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Thermocapillary instability of a core-annular flow is asymptotically examined in the thin annulus
limit. Two sets of scalings are established to study the interplays between base flows, interfacial
tension, and thermocapillary effects. For each scaling case, an interfacial evolution equation is
derived for describing the leading order stability of the system. Both linear and weakly nonlinear
stabilities are examined. When the core fluid is warmer �cooler� than the wall, thermocapillarity
linearly stabilizes �destabilizes� the system, and hence suppresses �promotes� the capillary
instability. For a moderate thermocapillary force and a strong capillary force, the linear instability
can be arrested within the weakly nonlinear regime. For a weak thermocapillary force and a
moderately strong interfacial tension, the weakly nonlinear evolution is governed by a modified
Kuramoto-Sivashinsky equation. The influence of thermocapillarity on the route to chaos is
discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2085190�
I. INTRODUCTION

A two-fluid core-annular flow �CAF� consists of two im-
miscible fluids flowing concurrently in a tube, where one
�annular� fluid wets the tube wall and surrounds the other
�core� fluid. This flow system is often served as a useful
model for a variety of processes such as lubricated
pipelining,1 packed beds,2 enhanced oil recovery,3 and liquid
lining flows in airways.4 The present study is in particular
motivated from efforts to construct an appropriate model for
understanding processes occurring in oil recovery. To re-
cover oil that is lodged within capillary pores of rocks, one
can displace oil with another immiscible fluid �usually wa-
ter�. This fluid-fluid displacement creates a train of slugs that
travel through pores. An interfacial instability plays a deci-
sive role in determining the efficiency of the recovery pro-
cess. A growing interface due to capillary instability can
cause the wetting layer to snap and bring the nonwetting
phase in contact with the pore wall. This can retard the mo-
bility of a slug, thereby hindering the recovery process.

The efficiency of recovery can be improved by adding
surface-active agents that lower the surface tension, or by
applying a hot gas stream that reduces the viscosity of crude
oil. In either treatment, the temperature of the displacing
fluid could be different from rocks that may be located in a
scorching underground environment. This could induce ther-
mal effects such as buoyancy and thermocapillarity, which
might significantly influence the stability of the system and
hence the efficiency of recovery. In an ab initio attempt to
understand these effects on CAFs, we seek to investigate the
role of thermocapillarity in affecting the stability thereof.

For isothermal CAFs, the dominant effects on the stabil-
ity are capillarity and viscosity stratification. Capillarity de-
stabilizes �stabilizes� the system when wavelengths of distur-
bances are longer �shorter� than the undisturbed interfacial
circumference. Preziosi et al.1 numerically solved the full
Orr-Sommerfeld equations for examining the linear stability

relevant to lubricated pipelines. They showed that for a more
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viscous core with a sufficiently large Reynolds number, vis-
cosity stratification can overcome the long wave destabiliza-
tion of capillarity and stabilize disturbances of all wave-
lengths. Georgiou et al.5 developed an asymptotic theory to
examine the linear stability of a vertical CAF in the thin-
annulus limit. They showed that for a more viscous core,
viscosity stratification could have a stabilizing effect in a
range of the Reynolds number. For a more viscous annulus,
however, viscosity stratification is destabilizing.

Frenkel et al.6 and Papageorgiou et al.7 derived
Kuramoto-Sivashinsky equations for the weakly nonlinear
interfacial dynamics of CAFs. The latter included the effects
of core dynamics via viscosity stratification. These studies
demonstrated that capillary instability can be arrested by
nonlinear effects. Kerchman8 studied the strongly nonlinear
stability of CAFs and showed that the dynamics of the inter-
face strongly depends on the capillary number, Ca, the ratio
of viscous to interfacial tension forces based on the proper-
ties of the core fluid. A CAF configuration could either re-
main intact due to the nonlinear saturation of the capillary
instability, or collapse due to the interface’s bulging into the
core. Recently, Kouris and Tsamopoulos9,10 numerically
solved the full Navier-Stokes equations of CAF and con-
firmed the dynamics revealed in early CAF studies.7,8 As
such, the stability of isothermal CAFs is fairly well under-
stood.

As for nonisothermal systems, we focus on thermocap-
illary effects, i.e., temperature-induced interfacial tension
gradient forces that drive fluids toward the higher-tension
�lower-temperature� regions. Some previous studies on pla-
nar systems have revealed some features of instability arising
from thermocapillarity. Pearson11 first investigated the ther-
mocapillary problem of a nondeformable fluid layer over a
heated wall in the absence of gravity. Scriven and Sternling12

extended the analysis by accounting for the effects of inter-
facial deformation. These studies indicated that thermocapil-
larity destabilizes the systems with heated walls. Goussis and

13
Kelly examined the instability of a liquid film flowing
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down an inclined heated wall. They pointed out that there are
two distinct mechanisms responsible for the thermocapillary
destabilization. One mechanism is associated with interac-
tions between the basic temperature profile and the disturbed
velocity field.14 The other mechanism arises from the modu-
lation of the basic temperature at the deformed interface.14,15

Since planar interfacial flow systems inherently lack the
circumferential component of the interfacial curvature, their
stability features differ from those of cylindrical systems
such as CAFs. Nevertheless, under some circumstances, the
instability occurring in a planar system could be analogous to
that in a CAF.15 An example is the Rayleigh-Taylor instabil-
ity that occurs when a heavier fluid is placed on top of an-
other immiscible, lighter layer. Similar to the role of the
circumferential capillarity in a CAF, destabilizing effects are
induced by buoyancy forces arising from the density differ-
ence of the fluids. An interfacial tension force, accompanied
only with the longitudinal curvature of the interface, is sta-
bilizing. If there were a temperature gradient across the chan-
nel, the induced thermocapillary forces can either encourage
or discourage the buoyancy-driven instability, depending on
whether the plate is heated or cooled from the bottom.15

There are a few studies addressing how thermocapillar-
ity affects the stability of interfacial flow in cylindrical sys-
tems. Dijkstra and Steen16 studied the linear stability of a
thermocapillary-driven flow on the exterior surface of the
cylinder. They showed that complete stabilization could oc-
cur under certain conditions. Davalos-Orozco and You17

studied the three-dimensional instability of a liquid layer
flowing down a heated vertical cylinder. They examined both
flows inside and outside the cylinder. Their study showed
that thermocapillarity could excite instability due to azi-
muthal modes. The growth rate of an azimuthal mode could
be faster than that of the axisymmetric mode in some range
of parameters. This is in contrast with the isothermal flow
where the axisymmetric mode is always the most unstable.
However, as the Crispation number Cr=Ca/Pe becomes
smaller, where Ca and Pe denote respectively the capillary
and Peclet numbers, the axisymmetric mode becomes more
dominant than azimuthal modes. They also found for flow
inside the cylinder that the axisymmetric mode is always the
most unstable although azimuthal modes can be excited. In
addition, for the same values of parameters, azimuthal modes
excited for flow inside the cylinder are fewer than those for
flow outside the cylinder. Our analysis shall focus on the
axisymmetric instability. As we shall discuss, for parameters
of our interest, studying the axisymmetric instability appears
to be a rational approach to our problem in view of its
greater importance than azimuthal modes according to Ref.
17.

The above-mentioned studies focused on the stability of
a single fluid layer under thermocapillary influences. In Ref.
16, the base flow is driven by a prescribed axial thermocap-
illary force, and exerts a stress on the interface. The ther-
mocapillary influence comes from both the basic flow and
the perturbation temperature field. In Ref. 17, the base flow
is a freely falling flow, and hence the interface is stress-free.
Thermocapillary effects in this study are only attributed to

the perturbation temperature field. The current study is dif-
ferent from these early works. The most apparent difference
is that our system is a two-fluid flow, rather than a single-
layer flow, which clearly makes base flows behave differ-
ently. More importantly, the stability features are further in-
fluenced by the contrast of fluids’ mechanical/thermal
properties, which is absent in single-fluid systems. Our ap-
proach is also different from Refs. 16 and 17. In contrast to
these studies in which stabilities were examined numerically,
we develop an asymptotic theory to examine the stability of
a CAF in the thin-annulus limit. This can provide a more
lucid way to reveal relevant physics. Despite the above dif-
ferences, some of our results still can be compared qualita-
tively with those in these early studies, as we shall discuss in
detail in Sec. VI. Furthermore, as we shall demonstrate, since
our thin-film CAF study covers a wide range of parameters,
it is also likely to extend the applicability to gas-liquid sys-
tems �e.g., trickle beds�.

The paper is organized as follows. We begin with the
base state, governing equations, and boundary conditions in
Sec. II. In Sec. III, we establish two different sets of scalings
and identify dominant instability mechanisms. The respec-
tive leading order linear stability analysis is outlined for each
scaling case in Sec. IV. The extension to the weakly nonlin-
ear regime is carried out in Sec. V. We compare our results
with previous studies in Sec. VI. Application of the present
study is discussed in Sec. VII. Concluding remarks are made
in Sec. VIII.

II. BASE STATE, GOVERNING EQUATIONS, AND
BOUNDARY CONDITIONS

Consider two immiscible, incompressible, Newtonian
fluids flowing axisymmetrically in a core-annular arrange-
ment in a straight tube with radius R2. The interface is given
by r*=S*�z* , t*�. Fluid 1 of viscosity �1 occupies the core
region 0�r*�S�z* , t*�. Fluid 2 of viscosity �2 fills the an-
nular region S*�z* , t*��r*�R2. Densities of the core and the
annular fluids are denoted by �1 and �2, respectively. The
temperatures of the tube wall and the core fluid are main-
tained at Tw

* and T0
*, respectively. See Fig. 1. Velocity fields

v*= �u* ,0 ,w*� are expressed in terms of the cylindrical coor-
dinates �r* ,�* ,z*�. Let r*=R1 be the undisturbed interface.
The base flows are driven by a constant pressure gradient
�*p*=−Fe�z* with F�0. We choose R1 as the characteristic

2

FIG. 1. Geometry of a core-annular flow.
length. With the centerline velocity W0=F�R1��2−�1�
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2�1� / �4�1�2� as the characteristic velocity scale, pressure

and time can be then scaled with �1W0 /R1 and R1 /W0, re-
spectively. It is also convenient to introduce the viscosity
ratio m=�2 /�1 and the radius ratio a=R2 /R1. We write the
base flows in the dimensionless form as follows:

W̄�r� = 1 −
mr2

�a2 + m − 1�
for 0 � r � 1,

w̄�r� =
�a2 − r2�

�a2 + m − 1�
for 1 � r � a , �1�

�p̄� =
1

Ca
,

where �·�= �·�1− �·�2, Re1=�1W0R1 /�1 and Ca=�1W0 /�0
* de-

note the Reynolds number and the capillary number, respec-
tively, and �0

* is the interfacial tension for the base state.
As for the base-state temperature field, we treat the core

fluid as an ambient phase with a constant temperature. That
is, the energy conveyed by the core is transmitted across the
fluid-fluid interface into the annulus, or vice versa. This en-
ables us to apply the Newton heat condition kfTr*

* =h�T*

−T0
*� at the interface r*=R1, where h and kf are the heat

transfer coefficient and the thermal conductivity of the annu-
lar layer, respectively. This condition is generally appropriate
at the boundary where a liquid is in contact with an ambient
phase �usually a gas stream� that is well mixed or moves
sufficiently fast. Its basis is briefly provided below.

Since the annular thickness is thin compared to the
tube’s radius as in most of the CAF applications, conduction
dominates the heat transfer in the film. For a sufficiently fast
core flow, the Peclet number Pe could be large enough so
that the thermal boundary layer becomes sufficiently thin. In
this case, as the core fluid with a constant temperature enters
a pore, its temperature remains almost uniform outside the
thin thermal boundary layer. Because the thermal boundary
layer grows slowly in the streamwise direction for large Pe,
the core temperature in this long entrance region can be ap-
proximated as a uniform profile before it equilibrates the
wall or reaches a fully developed state. In this region, the
application of the Newton heat condition could be appropri-
ate. This will also be justified later using scaling arguments
in Sec. III.

With the Newton heat condition applied at the interface,
we normalize the temperature by T= �T*−T0

*� /�T* with
�T*=Tw

* −T0
*, and obtain the following basic temperature

profile for each fluid:

T̄ = 0 for 0 � r � 1,

�2�

T̄�r� = 1 +
Bi

1 + Bi ln a
ln� r

a
� for 1 � r � a ,

where Bi=hR1 /kf is the Biot number.
For a dynamical system, the nondimensional equations

of motion for each fluid are governed by the continuity and

the Navier-Stokes equations:
1

r
�ru�r + wz = 0, �3�

�i Re1�wt + uwr + wwz� = − pz + mi�
2w , �4a�

�i Re1�ut + uur + wuz� = − pr + mi��2u −
u

r2� , �4b�

where �i=�i /�1 is the density ratio and mi=�i /�1 �i=1,2�.
The system is subject to the following boundary conditions.
The velocities vanish on the wall:

w2 = u2 = 0 at r = a . �5�

Velocities are continuous at the interface:

�w� = 0, �u� = 0 at r = S�z,t� . �6�

At the interface r=S�z , t�, the tangential stress and normal
stress conditions are

1

�1 + Sz
2�

�mi��wr + uz��1 − Sz
2� + 2�ur − wz�Sz�� =

1

Ca
�z.

�7�

− �p − 2miur − �− p + 2miwz�Sz
2 + 2mi�ur + wz�Sz�

=
��T�
Ca

�Szz −
1

S
�1 + Sz

2���1 + Sz
2�−3/2. �8�

The dependence of the interfacial tension on temperature is
assumed to be linear:

� = 1 − ET , �9�

where E=−��T* /�0
*����* /�T*�T0

* is a dimensionless param-
eter that reflects the change in the interfacial tension in re-
sponse to the temperature variation. E�0 �	0� corresponds
to the system with the wall warmer �cooler� than the core
fluid, viz., �T*�0 �	0�. At the interface, the kinematic con-
dition is also required:

u = St + wSz at r = S�z,t� . �10�

We finally require the regularity of the core flow at the cen-
terline:

u1 = w1r = 0 at r = 0. �11�

As for the heat transfer problem, we assume that the core
temperature remains constant for all times. This is only valid
when the annular thickness is thin and Pe is large, as we shall
justify a posteriori. The heat transfer equation for the annular
layer is

Tt + uTr + wTz =



Pe
�2T , �12�

where Pe=W0R1 /�T is the Peclet number, and �T is the ther-
mal diffusivity of the core and its ratio to that of the annulus
is denoted by 
. The boundary conditions are
T = 1 at r = a , �13�
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�Tr − SzTz�
�1 + Sz

2�1/2 = BiT at r = S�z,t� . �14�

The left-hand side of �14� is just −n ·�T from conduction in
the annulus where n is the unit normal pointing towards the
core.

III. SCALING ANALYSIS

To asymptotically examine the stability of the base state
in the thin-annulus limit, we follow an approach similar to
Georgiou et al.5 and Papageorgiou et al.7 We first carry out a
scaling analysis to identify the dominant instability mecha-
nisms and to estimate the scales of perturbation quantities.
We then expand the governing equations and boundary con-
ditions with these perturbation quantities to formulate the
leading order stability problem. We begin with the linear
stability analysis and later extend it to the weakly nonlinear
regime.

Let � be the ratio of the undisturbed annular thickness to
the core radius. In the thin-film limit ��1�, a stretched film
variable y=1− �r−1� /� is introduced to separate the radial
scales in the film and core. For m=O�1�, the leading order
base flows for the film and the core yield, respectively,

w̄ = 2�y/m and W̄ = 1 − r2. �15�

The leading order basic temperature profile of the film is

T̄ =
1 + B�1 − y�

1 + B
. �16�

Here, B=�Bi can be regarded as the Biot number based on
the film, and is assumed to be O�1�. Since B is proportional
to the film thickness �R1, if the film thickness is sufficiently
thin, then strong conduction through the film could be com-
parable to the heat transfer through the ambient core. In ad-
dition, we are interested in nontrivial effects due to ther-
mocapillarity. As we shall show, in both small and large B
limits, thermocapillarity has no impact on the stability; the
effects are manifested only when B=O�1�.

The system is perturbed by disturbances to the interface
and the annular temperature field with the respective sizes of
�1��� and �2�1�:

S�z,t� = 1 + �1��z,t� and T�r,z,t� = T̄ + �2��r,z,t� . �17�

In estimating the scales of perturbation quantities, it is worth
noticing that there are different mechanisms driving pertur-
bation flows. For strong surface tensions or low Ca, capillary
forces usually drive the flow in the film. On the other hand,
when surface tensions are low or Ca is large, the flow can be
solely driven by thermocapillary forces.

Let �w� ,u� , p�� and �W� ,U� , P�� denote the perturbation
quantities for the annulus and the core, respectively. We first
consider the capillary scaling for the film flow and check the
consistency a posteriori. The perturbed film pressure is p�
��1 /Ca from the normal stress condition �8�. This capillary
pressure drives the film flow through the axial momentum
�4a� and the continuity �3�, giving rise to w���2�1 /Ca and
u���3�1 /Ca. As for the core quantities, the continuity of

axial velocities across the interface �6� and the lack of sepa-
ration between the axial and radial length scales yield W�
��1, U���1, and P���1.

To gain further information about the relation between
the relevant scalings, we examine the heat transfer condition
�14� and the tangential stress condition �7� at the interface.
The linearized form of �14� is

�T̄rr�r=1�1� + ��2�r�r=1 = Bi��T̄r�r=1�1� + �2�� . �18�

The first two terms reflect the effects of the perturbed con-
ductive heat flux across the interface. The first term is due to

the perturbed interface and has O��1 /�� because of �T̄rr�r=1

=−Bi/ �1+�Bi�=O��−1�. The second term is attributed to the
perturbed film temperature and has O��2 /�� in view of �r

=−�−1�y in the film. By noticing that Bi=�−1B=O��−1�, the
third term comes from the perturbation to the basic tempera-
ture and has O��1 /�2�. The last term due to the perturbed
film temperature field is O��2 /��. Therefore, the leading or-
der terms of �18� are all of them except the first one. Balanc-
ing the orders of these terms, we have

�2 � �1/� . �19�

We now inspect the interfacial tangential stress condition
�7� to identify the relative importance of the viscous and
thermocapillary stresses. The film and the core have viscous
stresses mwr�=−�−1mwy����1 /Ca and �Wr�+Uz����1, re-
spectively. The thermocapillary stress is �z /Ca=−Ma �2�z

�Ma �−1�1, where Ma=E /Ca denotes the Marangoni num-
ber. Assuming Ma=O�1�, we balance the film viscous stress
and the thermocapillary force, and arrive at Ca��2. In this
case, both capillary and thermocapillary forces drive the per-
turbed film flow at leading order. The resulting scalings of
the perturbed film flow become p���1 /�2, w���1, and u�
���1. By checking the perturbed film pressure arising from
the temperature-induced interfacial tension variation, we find
p���2E /Ca��1 /�, which is of a higher order than the cap-
illary pressure p���1 /�2.

The above scalings are based on Ma=O�1� and Ca��2,
where both thermocapillary and capillary forces are compa-
rable. If Ca�2, capillarity dominates the instability and
thermocapillarity is of a higher order correction. We are less
interested in this case because it is equivalent to the limit in
the absence of a base flow. On the other hand, for Ca��2,
capillary forces are weak, therefore the thermocapillary
stress becomes the sole force driving the perturbed film flow
at leading order. In this situation, applying the tangential
stress condition �7� yields w����2 Ma��1 Ma and u�
��2�2 Ma���1 Ma. Therefore, we conclude that for Ma
=O�1� and Ca��2, the film velocities are w���1 Ma and
u����1 Ma. Now balancing u� and St in the kinematic con-
dition �10�, we obtain a long time scale �=�t, appropriate for
capturing a nontrivial temporal evolution of the interface.

As we shall show in Sec. IV A, for Ma=O�1� and Ca
��2, the system’s leading order stability is determined by
the film flow; the core dynamics just respond passively to the
film. This is deduced from the interfacial tangential stress
condition �7� in that the core flow is of a higher order than
both the film flow and thermocapillary effects. However, the

core dynamics can be important if Ma�� as a result of bal-
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ancing the thermocapillary stress of O�Ma �−1�1� and the
core viscous stress of O��1�. As in Papageorgiou et al.,7 the
core flow contribution can also be included when the surface
tension is moderately strong, viz., Ca��, under which the
capillary-driven film stress and the core stress are compa-
rable. In this case, the perturbed film flow has p���1 /�,
w����1, and u���2�1. For Ca��, since both the core vis-
cous and thermocapillary forces shear the film flow at lead-
ing order, the corresponding scalings of the perturbed film
velocities remain the same as those of the Ca�� case. No-
tice that Ma�� does not necessarily suggest small E since
Ca could be sufficiently large. Now inspecting the interfacial
evolution of the film for Ma�� and Ca��, we find that the
appropriate time scale is �=�2t in the frame moving with the
basic interfacial velocity, viz., z→z− w̄�1�t. As for Ca�
and Ma��, capillary forces dominate the system’s instabil-
ity, and both thermocapillary and the core flow effects are
higher order contributions. This case can be again treated as
the no-flow limit, and is of less interest to the present study.

We now inspect the heat transfer equation �12� for the
film. Its left-hand side is O���2� at most while the conduc-
tion term is O��−2 Pe �2� �provided that 
 is O�1��. There-
fore, conduction is more important than convection when
�3 Pe1. For typical liquids, thermal diffusivity �T is
10−4–10−3 cm2/s. The estimated Pe is thus O�10��O�102�
for a flow speed of 1 cm/s in a capillary of 200 �m diam-
eter. For �=0.1, �3 Pe1 suffices to assure that the film heat
transfer is dominated by conduction.

As for the heat transfer in the core, we have invoked the
Newton heat condition for bringing the core influence into
the problem. This condition is often applied to gas-liquid
systems where the gas phase is kept at a constant temperature
for all times. For liquid-liquid systems, however, the Newton
condition can also be adequate under certain circumstances,
which are discussed below. Since a long time scale has been
introduced to the problem, the core heat transfer is governed
by a quasisteady convective-conduction equation. For a suf-
ficiently large Pe �but �−3 to ensure that conduction pre-
vails in the film as discussed earlier�, there is a thin thermal
boundary layer of �dimensional� thickness �T adjacent to the
interface outside which the core heat transfer is dictated by
convection. Since the interface is located in the proximity of
the no-slip wall when the annulus is thin, the flow condition
thereof is somehow between the shear-free and no-slip con-
ditions. It seems rational to assume that �T /R1�Pe−n with n
ranging between 1/3 and 1, and that �T does not change
appreciably with z within a long thermal entrance region. In
the region outside �T, the core temperature can be approxi-
mately uniform, so that the Newton condition can, in prin-
ciple, be applied at the outer edge of �T, which can be ap-
proximately written at the interface. Also, by writing the core
conduction at the interface as kcore�T* /�r*�kcore�Tb

* /�T

�h�Tb
* �kcore the core thermal conductivity and �Tb

* the
bulk-interface temperature difference�, we find h�T /kcore

�O�1�, which is consistent with the scaling B�O�1� men-
tioned earlier provided that kcore /kf =O�1�.

A further remark should be made concerning the devel-
opment of the instability of interest. Recall that the heat

transfer problem is based on the isothermal core so that the
application of the Newton heat condition can be relevant.
This requires the core fluid to have a constant temperature
�e.g., a well-mixed gas core�, or to move sufficiently fast to
attain a suitably large Pe. For the latter case, the instability of
interest should be more appropriate in a long thermal en-
trance region �while the flow is assumed to be fully devel-
oped�. Knowledge of the thermal entrance length LT associ-
ated with the present problem is still lacking. Nevertheless,
since the core is surrounded by the thin annulus, it might not
be unreasonable to assume that LT here can be characterized
in a way similar to the classical Graetz problem of a single
fluid in a rigid tube, at least for large Pe. As such, we assume
that LT�Pe R1. In what follows, the fluid takes a time of
O�Pe R1 /W0� to reach the fully developed region. Since the
interfacial instability develops within the time scale
R1 / ��W0� �for Ca��2� or R1 / ��2W0� �for Ca���, it de-
mands that the time scale for developing the thermal bound-
ary layer is much longer than the instability time scale, so
that the occurrence of the instability is under the prescribed
temperature and heat transfer conditions. That is, we need
Pe�� �for Ca��2� or Pe��2 �for Ca��� �note that any
scaling of LT different from Pe would affect the subsequent
discussion and the relevant scalings mentioned above�. Since
�3 Pe1 is also required for ensuring that conduction is
dominant in the film, these constraints yield a range of Pe
appropriate for the problem. As such, the rationale of the
ansatz devised here can be established and realized.

In summary, we have derived two sets of scalings: �i�
Ma�O�1� and Ca��2 and �ii� Ma�� and Ca��. The sta-
bility of the former is solely determined by the film while the
latter further involves the coupling to the core dynamics.
Since our stability analysis is based on lubrication theory in
the annulus, it requires that �3��2 /�1�Re1m so that the film
inertia can be neglected. Hence the results that follow are not
limited to low Re1, but valid for nonzero Re1 as long as
Re1m��1 /�2��−3. Furthermore, in light of the fact that the
present analysis covers a wide range of parameters, it is also
likely to be applicable to gas-liquid systems.

In the following section, we shall formulate the respec-
tive linear stability analysis for each scaling case described
above.

IV. LEADING ORDER LINEAR STABILITY ANALYSIS

A. MaÈO„1… and Caœ�2

We focus on Ca��2 here since Ca��2 can be regarded
as the large-Ca limit. Let Ca=�2 Ca0 with Ca0=O�1�. The
film quantities can be expressed as

w = w̄ + �1w� + O���1�, u = ��1u� + O��2�1� ,

p = p̄ + ��1/�2�p� + O��1/�� ,

T = T̄ + �−1�1� + O��1� . �20a�
For the core,
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P = P̄ + �1P� + O���1� .

�20b�
W = W̄ + �1W� + O���1�, U = �1U� + O���1� ,

After substituting the above into Eqs. �2�–�14� and expand-
ing them with respect to the base state, the leading order
governing equations of the perturbed film flow become

uy� = wz�, �21�

0 = − pz� + mwyy� , �22a�

0 = − py�. �22b�

The film flow field that satisfies no-slip and no-penetration
conditions at the wall y=0 is

w� =
1

2m
pz�y

2 + Ay , �23a�

u� =
1

6m
pzz� y3 +

1

2
y2Az, �23b�

p� = p��z,�� . �23c�

Here, A is determined by the leading order tangential condi-
tion at the interface:

mwy��y = 1� = − Ma� B

1 + B
� + ��y = 1��

z

. �24�

The film pressure p� is simply provided by capillarity from
the normal stress at the interface:

p� =
1

Ca0
�� + �zz� . �25�

The leading order kinematic condition becomes

u� = ��. �26�

Here we have invoked a long time scale �=�t in the frame
moving with the basic interfacial velocity w̄�y=1�.

For �3 Pe1 and 
=O�1�, the leading order heat trans-
fer in the film is governed by the steady-state conduction
equation:

�yy = 0, �27�

with the boundary conditions:

��y = 0� = 0, �28�

− �y = B� B

1 + B
� + �� at y = 1. �29�

Equations �21�–�29� suffice to determine the perturbed
film flow without need of the core flow solution. As such, we
first solve the perturbed film flow field using Eqs. �21�–�25�
in terms of � and �. We then solve � using Eqs. �27�–�29�
and substitute it into the film flow field in terms of �. As a

result, the Marangoni-stress term in Eq. �24� becomes
− Ma� B

1 + B
� + ��y = 1��

z

= − Ma
B

�1 + B�2�z. �30�

Here, B / �1+B�2� can be regarded as the variation of the
interfacial temperature due to the interfacial perturbation.
This can be seen more directly by considering the tempera-
ture field in the film:T= �1+B�ys−y�� / �1+Bys�, where ys

=1−�−1�1� is the dynamical film thickness normalized by
the mean, which satisfies Tyy =0 subject to T�y=0�=0 and
�Ty�y=ys

=−BT�y=ys�. At the deflected interface y=ys, the
temperature is T=1/ �1+Bys�	1/ �1+B�+B / �1+B�2�−1�1�,
in which the � term reflects the temperature variation with
respect to the basic interfacial temperature.

By applying the kinematic condition �26�, we finally ar-
rive at the following evolution equation for the interface that
governs the system’s leading order linear stability:

�� +
1

3m Ca0
��zz + �zzzz� +

Ma B

2m�1 + B�2�zz = 0. �31�

Recall that we have changed frame of reference with respect
to the base interfacial velocity and a long time scale, viz.,
z→z− w̄�1�t and �=�t. The second term of Eq. �31� is the
usual capillarity and the third term reflects the thermocapil-
lary effects. Note that both m Ca0 and Ma/m in Eq. �31�
involve only the viscosity of the fluid film. Further notice
that the form of Eq. �31� is identical to that of a stationary
system. That is, the linear stability is independent of the base
flow. As we shall demonstrate later, although a base flow
does not affect the linear stability, it plays a critical role in
influencing the nonlinear dynamics.

We now perform a normal mode analysis on Eq. �31�:
�= �̂ exp�ikz+s��, where k is the wave number of the distur-
bance and s is the complex growth rate. The system is un-
stable �stable� when the real part of s , sr�0 �	0�. The re-
sulting normal-mode form of Eq. �31� becomes

s =
1

3m Ca0
�k2 − k4� +

Ma B

2m�1 + B�2k2. �32�

In the limit of Ma=0 �an isothermal film� or B=0 �B
O�1� or a nearly insulated film�, Eq. �32� agrees with the
isothermal result of Georgiou et al.5 As B→� �i.e., B
�O�1��, the basic film temperature equilibrates the isother-
mal core, hence making no impact on the stability.

For nonzero B, Eq. �32� indicates that Ma�0 �	0�
makes the system more �less� unstable compared to the pure
capillary instability �Ma=0�, as depicted in Fig. 2. The
mechanism of thermocapillary stability/instability due to sur-
face waves has been explained previously.18 We include it
here for completeness as well as for illustrating its interplay
with the capillary instability. Consider a system with a heated
wall �Ma�0�. As revealed by Eq. �30�, an interfacial distur-
bance causes the interface crests �the thinnest portions of the
film� to be warmer than the interface troughs �the thickest
portions of the film�. The induced thermocapillary forces in
turn pull the fluid toward the troughs, giving rise to a growth
of the interface and hence destabilizing the system. This ther-
mocapillary destabilization, which works for all k ��−1�,

thus exaggerates the longwave instability of capillarity. On
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the other hand, since the Ma�0 thermocapillary destabiliza-
tion is compromised by the short wave capillary stabiliza-
tion, the critical wave number kc= �1+3B /2�1
+B�2 Ma Ca0�1/2 shifts towards a larger value, and so does
the wave number kmax= �2+3B / �1+B�2 Ma Ca0�1/2 corre-
sponding to the maximum growth rate. On the contrary, for
Ma	0, thermocapillarity is stabilizing, making both kc and
kmax smaller.

For Ma	0 the stability depends on the competition be-
tween the thermocapillary stabilization and the capillary de-
stabilization. This can be recognized by the k2 term of Eq.
�32�. Thermocapillarity can completely suppress the capil-
lary instability if Ma	Ma*
−2�1+B�2 / �3B Ca0�, which is
confirmed by Fig. 2 �Ma*=−8/3�. Alternatively, for a given
flow condition there exists a critical temperature difference,
�T*=T−T=2/ �3�W0����* /�T*�T0

*
−1�1+B� / �B Ca0�, below

which the system is stable. That is, the higher tension �the
smaller Ca� is, the higher temperature the core fluid required
to stabilize the system, provided that all other fluid properties
do not vary much in a range of the temperature variation.

B. MaÈ� and Caœ�

We again focus on Ca�� in order to retain both capil-
lary and thermocapillary effects at leading order. Let Ma
=�M0 and Ca=� Ca0, where both M0 and Ca0 are O�1�. The
expansions of the film quantities are

w = w̄ + ��1w� + O��2�1�, u = �2�1u� + O��3�1� ,

p = p̄ + ��1/��p� + O��1� , �33�

T = T̄ + �−1�1� + O��1� .

Those quantities of the core remain the same as �20b�. The
resulting leading order governing equations and boundary
conditions for the film are the same as those of the preceding
case except for the interfacial tangential stress condition

FIG. 2. Effects of Ma on the growth rates of Eq. �32�. Ca0=1.0, B=1.0.
�24�, which now becomes
mwy��y = 1� = − M� B

1 + B
� + ��y = 1��

z

− �Wr� + Uz��r=1.

�34�

Here an additional contribution from the perturbed core
shear stress comes into play. The leading order governing
equations for the core become

1

r
�rU��r + Wz� = 0, �35a�

Re1�− 2rU� + �1 − r2�Wz�� = − Pz� + �2W�, �35b�

Re1�1 − r2�Uz� = − Pr� + ��2U� −
U�

r2 � . �35c�

Note that the time-derivative terms are of higher order ef-
fects because the time scale is O��−2� here. The boundary
conditions for Eqs. �35� include the regularity of velocities
along the axis of symmetry as in �11�, and the continuity of
velocities at the interface �6�. The leading order form of the
latter is

W��r = 1� = 2�1 −
1

m
��, U��r = 1� = 0. �36�

Following the derivation procedures outlined by Papageor-
giou et al.,7 the core dynamics can be either expressed in
terms of modified Bessel functions for Re11 �i.e., Stokes
flow�, or represented by Kummer functions for Re1=O�1�. In
the former, the core dynamics are merely dispersive to the
stability;7 thus we pay attention to the latter.

For Re1=O�1�, we derive the following interfacial evo-
lution equation that governs the leading order linear stability
of the system:

�� +
1

3m Ca0
��zz + �zzzz� +

M0B

2m�1 + B�2�zz

−
i

2�m
�1 −

1

m
��

−�

�

NK�k��
−�

�

��x,��eik�z−x�dxdk = 0,

�37�

where

NK�k� =
I1�k�e−
M��,2,2
�

N1�k�I0�k� − N2�k�I1�k�

with


 =
1

2
�k Re1�1/2e−i�/4, � = 1 + k2/8
 − 
/2,

N1�k� = �
0

1

�I1�k�K1�kr�

2 −
r2 2
− I1�kr�K1�k��r e M��,2,2
r �dr ,
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N2�k� = �
0

1

�I0�k�K1�kr�

+ I1�kr�K0�k��r2e−
r2
M��,2,2
r2�dr .

The functions I and K represent modified Bessel functions of
various orders, and M�� ,2 ,x� denotes the confluent hyper-
geometric function �the Kummer function�. The last term of
Eq. �37� reflects a nonlocal term arising from the core flow
via viscosity stratification. Using normal modes, Eq. �37�
yields

s =
1

3m Ca0
�k2 − k4� +

M0B

2m�1 + B�2k2

+
i

m
�1 −

1

m
�NK�k, Re1� . �38�

For M0=0, Eq. �38� again reduces to the isothermal result of
Georgiou et al.5 The thermocapillary term is the same as that
of Eq. �32� �albeit different scaling of Ma is used here�. The
core inertia acts to stabilize �destabilize� for m	1 ��1�.5 To
elucidate the combined effects of both thermocapillarity and
core inertia on the stability in more detail, we utilize a long
wavelength analysis below. The k→0 asymptote of Eq. �38�,
with the aid of Nk=−4k− ik2 Re1 /12+O�k3�, yields

s = −
4i

m
�1 −

1

m
�k + � 1

3m Ca0
+

M0B

2m�1 + B�2

+
1

12m
�1 −

1

m
�Re1k2 + O�k3� . �39�

As a result, the long-wave instability is determined at O�k2�.
For m�1, the system is unstable for M0�0, but the system
can be stable for M0�0 if M0B / �2�1+B�2�	−1/ �3 Ca0�
− 1

12�1−1/m�Re1. On the other hand, for m	1 and M0�0,
there exists a critical Re1 ,Re1

*, beyond which the system is
stabilized by the core inertia:

Re1
* = � 4

Ca0
+

6M0B

�1 + B�2�� 1

m
− 1�−1

. �40�

Equation �40� suggests that for m	1, thermocapillarity de-
stabilizes the system in a manner in which Re1

* increases with
increasing M0. That is, the warmer the wall �or the cooler the
core�, the higher Re1 required to stabilize the system.

In light of the above, we show the effects of Re1 on the
growth rates in Fig. 3. As expected, increasing Re1 �and
hence the core inertia� tends to increase the growth rates for
m=2�1 while the opposite occurs for m=0.5	1. The long-
wave growth rates agree with the k→0 asymptote �39�, as
illustrated for m=0.5. The result for m=0.5 suggests that the
critical Re1

* occurs in a range between 4 and 6, which is
consistent with the estimate using Eq. �40�: Re1

*=5.5. We
also numerically evaluate Re1

* directly from Eq. �38�, and
find it in excellent agreement with Eq. �40�, as shown by Fig.
4. Therefore, the approximation provided by Eq. �40� for

*
finding Re1 is confirmed and adequate.
V. WEAKLY NONLINEAR STABILITY ANALYSIS

In this section, we extend the linear analysis to the
weakly nonlinear regime. As shown above, thermocapillarity
induces an instability when the wall is warmer than the core
fluid. This exacerbates the instability when the capillary in-
stability is present. When the core fluid is warmer than the
wall, even though thermocapillarity is stabilizing, it may not
be sufficiently strong to suppress the capillary instability. As
the amplitude of the interface becomes gradually larger, the
fate of the interface lies on the persistence of the instability.
It involves the interplay between thermocapillarity, the short-
wave capillary stabilization and the nonlinear wave steepen-

FIG. 3. The growth rate curves of Eq. �38�. Ca0=1.0, M0=1, B=1.0. m
=0.5 �solid lines� with the k→0 asymptote Eq. �39� �symbols�, m=2
�dashed-dotted lines�. For a given m, growth rate curves with different Re1

are plotted.

FIG. 4. The dependence of the critical Reynolds number Re* on M0. m
=0.5. B=1.0. Solid lines are from Eq. �40�. Symbols are the numerical

results using Eq. �38�.
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ing. If the instability can be indeed arrested within the
weakly nonlinear regime, another question will be raised
concerning how thermocapillary effects modify the spa-
tiotemporal features of the interfacial dynamics. These issues
are addressed in this section. The respective weakly nonlin-
ear analyses for �i� Ma�O�1� and Ca��2 and �ii� Ma��
and Ca��2 are performed below.

A. MaÈO„1… and Caœ�2

We assume that interfacial deflections are much smaller
than the film thickness, i.e., �1�. Following similar proce-
dures outlined in IV.A, the corresponding weakly nonlinear
evolution equation for Eq. �31� can be derived below:

�� −
2

m
��1

�
���z + ��1 − 3��1

�
�����z + ��zzz��

z
= 0,

�41�

where �=Ma B / �2m�1+B�2�+1/ �3m Ca0� and �
=1/ �3m Ca0�. The nonlinear effects appear O��1 /�� and
come from two parts. The first O��1 /�� term is the
Kuramoto-Sivashinsky �KS� nonlinearity, and arises from the
perturbation to the basic interfacial velocity. The second is
due to the variation of the film thickness �1− ��1 /����3, and
appears to be a modification to the KS equation. Notice that
the constraint for the interfacial amplitude �1���max� has to
be checked a posteriori for ensuring the validity of the
weakly nonlinear analysis. This is because even though
�1���max remains bounded, it could be so large such that
terms that have been neglected become important. In this
scenario, the equation is no longer appropriate to describe
the dynamics; this happens long before the CAF arrangement
is threatened. The dynamics should then be examined by a
strongly nonlinear analysis8 or direct numerical
simulations.9,10

We now perform numerical simulations of Eq. �41�. We
choose �1=0.2� and the initial condition ��z ,�=0�
=0.01 cos�kz�. For a given set of parameters, the wave num-
ber k of the initial disturbance is chosen as k= �� /2��1/2 cor-
responding to the maximum linear growth rate. We apply the
Fourier spectral method to decompose �41� into a coupled set
of ordinary differential equations for the time-dependent co-
efficients of Fourier modes. These equations are then solved
using Gear’s method. A typical number of Fourier modes is
32, which is sufficient for capturing the detailed features of
the spatial evolution.

We first examine the interfacial evolution for the isother-
mal case �=�. In this case, the dynamics are determined by
the relative strength of capillarity to the base-flow wave
steepening �the second term of �41��, depending on the mag-
nitude of �. When �=O�1�, capillary forces are comparable
to the base flow effects. This situation is illustrated by �
=�=1.0, and the resulting evolution of the interface is shown
in Fig. 5�a�. At �=20, the interface trough has reached an
amplitude of �1���max�0.6�. It clearly violates the weakly
nonlinear constraint, which manifests the persistence of the
instability. Apparently, the subsequent dynamics of such a
growing interface cannot be realized by the present weakly

nonlinear analysis; one has to account for strongly nonlinear
effects to see if the film ruptures or the core snaps. On the
other hand, when �	O�1�, the capillary instability is rela-
tively weak, so the base flow becomes more effective in
steepening the wave. The weakly nonlinear saturation of the
instability could occur when the long-wave destabilization
�zz is comparable to nonlinear effects, viz., ���1 /�. This
case is illustrated by �=�=0.2 and its interfacial evolution is
shown in Fig. 5�b�. The interface growth instability is indeed
confined within the weakly nonlinear regime as evidenced by
�1���max�0.1�. In fact, for small � ���1 /� but �O��� here�,
it can be shown that �41� can be reduced to the Kuramoto-

FIG. 5. Spatiotemporal evolutions of the weakly nonlinear interfacial equa-
tion �41� under isothermal conditions. �1=0.2�. �a� �=�=1.0. At �=20, the
interface trough has reached an amplitude of �1���max�0.6�, which is be-
yond the weakly nonlinear regime. �b� �=�=0.2. The instability is saturated
in the weakly nonlinear regime, as indicated by �1���max�0.1�.
Sivashinsky �KS� equation. It is borne out by the observation
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in Fig. 5�b� that the spatial evolution resembles that of the
KS equation. The above results for isothermal systems also
agree qualitatively with Kerchman.8

In the case of Ma�0 �warmer walls� or �����0�, the
instability is enhanced by thermocapillarity. It is clear that
for �=O�1� the instability will be magnified beyond the
weakly nonlinear regime, as shown by Fig. 6�a�. For �
	O�1�, however, while it is possible to have weakly nonlin-
ear saturation under the isothermal condition �Fig. 5�b��,
thermocapillarity could stimulate the interface growth so that
the amplitude could have a size beyond the weakly nonlinear

FIG. 6. Spatiotemporal evolutions of the weakly nonlinear interfacial equa-
tion �41� with the warmer wall. �1=0.2�. �a� �=1.2, �=1.0. The dynamics
are beyond the weakly nonlinear regime because of �1���max�0.6� for the
interface trough at �=14. �b� �=0.3, �=0.2. The weakly nonlinear analysis
is almost invalid, as indicated by �1���max�0.4� for the interface trough.
regime although it remains bounded. This scenario is illus-
trated by �=0.3 and �=0.2, as shown in Fig. 6�b�. The result
indicates that the evolution is beyond the validity of the
weakly nonlinear regime in view of �1���max�0.4� for the
interface trough.

As for Ma	0 �cooler walls� or �	�, we are more in-
terested in the case of ��0 since �	0 always makes the
system stable. If � is not sufficiently small compared to �,
the instability is dominated by capillarity and its weakly non-
linear saturation is again not attainable, similar to the result
shown in Fig. 6�b�. When � is much smaller than �, with
stabilizing effects being much stronger than destabilizing ef-
fects, it is likely that the interface growth can be confined
within the weakly nonlinear regime. This scenario is illus-
trated by the case with �=0.2 and �=1.0 �Fig. 7�. It shows
that the instability is indeed saturated within the weakly non-
linear regime, as evidenced by �1���max	0.1�.

B. MaÈ� and Caœ�

As in the previous study,7 we find that �1��2 is appro-
priate for the weakly nonlinear analysis in this case. The
corresponding weakly nonlinear interfacial evolution equa-
tion is derived as follows:

�� −
2

m
��z +

1

3m Ca0
��zz + �zzzz� +

M0B

2m�1 + B�2�zz

−
i

2�m
�1 −

1

m
��

−�

�

NK�k��
−�

�

��x,��eik�z−x�dxdk = 0.

�42�

Letting x=zL, �= �1+ 3
2 M0 Ca0 B / �1+B�2�−1L−2, �

=6 Ca0 L3��, �=3 Ca0/ �2���1−1/m��L4, and T
=1/ �3m Ca0��−1L−4�, Eq. �42� reduces to the following ca-

FIG. 7. Spatiotemporal evolutions of the weakly nonlinear interfacial equa-
tion �41� with the cooler wall. �1=0.2�, �=0.2, �=1.0. A slowly growing
interface caused by the Marangoni-suppressed capillary instability can be
arrested within the weakly nonlinear regime, as evidenced by �1���max

	0.1�.
nonical form:
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�T − ��x + ��xx + ��xxxx� − i��
−�

�

NK�k��
−�

�

�eik�x−x��dx�dk

= 0. �43�

This is a modified Kuramoto-Sivashinsky �KS� equation. It
has already been established that the solution of KS equation
remains bounded for general smooth initial conditions.19–21

The dynamics of Eq. �43� have also been extensively studied
previously.7,22 The interfacial dynamics can either be chaotic
or travelling motions, depending on � and �. For sufficiently
small � and �, the evolution is chaotic. The effect of � is to
introduce dispersion into the evolution, thus regularizing in-
terfacial motion. Increasing M0B / �1+B�2 decreases both �
and �, suggesting that a cooler displacing fluid makes the
system more susceptible to chaos.

VI. COMPARISON WITH PREVIOUS STUDIES

As shown above, our linear stability results for the iso-
thermal case are identical to those of Georgiou et al.5 For
nonisothermal systems, our analysis can be compared with
the study of Dijkstra and Steen.16 In their analysis, the base
flow is driven by an axial thermocapillary force. They
showed that the instability can be suppressed by the shear
stabilization arising from the basic flow. This shear effect is
similar to that due to viscosity stratification in Eq. �37�. In
this regard, our results are in qualitative agreement with
theirs albeit our basic flow differs from theirs.

Our work can also be relevant to flow inside the cylinder
studied by Davalos-Orozco and You17 �hereafter referred to
as DY�. DY demonstrated for flow inside the cylinder that
the axisymmetric mode is generally the most unstable. Azi-
muthal modes can be excited but they are not as important as
the axisymmetric mode. Inspecting our system using DY’s
results, we find that for parameters of our interest, the insta-
bility of our system is indeed dominated by the axisymmetric
mode. Detailed findings of DY related to our work are de-
scribed below.

DY showed for flow inside the cylinder that for all
Ca/Pe �equivalent to their Cr� the most unstable mode is the
axisymmetric mode for Ma	50 although it coexists with
azimuthal modes. In addition, as pointed out by DY, calcu-
lations of the maximum growth rate for a thin film also re-
vealed that the axisymmetric mode is the most unstable.

Although most of DY’s results are shown for the flow
outside the cylinder, they may be applicable to our analysis if
the fluid layer is sufficiently thin �i.e., large � in DY�. As
shown in their Fig. 4�b� for �=10 �corresponding to our �
=0.1�, for Cr=Ca/Pe=10−3 the maximum growth rate of the
axisymmetric mode could be an order of magnitude larger
than that of the first azimuthal mode for Ma	5. In addition,
the axisymmetric mode dominates for Ma	20. Moreover,
the smaller Cr, the more dominant the axisymmetric mode
becomes, as shown in their Fig. 4�b� for Cr=10−6. In our
study, since a typical Cr is O�10−3� or smaller, and Ma
�O�1�, the axisymmetric mode plays a more important role
in determining instability than the azimuthal modes.

Physically speaking, when Cr is small, surface tension

forces dominate and hence the capillary instability prevails.
In this case, the axisymmetric mode usually dominates be-
cause the capillary instability is mainly triggered by the cir-
cumferential curvature �1/r� that acts axisymmetrically. This
is generally valid even when the annular thickness is not
thin, as revealed in their Fig. 3�b� for �=1.

Furthermore, DY also found that for the same values of
parameters, azimuthal modes excited for flow inside the cyl-
inder are fewer than those for flow outside the cylinder. As
such, the axisymmetric instability considered by the present
study is adequate in view of its greater importance compared
to azimuthal modes.

In qualitative aspects, our analysis can be compared with
DY’s axisymmetric-mode results for a thin film flow outside
a cylinder. DY showed that the growth rates increase with
Ma, indicating destabilizing effects due to thermocapillarity.
In our work, similar results are also found analytically. In
addition, concerning neutral stability, DY showed that ther-
mocapillarity of Ma�0 enlarges the unstable region in view
of an increase in the critical wavenumber. A similar feature
also can be obtained analytically in our study; it is demon-
strated that to relieve the thermocapillary instability, shorter
wavelengths are needed for enhancing the axial stabilization
of capillarity.

It is worth noticing that although the axisymmetric mode
is more important than the azimuthal modes in determining
the linear instability of our system, it could take some time
for the azimuthal modes to interact nonlinearly with the most
unstable axisymmetric mode. Since that time scale could be
the interval of validity for the nonlinear evolution equations
found in the present analysis, the features of the subsequent
nonlinear dynamics could differ from those predicted by the
present axisymmetric study.

VII. APPLICATION OF THE PRESENT ANALYSIS

To validate the applicability of the present analysis, it is
necessary to identify how physical properties vary with tem-
perature. Typically, viscosity varies with temperature as �
�exp�K /T�, and hence its change due to the temperature
variation is fairly small. For example, viscosity of air at
22 °C is 1.8�·10−5 Pa s and that at 102 °C is 2.18
�10−5 Pa s. This is only a 10% change for an 80 °C tem-
perature difference. Viscosity of water at 20 °C is 10−3 Pa s.
It reduces to 0.28�10−3 Pa s. at 100 °C. The average
change is about 10−4 Pa s per 10 °C.

How density varies with temperature is reflected by the

thermal expansion coefficient �̂=−1/�0��� /�T�T0
. Typical

values of �̂ range from 10−4 �for liquids� to 10−3 �for gases�.
Clearly, the temperature difference cannot be too large in our
analysis, otherwise buoyancy would be significant. The sig-
nificance of buoyancy can be estimated by the Grasshof

number Gr= �̂�T*gR1
3 /�2. For �T*�1 °C and R1

�10−2 cm, Gr=10−3–10−4, and hence the effect can be ne-
glected.

Although the change in interfacial tension due to the
temperature variation is small �typically 0.1 dyn/cm °C�, the
induced thermocapillary forces could be comparable to vis-
cous forces, depending on Ma. In our analysis, Ma could be

O�1�.
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In light of the above, effects of temperature on physical
properties are generally not significant for temperature varia-
tions 	10 °C, and hence on Ca and Re.

As a typical example of a liquid-liquid displacement,
consider an oil film of �2=10 cP surrounding a water slug
��1=1 cP� with an interfacial tension of 10 dyn/cm in a
200 �m diameter tube �whose circumference is 628 �m�.
The change in the interfacial tension due to the temperature
variation is assumed to be 0.1 dyn/cm °C. A typical thermal
conductivity of a common liquid is about 104 ergs/cm °C.
Thermal diffusivity is on the order of 10−3 cm2/s. A slug
velocity can be as fast as 10 cm/s, and hence the estimated
Peclet number is O�102�. The estimate of the heat transfer
coefficient for such a slug is about 106 ergs/cm2 °C. Con-
sider a film thickness of 10 �m or �=0.1. These numbers
give Re1�10, Ca�10−2, m=10, and B�1, which is in the
range of validity of our analysis. With these parameters, the
isothermal limit �Ma=0� has a maximum growth rate of
0.05 min−1, i.e., about a 14 min. doubling time, due to the
capillary instability. The corresponding wavelength is
888 �m for kmax=1/�2�0.71 and the critical wave number
is kc=1. If the pore temperature is only slightly higher than
water, say, 1 °C, this gives Ma�1�0 and the predicted
maximum growth rate is 0.095 min−1. This is almost twice
the isothermal case. The corresponding wavelength is
757 �m �kmax�0.83�, and the critical wavelength shifts to
443 �m �kc�1.17�. On the other hand, for a cooler wall
having the same temperature difference as the above, Ma�
−1	0 yields a maximum growth rate of 0.02 min−1, that is a
60% reduction in the growth rate of the isothermal case. The
corresponding wavelength is 1121 �m �kmax�0.56�, and the
critical wavelength shifts to 795 �m �kc�0.79�. To com-
pletely suppress the capillary instability requires Ma�−8/3.
It means that the water temperature must be at least 2.3 °C
lower than the wall temperature.

VIII. CONCLUDING REMARKS

We have studied the effects of thermocapillarity on the
stability of a CAF in the thin-annulus limit ��→0�. Both
linear and weakly nonlinear stabilities are examined. The
analysis is carried out for two different sets of scalings: �i�
Ma�O�1� and Ca��2, and �ii� Ma�� and Ca��. The first
corresponds to the system with moderate thermocapillary
and strong capillary forces; the second is in the regime of
weak thermocapillary forces and moderately strong surface
tension. The stability of case �i� is solely determined by the
film flow, and that of case �ii� further includes the contribu-
tion from the core dynamics. Thermocapillarity in general
linearly destabilizes �stabilizes� a CAF when the ambient
core fluid is cooler �warmer� than the wall. It therefore en-
courages �discourages� the capillary instability.

The weakly nonlinear analysis shows that for case �i� the
thermocapillary instability �due to a cooler core� could cause
a large amplitude of the interface, so that it might be inclined
to affect the integrity of a CAF. If the thermocapillary stabi-
lization �due to a warmer core� is not sufficiently strong to
completely suppress the capillary instability in the linear re-

gime, the instability can be saturated within the weakly non-
linear regime, thereby keeping a CAF intact. As for case �ii�,
its weakly nonlinear dynamics are governed by the
Kuramoto-Sivashinsky equation. Although the evolution re-
mains bounded, thermocapillary effects could influence the
route to chaos.

The implications of the present study to oil recovery
processes are as follows. At the initial stages of the process,
in order to efficiently displace crude oil lodged in porous
media, it may be necessary for a displacing fluid to finger
into capillaries without breaking into droplets. This requires
an initially intact CAF configuration. A stabilizing effect on
this CAF can be achieved by having a displacing fluid suffi-
ciently hotter than the surrounding porous rocks. As the dis-
placing fluid penetrates into the rocks, its temperature might
become equal to that of the rocks, or might enter a region
where the temperature of the rocks is higher than the fluid’s.
In this situation, thermocapillarity destabilizes. As a result,
the displacing fluid might be in contact with the walls of the
rocks or break up into droplets.
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