̂, V̂ = Ŵ = 0, �41�

v̂ = s�̂ . �42�

Again, there is no need to solve the perturbation temperature
field since we derive �39a� and �39b� using �28� and the
base-state temperature, similar to �20�.

Equations �36�–�42� constitute an eigenvalue problem
that determines the three-dimensional linear stability in the
thin-film limit. Note that the dynamics of the thick layer
couple to the film’s through �39a� and �39b�. Since s appears
only in �42�, it can be uniquely determined. It can be shown
analytically that s of the three-dimensional problem takes the
form

s =
M

2m�
�k2 + n2� −

1

3m Ca0
�k2 + n2�2

+
1

m
�1 −

1

m
���Re1,k,n� , �43�

with

� = k�k2 + n2�−1/2G�Re1 k�k2 + n2�−1/2,�k2 + n2�1/2� . �44�

Define �̂2=�2 /�x2+�2 /�z2. Equation �43� is equivalent to the
following two-dimensional evolution equation:

�� +
M

2m�
�̂2� +

1

3m Ca0
�̂2�̂2� +

1

�2��2m
� 1

m
− 1�

� �
−�

� �
−�

�

��Re1,k,n�

���
−�

� �
−�

�

��x�,z�,��eik�x−x��+in�z−z�� dx� dz��dk dn

= 0. �45�

Compared to �30� of the two-dimensional problem, we find
that the three-dimensional problem has a stronger ther-
mocapillary effect �because of �k2+n2�
k2 in the M term�

while the viscosity stratification effect is weaker �because for



064109-10 Hsien-Hung Wei Phys. Fluids 18, 064109 �2006�
a fixed k ,��n=0�=G and the real part of � is a positivefunc-
tion decreasing toward 0 as n increases�. Obviously, the cap-
illary stabilization is also stronger in the three-dimensional
problem. Therefore, three-dimensional perturbations will
evolve �either grow or decay� more rapidly than two-
dimensional ones; two-dimensional perturbations are not
necessarily more dangerous. Similar to �32�, the critical Rey-
nolds number can be obtained by using the long-wave ex-
pansion in small k and n:

Re1 * =
30m

�
� M

�m − 1�
��1 + �n

k
�2 . �46�

As a result, Re1
* for the onset of stability/instability in the

three-dimensional problem will be larger than that of the
two-dimensional problem. For M 
0, thermocapillarity is
destabilizing, but can be stabilized by viscosity stratification
with m�1. Thus �46� yields Re1

* for the onset of stability and
suggests that if the two-dimensional problem is unstable at
some Re1, the three-dimensional system will also be unstable
at the same Re1. For M �0, on the other hand, thermocapil-
larity is stabilizing while viscosity stratification is destabiliz-
ing for m
1. Re1 given by �46� is the maximum Reynolds
number allowed for the stability. Therefore, an instability in
the two-dimensional problem at a given Re1 does not neces-
sarily imply an instability in the three-dimensional problem
at the same Re1.

The results shown above suggest that the usual interpre-
tation concerning the criticality using Squire’s theorem is not
applicable to our system. In fact, we find that Squire’s trans-
formation generally does not exist. But there are two excep-
tions: �i� m=1, and �ii� m�1, M =0 and Ca0→�. In case �i�,
the thick-layer dynamics are irrelevant to the leading order
stability, so is Re1; the stability is determined solely by the
film flow. In this case, Squire’s transformation can be simply

carried out by k̃= �k2+n2�1/2 and k̃ũ=kû+nŵ while other
quantities remain untransformed. Here, overtilde quantities/
parameters are used to describe the transformed two-
dimensional system. It is clear from �43� that for m=1 and
the absence of interfacial tensions, three-dimensional pertur-
bations can grow more rapidly than two-dimensional ones
due solely to thermocapillary instability. Therefore, consid-
ering only two-dimensional perturbations will be insuffi-
cient; Squire’s theorem does not hold even though there is a
Squire transformation. Physically, the instability in this case
is independent of basic flows, just like the case of a station-
ary base state. Thus interfacial perturbations will develop
unbiasedly in both x and z directions. Also, since the insta-
bility in each direction can occur independently for arbitrary
k or n��−1�, their superposition will exacerbate the insta-
bility.

As for case �ii�, the instability arises solely from viscos-
ity stratification, and can be reduced to an equivalent two-

dimensional problem under the following transformation:
k̃�ũ,Ũ� = k�û,Û� + n�ŵ,Ŵ�,

�ṽ, p̃,Ṽ, P̃, �̃� = �v̂, p̂,V̂, P̂, �̂� ,

�47�

k̃ = �k2 + n2�1/2, s̃ = k̃s/k, R̃e1 = Re1 k/k̃, m̃ = m,

�̃ = � .

Since we have solved the two-dimensional problem analyti-
cally in Sec. IV, we can utilize its solution and the above
transformation to solve the three-dimensional problem ana-
lytically. This is how we derive � in �43�. From �30� for the
two-dimensional problem, we know that instability occurs
when m
1 at any nonzero Reynolds number, so the critical
Reynolds number for stability will be zero. Also, since

Re1=R̃e1 k̃ /k, the critical Reynolds number in the three-

dimensional problem is zero, too. Moreover, because k̃�k,
real�s̃�� real�s�. In what follows, two-dimensional perturba-
tions are the most dangerous. Thereby, Squire’s theorem does
hold in this case.

As such, Squire’s theorem does not exist in the presence
of thermocapillarity, as also evidenced by comparing the
growth rates between �30� for the two-dimensional problem
and �43� for the three-dimensional problem. This conclusion
is consistent with those found in previous studies on ther-
mocapillary instability.20,21 A similar situation can also be
found due to adverse density stratification.13 In analogy to
the effect of density stratification discussed by Joseph and
Renardy,14 for the fully three-dimensional stability problem,
there is no basic flow in the cross-stream direction, so ther-
mocapillary instability could occur at any Reynolds number
in the three-dimensional problem, while its two-dimensional
counterpart still admits stability in a range of the Reynolds
number. This is the reason why the usual interpretation of
Squire’s theorem does not hold when thermocapillary effects
are present.

VI. EXTENSION TO WEAKLY NONLINEAR STABILITY
REGIME

In the foregoing sections, we have analyzed the leading
order linear stability that is only appropriate for sufficiently
small perturbations. As the system undergoes instability, the
interface grows with time and its amplitude could be so large
that nonlinear effects become important. An issue here is
often concerning if the instability can persist or be arrested,
so that one can foresee if the film is ruptured or still keep its
integrity. Here we restrict our attention on the weakly non-
linear regime in which the interface amplitude is assumed
finite but still remains small compared to the undisturbed
film thickness.

In view of the nonexistence of Squire’s theorem shown
in Sec. V, the three-dimensional problem could be more un-
stable than the two-dimensional problem. Thus, an appropri-
ate nonlinear evolution equation of the interface should be on
the two-dimensional basis like �45�. Nevertheless, it might

also be essential to understand differences of the interface
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dynamics between these two problems. To gain some in-
sights, first of all, we consider the weakly nonlinear exten-
sion to �29� for the two-dimensional problem. The corre-
sponding extension to �45� for the three-dimensional
problem will be discussed later.

A. Weakly nonlinear evolution equation
for the two-dimensional stability problem

To extend �29� into the weakly nonlinear regime, we
shall find the size of perturbations within which the equation
holds. Our approach to finding appropriate scales in this re-
gime is similar to that of core-annular flow studied by
Papageorgiou et al.22 It is briefly provided below. For
Ca� and M �O�1�, using �17� and the long time scale
�=2t, we expand the kinematic condition �11�: 2 �v
=2 ���+�2Ū2y�y=0��x. Balancing the terms, we find ��2

appropriate for the problem. We can also show that the non-
linear effects contributing to the leading order come only
from ��x shown above; all the other nonlinear terms will be
of higher orders. For instance, the nonlinear terms arising
from the evaluation of 2 �v at the deflected interface Y =1
+�� are O�2�2�, at most. That from the inertia of the thick
layer contributes the O��2� correction to �U, so the associ-
ated term in 2 �v is O�2�2�. The nonlinearity from the in-
terface curvature is O��3� and yields O�−1�3� to the capil-
lary pressure. The resulting effect contributing to 2 �v is
merely O�2�3� and even of higher order than those consid-
ered above.

As a result, we derive the following weakly nonlinear
evolution equation:

�� +
1

m
��x +

M

2m�
�xx +

1

3mCa0
�xxxx +

1

2�m

�� 1

m
− 1��

−�

�

G�k��
−�

�

��x�,��eik�x−x�� dx� dk = 0.

�48�

Letting �=Lx, �=2��3 �M �Ca0�−1L−2, �=2L� �M�−1�,
�=2��1−m−1�L2 / �M�, and T= �M � �2m��−1L−2�, we reduce
�48� to the following form:

�T + ��� + sign�M���� + ������

−
�

2�
�

−�

�

G�k��
−�

�

����,T�eik��−��� d�� dk = 0. �49�

This equation is a Kuramoto-Sivashinsky �KS� type and gen-
erally admits nonlinear saturation of instability. Similar equa-
tions can also be found in core-annular film flows.22,23

For disturbances with very short wavelengths, it is not
possible for effects of the nonlocal term �via G� to override
the capillary stabilization �via ������ since the real part of the
Airy kernel G approaches a constant as k→� �see �34��
while the capillarity goes like k4. Therefore, short-wave dis-
turbances will be rapidly damped by the capillarity; effects
of the nonlocal term manifest only for long and moderate
wavelengths. Furthermore, the quantitative behavior of G for
moderate k can be adequately described by the small-k ap-

proximation �see Fig. 2, the agreement between the exact and
the long-wave results is good up to k�3�. Similar adequacy
of the small-k approximation for the effect of the nonlocal
term can also be found in core-annular film flows.24

There is a possibility that one has to consider the full
nonlocal term. This occurs only when the interfacial tension
is too weak, so one needs even shorter waves to make an
instability arrested within the weakly nonlinear regime.
However, since the capillary stabilization is too weak, the
amplitude of the interface could have been growing so large
that it could be already beyond the weakly nonlinear regime.
In this case, the derived KS equation is no longer appropriate
to describe the nonlinear behavior for the interface.

In light of the above discussion, from both practical and
theoretical points of view, it is sufficient to account only long
and moderate waves in G. We therefore approximate G as

G = 2ik +
Re1

60
k2 + iG3k3 + G4k4 + O�k5� . �50�

Note that we retain the terms up to O�k4� whose effect could
mitigate the capillary stabilization ������. Here, both G3 and
G4 are real and given by Appendix . Using �50�, we can
adequately describe the interface dynamics without appeal-
ing to the detailed evaluation of the complex Airy kernel.
Substituting �50� into �49� and using Galileo transformation
�→�+2�T, we simplify Eq. �49� to

�T + ��� + ���� + ����� + ������ = 0, �51�

where �=M / �M �−�Re1/60, �=−�G3, and �=�−�G4. We
are more interested in the �
0 case since it introduces de-
stabilizing effects. Here � is generally positive, so linearly
unstable waves can be stabilized through nonlinear modula-
tion. Letting T→T /� and �→��, we reduce �51� in the
following canonical form:

�T + ��� + ��� + ��/������ + ��/������� = 0. �52�

Equation �52� with �=0 is the prototype KS equation and
can be found in a variety of contexts.23,25–29 The existence
and boundedness of solutions of the KS equation have also
been proved.30–34 In addition, the solutions reveal rich spa-
tiotemporal dynamics such as traveling waves, time periodic
motion, and chaos, depending on the parameters.35–39 The
term ���� introduces dispersion to interface waves and hence
can change their shapes or velocities.39,40 In fact, most of the
film dynamics can be characterized by a more generalized
form: the Shkadov equation,42,43 from which the KS equation
can be derived in an appropriate limit.44

Since the dynamics of �52� have been well studied in the
past, we do not intend to solve the equation here. Rather, we
discuss its qualitative behaviors related to our problem. For a
periodic domain of 2�, linear instability and the subsequent
nonlinear modulation occur if � /��1; otherwise a trivial
solution �=0 will be obtained since all waves are damped by
the interfacial tension. We can estimate the relevant scales
below by balancing the terms in �52�. A balance of the sec-

ond and fourth derivative terms provides an estimate of the
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length scale �� /��1/2 necessary for instability. For an un-
stable wave with that length scale, its amplitude can be esti-
mated as �� /��1/2 by balancing the nonlinear term. Similarly,
we can obtain a time scale as � /� from balancing the un-
steady term. With the above scales, the scale of the third
derivative term relative to the remaining terms is ��� � /��
��� /��1/2. From a dynamic point of view, large � /� gener-
ally leads the spatiotemporal behavior to be less regular39

while large �� � /� tends to regularize the waves.41 Therefore,
��� � /���� /��1/2 can be served as the dispersion-dissipation
ratio for indicating the dynamic tendency toward organized
wave structures.

Using the scales shown above, we now take an example
to illustrate the effects at work. Here, we choose � /�=0.01
to find the conditions for realizing nonlinear saturation of
instability when destabilizing effects are much stronger than
stabilizing effects in the linear regime. Suppose that the in-
terface starts with a monochromatic wave of a small ampli-
tude, say, 0.1 sin���. An instability will set off for wave-
lengths longer than �� /��1/2�0.1 �or the Fourier mode �10�
according to the linear theory. The most unstable wave oc-
curs at the Fourier mode ��� /2��1/2�7, and grows rapidly
in the early stages of the evolution. As the interface ampli-
tude becomes large, the wave steepening due to the KS non-
linearity will make the wavelength shorter, exciting higher
Fourier modes. As the amplitude grows up to an order of
�� /��1/2�10, the instability will be gradually attenuated due
to the short-wave stabilization and finally arrested within the
finite-amplitude regime. The dispersion-dissipation ratio is
��� � /���� /��1/2�10 �� � /�, so organized wave structures
�e.g., traveling/pulse-like waves� are likely observed in this
case unless ��� is sufficiently small �e.g., nearly matched vis-
cosities or a sufficiently slow flow�.

Notice that for finite-amplitude interfacial waves, the
true physical scale of the amplitude with respect to the plate
separation should be read as ��� /��1/2M�−12. For �
�1,M �1, and ��1, the amplitude scale is 102. There-
fore, one requires �0.1 to ensure the validity of the weakly
nonlinear analysis. That is, in order to keep the film from
rupture, the film thickness must be much smaller than 10%
of the plate separation. It is also clear that a stronger tension
�larger �� or a faster flow �smaller �� will render stabiliza-
tion, making the interface evolution confined within a
smaller amplitude and hence allowing a thicker film for pre-
venting rupture.

B. Weakly nonlinear evolution equation
for the three-dimensional stability problem

The preceding discussion is based on the one-
dimensional interface evolution equation governing the
stability of the two-dimensional problem. For the three-
dimensional problem that could be more unstable than the
two-dimensional one, the corresponding evolution equation
of the interface should take a two-dimensional form. In a
similar fashion to derive �48�, we derive the two-dimensional

evolution equation below for the three-dimensional problem:
�� + ��x +
M

2m�
�̂2� +

1

3m Ca0
�̂2�̂2� +

1

�2��2m
� 1

m
− 1�

� �
−�

� �
−�

�

��Re1,k,n�

���
−�

� �
−�

�

��x�,z�,��eik�x−x��+in�z−z��dx� dz�dk dn

= 0. �53�

To the best of our knowledge, it is the first time that a two-
dimensional evolution equation with the inclusion of a
nonlocal term can be systematically derived. Making use of
�44� and �50�, we again approximate the kernel function � to
make the problem more tractable:

� = 2ik +
Re1

60
k2 + iG3kk̃ 2 + G4kk̃ 3 + O�kk̃ 4� . �54�

Here, Re1 in G3 and G4 given by the Appendix is now re-

placed by Re1k / k̃. Similar to �52�, we can show, with an
appropriate transformation, that �53� can be reduced to the
following two-dimensional KS equation �2-D KS�:

�� + ��x + ��̂2� + �̂�xx� + �̂ �̂2�x + ��̂1 �̂4� + �̂2 �̂2�xz� = 0.

�55�

Note that spatial derivatives are not symmetric between x
and z because the basic flow acts in the x direction. The
original equation �with �̂2=0� has been postulated for mod-
eling various nonlinear systems.45 But here we find an addi-
tional dissipative term from �̂2�0. Equation �55� is also
similar to those derived in related problems.46,47 Although
2-D waves �with s��k+n�2� are more unstable than 1-D
waves ��k2� for long-wavelength disturbances, the nonlinear
wave steepening makes the short-wave stabilization more ef-
fective in the former ���k+n�4� than the latter ��k4�. There-
fore, we speculate that compared to 1-D waves, 2-D waves
might be easier to be arrested in the weakly nonlinear re-
gime, although they can grow faster than 1-D waves in the
linear regime.

The main difference between the 1-D and 2-D KS equa-
tions lies in effects due to dispersion �from odd derivative
terms�.48 When dispersion is weak, the dynamics of the 2-D
case are qualitatively similar to those of the 1-D case.45 If the
effect is strong, the extra 2-D dispersion term can be impor-
tant even at large tension �large �̂1�, leading to a change of
wave patterns or complicated wave interactions in the 2-D
interface’s dynamics. The detailed dynamic behaviors of the
2-D KS equation can be found elsewhere,48–51 and hence we
do not pursue them here.

VII. CONCLUDING REMARKS

We have asymptotically examined the stability of two-
layer Couette flow in the thin-layer limit. Effects of viscosity
stratification, thermocapillarity, and interfacial tension are in-
cluded in the analysis. Most of our efforts are devoted to the
two-dimensional stability problem. We devise a scaling

analysis to identify dominant mechanisms of instability in
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various ranges of parameters. Using an appropriate scaling,
we analytically derive an evolution equation of the interface
governing the leading order linear stability of the system.
The effects of viscosity stratification can be represented by a
nonlocal contribution in terms of Airy functions.

Viscosity stratification linearly destabilizes �stabilizes�
when the film is more �less� viscous. Thermocapillarity lin-
early stabilizes �destabilizes� as the thin layer is cooled
�heated�. The viscosity stratification effects could be stronger
than the thermocapillary effects for long waves, but the
former can be outweighed by the latter for short waves. The
interplay between these two effects determines the Reynolds
number at the criticality between stability and instability.

Interfacial tension is always stabilizing, and is often
robust to make the system completely stable. For a less vis-
cous film, however, we find a possibility of the existence of
two neutral states in the wavenumber space when the flow is
within a certain window in the weak-tension regime.

We also examine the three-dimensional stability prob-
lem. The corresponding stability is reduced to a two-
dimensional film evolution equation consisting of a nonlocal
term. It can be shown analytically that a three-dimensional
perturbation can grow more rapidly than a two-dimensional
one in the presence of thermocapillarity. More importantly,
we prove the nonexistence of Squire’s theorem. We also find
that the critical Reynolds number in the three-dimensional
problem is larger than that in the two-dimensional problem.
However, an instability in the two-dimensional problem does
not necessarily suggest an instability in the three-
dimensional problem. For each problem, the corresponding
extension to the weakly nonlinear regime is also discussed.
With an appropriate scaling, the weakly nonlinear interfacial
dynamics can be characterized by the Kuramoto-Sivashinsky
equations. Consequently, the instability can be arrested in the
finite-amplitude regime; that is, the film can still keep intact
without rupture.

APPENDIX: LONG-WAVE EXPANSION OF THE AIRY
KERNEL G

Here we provide the long-wave approximation up to
O�k4� for the Airy kernel G in �29�. We first expand the
numerator and denominator of G:

G =
ik

2

a1 + ib1k + c1k2 + id1k3 + O�k4�
a2 + ib2k + c2k2 + id2k3 + O�k4�

, �A1�

with the coefficients given below:

a1 =
Re1

1/3

6�
, b1 = −

Re1
4/3

144�
, c1 =

Re1
1/3

30�
−

Re1
7/3

9072�
,

d1 = −
Re1

4/3

720�
+

Re1
10/3

1 088 640�
,

a2 =
Re1

1/3

, b2 = −
Re1

4/3

,

24� 720�
c2 =
Re1

1/3

180�
−

67Re1
7/3

3 628 800�
, d2 = −

Re1
4/3

5040�
+

Re1
10/3

748 440�
.

An expansion of �A1� in a series of k yields

G = 2ik +
Re1

60
k2 + iG3k3 + G4k4 + O�k5� . �A2�

Here G3 and G4 can be expressed in terms of the coefficients
given above:

G3 = �c1 − a1c2/a2 − �a1b2 − b1a2�b2/a2
2�/�2a2� ,

G4 = − �d1 − a1d2/a2 − c2�a1b2 − b1a2�/a2
2

+ �− c1a2
2 + a1c2a2 − b2b1a2 + a1b2

2�b2/a2�/�2a2� .
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