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The long-wavelength stability is analyzed for a surfactant-laden, viscoelastic liquid flowing down an in-
clined plane when the liquid undergoes additional interfacial shear. The upper convected Maxwell model is
employed for describing the elastic nature of the fluid. The system stability is characterized by the interface and
the surfactant modes. The interface mode involves both elastic and Marangoni effects that modulate the
stability with applied shears and gravity-driven flow. The surfactant mode is only determined by the shear-
induced Marangoni effects. A phase diagram is established to identify the dominant mode and the overall
features of instability. It reveals that the system is susceptible to instability, except in a stable window when the
applied shear opposes the gravity-driven flow.
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I. INTRODUCTION

Liquid flowing down an inclined plane is a subject of
long-standing interest in fluid mechanics and engineering
processes. Benjaminf1g and Yih f2g first examined the sta-
bility of a Newtonian film for long-wavelength perturbations.
A hydrodynamic instability arises from a combination of sur-
face waves and inertial effects. Since destabilizing effects
can be compromised by hydrostatic pressures, instability oc-
curs when the Reynolds number is greater than a certain
critical value. The development of such surface waves has
received much attention, and extensive research studies on
this subject can be found in an excellent review given by
Changf3g.

Most of the stability analyses of falling film flows are
based on Newtonian fluids which have been studied thor-
oughly. The corresponding analysis based on non-Newtonian
fluids, especially on viscoelastic liquids, has been addressed
by fewer studies due to the complex nature of the fluid rhe-
ology. Guptaf4g used a second-order fluid model to first
examine the effects of viscoelasticity on the stability of fall-
ing film flow. He found that viscoelasticity has a destabiliz-
ing effect on long-wavelength disturbances since it decreases
the critical Reynolds number. Shaqfehet al. f5g examined the
linear stability of an Oldroyd-B falling film in more detail.
They solved the modified Orr-Sommerfeld equation and
showed that although the system can be destabilized by vis-
coelasticity, the resulting growth rate is too small to be dis-
cernible in practice.

The stability analysis has also been extended to systems
of two viscoelastic fluids flowing down an inclined plane
f6,7g. In addition to the surface-wave modescalled the Yih
moded usually found in a single-layer problem, there is an
interfacial mode that can modify the features of stability. The
origin of instability of this mode is identified by a jump in
the first normal stress difference across the interfacef8g. This
jump arises from an interfacial deflection; it works in the
form of basic interfacial shear and can be reflected in the
elasticity contrast between the two fluids. The general
mechanism of elastic instability was clearly illustrated by
Hinch et al. f9g.

Studies so far on the stability of viscoelastic liquids are
restricted to clean-interface systems. Since most of the appli-

cations involve surface-active agents or impurities on the in-
terface, their influence on the stability could be critical to
processes. Although there are a few studies addressing the
effects of surfactants on the stability of Newtonian liquid
flow, to our best knowledge, the roles of surfactants in af-
fecting the stability features of viscoelastic liquid flow have
not yet been explored. It is, first of all, essential to under-
stand the effects of surfactants on the stability of Newtonian
fluid flow systems. We describe some features thereof below.

The dominant effects introduced by surfactant are Ma-
rangoni forces that act on the interface and drive the fluid to
flow toward lower-tension regions. For stationary systems,
surfactant has a stabilizing effectf10g. When basic flows are
present, however, the surfactant could be either stabilizing or
destabilizing, depending on the nature of the basic flow.
Whitaker and Jonesf11g examined the long-wave stability of
a falling film flow and found that a surfactant increases the
critical Reynolds number, indicating stabilizing effects. Their
finding is essentially a correction to the Yih mode. In related
work, Ji and Setterwallf12g demonstrated the existence of an
unstable mode due to Marangoni effects in the presence of a
soluble surfactant. Pozrikidisf13g studied the stability of a
surfactant-laden falling film flow in the limit of vanishing
Reynolds number. He identified, in addition to the surface-
wave mode that is stabilized by the surfactant, a surfactant
mode that can make the growth rate decay more slowly than
that of the Yih mode. In this viewpoint, surfactant can be said
to have a destabilizing influence. Blyth and Pozrikidisf14g
recently solved the Orr-Sommerfeld equation numerically
and confirmed the above findings.

Frenkel and Halpernf15,16g analyzed the linear stability
of a two-layer Couette flow with surfactant in the limit of
zero Reynolds number. They demonstrated that surfactant
could introduce destabilization to a system that is inherently
stable in the absence of surfactant. Their results were also
later confirmed by Blyth and Pozrikidisf14g. Such destabi-
lizing effects due to surfactant are also found in cylindrical
geometries in which the prevailing capillary instability could
be enhanced by the surfactantf17,18g.

The key to the flow-induced Marangoni destabilization
lies in the interfacial shear of the basic flow. Perturbations to
the basic interfacial shear can redistribute surfactant along
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the interface. This creates a phase difference between the
surfactant concentration and interface deflection; the result-
ing Marangoni forces can promote interface growth. Wei
f19g considered the long-wave stability of a surfactant-laden
falling film subjected to an additional interfacial shear. He
identified that there is a surfactant mode that is solely excited
by an imposed shear and irrelevant to gravity-driven basic
flow. The surfactant mode is destabilizingsstabilizingd when
the imposed shear acts in the direction in favor ofsopposite
tod gravity-driven flow. In the absence of imposed shearf11g,
this mode has a zero growth rate for long-wavelength distur-
bances; it is the mode that has a destabilizing influence in the
finite-wavelength regimef13g. As for the Yih mode, the sur-
factant correction in response to the action of shear has ef-
fects opposite to those of the surfactant mode. The resulting
system stability is determined by the competition between
these modes, depending on the strength and direction of the
applied shear.

The motivation of this study arises from the efforts to
construct an appropriate model for understanding liquid lin-
ing flows in airways. The lining liquid is typically a bilayer
structure that comprises a Newtonian ciliary layer overlaid
by a mucous layer that has a viscoelastic naturef20g. Airflow
travels back and forth during breathing and could exert shear
forces on the air-liquid interface. Since the interface is often
populated with surfactant, the dynamics are also influenced
by Marangoni effects. As mentioned earlier, the effects of
basic flows are twofold. On the one hand, they can induce
elastic instability; on the other hand, they also can modulate
the Marangoni influence on the stability. Since an imposed
shear can act to either assist or oppose the flow caused by
gravity, it is not clear how these effects interplay in response
to various basic flow conditions. In this paper, we shall ad-
dress this issue by examining the combined effects of inter-
facial shear and surfactant on the long-wave stability of a
viscoelastic liquid down an inclined plane. The rheology of
the liquid is assumed to follow the upper convected Maxwell
sUCMd model. The UCM model can be derived from a mo-
lecular theory that idealizes the polymer molecules as non-
interacting dumbbellsf21g. It serves as a relatively simple
constitutive model that attains the essential physics and en-
ables us to assess its impact on the stability.

II. MATHEMATICAL FORMULATION

Consider an incompressible, UCM liquid flowing down
an inclined plane with an inclined angleu ssee Fig. 1d. The
liquid has densityr, viscositym, and relaxation timel. An
additional constant shear stressts

* induced by an airflow is
applied along the air-liquid interface and its direction can
either assist or oppose the gravity-driven flow. The base state
configuration consists of a liquid layer with a uniform thick-
ness ofh. The air-liquid interface is covered by an insoluble
surfactant monolayer of a uniform concentrationG0

* . The sur-
face tension iss0

* corresponding toG0
* . We chooseh as the

characteristic length and scale the velocities with respect to
the basic interfacial velocityUs

* =rgh2ssinud / s2md. The time
is scaled byh/Us

* . Both stress and pressure are scaled by
mUs

* /h. The surfactant concentration is normalized byG0
* .

We definex to be the coordinate along the plane andy to be
the coordinate perpendicular to the liquid layer withy=0
defining the plane, as shown in Fig. 1. The velocity vector of
the flow isV =su,vd whereu andv denote the velocity com-
ponents in thex andy directions, respectively.p is the pres-
sure. In the dimensionless form, the continuity and momen-
tum equations are

= ·V = 0, s1d

ReS ]V

]t
+ V · = VD = − = p + 2eg + = ·S, s2d

where S is the viscous stress tensor andeg=ex−scotudey

indicates the direction of the gravity force. The Reynolds
number is defined by Re=rUs

*h/m. The UCM constitutive
equation is

WeS
¹

+ S= = V + s=VdT, s3d

S
¹

=
]S

]t
+ sV · = dS− = V ·S− S · s=VdT, s4d

where We=lUs/h is the Weissenberg number, the ratio of
elastic relaxation to flow time scales. The system is subject
to the following boundary conditions. The velocity vanishes
on the wall:

u = v = 0 ony = 0. s5d

At the interfacey=1+h with h being an interfacial displace-
ment, the tangential stress and normal stress conditions are
given by

1

f1 + s]h/]xd2g1/2HF1 −S ]h

]x
D2GSxy − S ]h

]x
DsSxx − SyydJ

=
1

Ca

]s

]x
+ ts, s6d

FIG. 1. Geometry of a viscoelastic liquid with surfactant flow
down an inclined plane when the liquid undergoes an interfacial
shear.
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− p +
1

f1 + s]h/]xd2g1/2FSyy + S ]h

]x
D2

Sxx −
]h

]x
SxyG

=
s

Caf1 + s]h/]xd2g3/2

]2h

]x2 , s7d

wherets=ts
*h/mUs

* is the dimensionless imposed interfacial
stress and Ca=mUs

* /s0
* is the capillary number.s denotes the

dimensionless surface tension scaled bys0
* , and its depen-

dence on the surfactant concentration can be assumed to fol-
low the linear equation of state

s = 1 −EsG − 1d, s8d

where E=−sG0
* /s0

*ds]s* /]G*dG0
* reflects the surfactant elas-

ticity. The kinematic condition at the interface is

v =
]h

]t
+ u

]h

]x
. s9d

For an insoluble surfactant with negligible surface diffusion,
the transport equation along the interface is given by Ref.
f16g:

]

]t
FÎ1 +S ]h

]x
D2

GG +
]

]x
FÎ1 +S ]h

]x
D2

GuG = 0. s10d

The base statessdenoted by overbarsd are given by

ū = s2y − y2d + tsy, p̄ = p0 + 2scotuds1 − yd, Ḡ = 1,

S̄xy = ū8, S̄xx = 2 Wesū8d2, s11d

wherep0 is a constant pressure of air and the primes indicate
the derivatives with respect toy.

With the base states above, we now analyze the corre-
sponding linear stability. We consider perturbations to be
only two dimensional by appealing to Squire’s theorem for
the UCM fluid used heref22g. The perturbation quantityf
si.e., u, v, p, S, h, or Gd is expressed in the form of the

normal mode,f = f̂ expfiksx−ctdg wherek is the wave num-
ber of the perturbation andc is the complex wave speed. The
system is stablesunstabled if the imaginary part of c,
Imscd , ,0s.0d. After substituting perturbation quantities
into Eqs.s1d–s9d and linearizing these equations, the normal-
mode equationssdropping the overheads for perturbation
quantities nowd can be written as

iku + v8 = 0, s12d

Refiksū − cdu + ū8vg = − ikp + Sxy8 + ikSxx, s13d

ik Resū − cdv = − p8 + ikSxy + Syy8 , s14d

Sxx + Wefiksū − cdSxx + S̄xx8 v − 2sikS̄xxu + S̄xyu8 + ū8Sxydg

= 2iku, s15d

Sxy + Wefiksū − cdSxy + S̄xy8 v − ikS̄xyv − ū8Syyg = u8 + ikv,

s16d

Syy + Wefiksū − cdSyy − 2ikS̄xyvg = 2v8, s17d

u = v = 0 aty = 0 s18d

Sxy + S̄xy8 h − ikS̄xxh = − ikMG at y = 1 s19d

− p − p̄8s1dh − Syy − 2ikhS̄xy = −
k2

Ca
h at y = 1, s20d

v = ikfūs1d − cgh at y = 1, s21d

fūs1d − cgG + ū8s1dh + u = 0 aty = 1, s22d

whereM =E/Ca is the Marangoni number. For eachk, the
system of equationss12d–s22d constitutes an eigenvalue
problem that can be used to determinec.

III. LONG-WAVELENGTH STABILITY ANALYSIS

In the limit of long wavelengthssk→0d, we follow the
regular perturbation technique first adopted by Yihf2g to
expand perturbation quantities as

su,v,p,S,h,G,cd = su0,kv0,p0,S
0,h0,G0,c0d

+ ksu1,kv1,p1,S
1,h1,G1,c1d + ¯ .

s23d

Here we rescalev asOskd in view of the continuity equation
s12d. We substitute Eq.s23d into Eqs.s12d–s22d and collect
the terms in each order ofk. We further assume that Re, We,
andM are allOs1d. At Os1d, we obtain

iu0 + v08 = 0, s24d

sSxy
0 d8 = 0, s25ad

p08 = 0, s25bd

Sxy
0 + Wef− ū8Syy

0 g = u08, s26ad

Sxx
0 + Wef− 2sS̄xyu8 + ū8Sxy

0 dgu08 = 0, s26bd

Syy
0 = 0, s26cd

u0s0d = v0s0d = 0, s27ad

Sxy
0 s1d + S̄xy8 s1dh0 = 0, s27bd

p0s1d = − p̄8s1dh0, s27cd

v0s1d = fūs1d − c0gh0, s28ad

fūs1d − c0gG0 + ū8s1dh0 + u0s1d = 0. s28bd

The leading order solution is
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u0 = − Ū9h0y, v0 =
i

2
Ū9h0y

2,

Sxy
0 = − Ū9h0, Sxx

0 = 4 Weū8u08, p0 = 2h0 cotu, s29d

Sc0 − Ū +
1

2
Ū9Dh0 = 0, s30ad

sc0 − ŪdG0 = sŪ8 − Ū9dh0. s30bd

Here we defineŪ; ūs1d=1+ts, Ū8; ū8s1d=ts, and Ū9
; ū9s1d=−2 for simplicity. As revealed by Weif19g, Eqs.
s30ad ands30bd suggest that there are two modes as follows.
For h0Þ0, these equations result in, respectively,

c0 = 2 + Ū8, s31ad

G0 = s2 + Ū8dh0. s31bd

Sincec0 is determined by the leading order kinematic con-
dition s30ad, we call this mode aninterfacemode as usually
found in free-falling systemsf2,11g. The surfactant concen-
tration thus acts in response to the dynamics of the interface
via Eq.s30bd and is in phasesout of phased with the interface

when 2+Ū8.0 s,0d. In addition to the interface mode,
there is asurfactantmode which can be triggered by the
surfactant concentration perturbationssG0Þ0d without nec-
essarily having an interfacial deflection. For this mode, Eqs.
s30ad and s30bd yield

c0 = Ū, s32ad

h0 = 0. s32bd

Note thatc0 here is determined from the leading order sur-
factant transport equations30bd. As shown above, sincec0 is
real, theOs1d problem does not contribute to the stability of
the system. The above results were also shown previously for
a Newtonian fluidf19g. Neither viscoelastic nor surfactant
effects influence the stability at this order because bothWe
and M areOs1d here. As we shall show next, their impacts
on the stability will appear in theOskd problem.

For theOskd problem, we obtain the following equations:

iu1 + v18 = 0, s33d

sSxy
1 d8 + iSxx

0 − ip0 = Refisū − c0du0 + ū8v0g, s34ad

iSxy
0 + sSyy

1 d8 − p18 = 0, s34bd

Sxx
1 + Wefisū − c0dSxx

0 + v0S̄xx8 − 2siS̄xxu0 + S̄xxu18 + ū8Sxy
1 dg

= 2iu08 s35ad

Sxy
1 + Wefisū − c0dSxy

0 + v0S̄xy8 − ū8Syy
1 g = u18, s35bd

Syy
1 + Wefisū − c0dSyy

0 g = 2v18, s35cd

u1s0d = v1s0d = 0, s36ad

Sxy
1 s1d = 2i WesŪ8d2h0 − Ū9h1 − iMG0, s36bd

− p1s1d − p̄8s1dh1 + Syy
1 s1d − 2ih0S̄xys1d = 0, s36cd

v1s1d = − ic1h0 + isŪ − c0dh1, s37ad

sŪ − c0dG1 − c1G0 + Ū8h1 + u1 = 0. s37bd

Making use of Eqs.s35bd and s35cd, Eq. s34ad leads to

u19 = ip0 − i Wesū8u08 − ū9u0d + Refisū − c0du0 + ū8v0g.

s38d

The velocity field that satisfies Eqs.s36ad and s36bd is

u1 = ip0Sy2

2
− yD − 4i Weh0sŪ8 + 2dSy2

2
− yD

+ f2h1 + 2i We Ū8sŪ8 + 2dh0 − iMG0gy

+ ih0 ReF1

3
sŪ8 + 2dSy4

4
− yD − c0Sy3

3
− yDG ,

s39ad

v1 = p0Sy3

6
−

y2

2
D − WesŪ8 + 2dh0Sy3

3
− y2D

− iSh1 + i We Ū8sŪ8 + 2dh0 − i
M

2
G0Dy2

+ h0 ReF1

3
sŪ8 + 2dS y5

20
−

y2

2
D − c0S y4

12
−

y2

2
DG .

s39bd

p1 can be obtained using Eqs.s34bd, s35cd, ands36cd. Since
it is not used for determining theOskd wave speedc1, it does
not affect the stability at this order. We thus do not pursue it
further.

In view of the two modes derived in theOs1d problem,
we show the corresponding complex wave speedc1 for each
mode of theOskd problem below.

A. The interface mode

As in the Os1d problem, thec1 for the interface mode
should be determined from theOskd kinematic condition
s37ad. Substituting Eqs.s39ad ands39bd into Eq. s37ad, with
the aid of Eq.s31d, yields

c1 = −
2

3
i cotu + iF 4

15
Re + WeSŪ8 +

2

3
D −

1

2
MGsŪ8 + 2d.

s40d

In the absence of elasticity, the result agrees with that of Wei
f19g; surfactant has a stabilizingsdestabilizingd influence

when Ū8+2.0 s,0d. The viscoelastic effects are reflected
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by the term i WesŪ8+2dsŪ8+2/3d. In the absence of im-
posed shears and surfactant, the result is also consistent with
that of Guptaf4g; viscoelastic effects are destabilizing.

Similar to the mechanism of purely elastic instability il-
lustrated by Hunag and Khomamif7g for free surface flow,
imposing an additional interfacial shear can either encourage
or discourage the viscoelastic destabilization. A basic flow
working through elasticity has two contributions to instabil-
ity. First, it drives a perturbation flow through the elastic
relaxation via −i Wesū8u08− ū9u0d=−2i WesŪ8+2dh0 of Eq.

s38d. For Ū8+2.0, this effect drives a perturbation flow
forward sbackwardd for ]h /]x.0 s,0d. It in turn drives
flows from troughs to peaks of the interface, promoting the
growth of the interface.Ū8+2,0 acts in the opposite way; it
is thus stabilizing. This elastic contribution induces a para-
bolic flow of u1=−2i WesŪ8+2dh0sy2/2−yd; the corre-

sponding flow rate is thusQ1=s2i /3dWesŪ8+2dh0 from

which the dependence of stability onŪ8+2 explained above
becomes evident.

The second elastic contribution arises from the elastic
stress jump at the interface:Sxy

1 =−sS̄xyd8h1+ iS̄xxh0 from Eq.
s36bd. There are three contributions from this condition as
follows. For Sxy

1 s1d, one can show thatSxy
1 s1d=u18s1d

−4i We Ū8h0 from Eq.s35bd. Hence, the term 4i We Ū8h0 is
destabilizingsstabilizingd for Ū8.0 s,0d. As for the term

−sS̄xyd8h1=2h1, it is only dispersive to the stability. The term

iS̄xxh0=2i WesŪ8d2h0 can cause instability as demonstrated
by Chenf8g. The instability due to this term can be analo-
gous to the Rayleigh-Taylor instability, as illuminated by
Grahamf23g; that is, the elastic stress acts as an extra force
pointing upward upon the interface, which promotes the in-
terface growth. This term is always destabilizing regardless
of the direction of the applied shear because of the value of

sŪ8d2. Hence, combining the effects ofSxy
1 s1d and iS̄xxh0 in-

duces a linear flow ofu1=2i We Ū8sŪ8+2dh0y, and the flow

rate is Q1= i We Ū8sŪ8+2dh0. Notice that for free surface

flow f4,7g, Ū8=0, there is no impact on the stability from this
elastic contribution.

Consequently, the elastic effects combining both contribu-

tions shown above characterizec1 as i WesŪ8+2dsŪ8+2/3d
which manifests elastic stabilization if −2, Ū8,−2/3 and
destabilization otherwise. In contrast to the previous studies
f4,7g, applications of shear on the interface could have sta-
bilizing effects due to elasticity.

The presence of surfactant also can modulate the stability

via −iM sŪ8+2d. It is stabilizing if Ū8.−2. Marangoni ef-
fects are generated in response to flow caused by interface
deflections. Stability and instability can be explained by the
phase difference betweenh0 and G0 f19g. Equation s31bd
reveals that forŪ8.−2, h0 and G0 are in phase, so Ma-
rangoni stresses push fluid toward the interface’s troughs,
relaxing corrugations of the interface. Similarly, the effects

of Ū8,−2 are the reverse.
For a vertical flow system with small Re, combining

elastic and surfactant effects lead to instability when

Ū8.maxsM /We−2/3,−2d or Ū8,minsM /We−2/3,−2d.
For a sufficiently strong applied shearuŪ8u@1 fbut still
!Osk−1d for ensuring the validity of the small-k expansiong,
the elastic effects dominate the instability, i.e.,c1

, i WesŪ8d2. In this situation, strong imposed shears lead the

destabilizing effects of the elastic-stress jumpiS̄xxh0

=2i WesŪ8d2h0 to become more dominant compared to other

elastic contributions that are linear inŪ8. Such an instability
is independent of the direction of applied shear, as expected.

B. The surfactant mode

We now turn our attention to the surfactant mode. As in
theOs1d problem, we should apply theOskd surfactant trans-
port equations37bd for obtainingc1. Applying Eqs.s32ad and
s32bd and s39ad and s39bd to Eq. s37bd, we find

c1 =
i

2
MŪ8. s41d

Unlike the interface mode, here the stability is solely deter-
mined by Marangoni effects. It depends on whether the im-
posed shear acts to assist or oppose gravity: the former

sŪ8.0d destabilizes while the lattersŪ8,0d stabilizes. This
result is also identical to the study on Newtonian flowf19g,
suggesting that the stability of this mode does not depend on
the detailed information of the fluid rheology.

The key feature of this mode is that the instability arises
from imbalance of surfactant mass, rather than that of fluid
mass as in the interface mode. In addition, since this mode
has h0=0, interfacial deflections do not have sufficiently
large amplitudesfof Oskd at mostg to furnish elastic instabil-
ity. This is evidenced by the fact thath0=0 makes all of the
We terms vanish in Eqs.s39ad and s39bd. Since both hydro-
static and inertial contributions also vanish as well when
h0=0, the resulting velocity field is simply a linear flow:

u1 = s2h1 − iMG0dy, s42ad

v1 = − iSh1 −
i

2
MG0Dy2. s42bd

This is just a result of the stress-driven flow, viz.,

u19 = 0 with u18s1d = 2h1 − iMG0, s43d

which is deduced from Eqs.s34ad, s35ad, and s36bd. Again,
the term 2h1 comes from a perturbation to the basic interfa-

cial stress −Ū9h1 and it is only dispersive to the stability. The
instability is caused by the Marangoni stressiMG0. The
mechanism of the Marangoni-induced instability was ex-
plained previouslyf19g. It is provided here for completeness.

As revealed by Eqs.s37ad, s32ad, ands32bd, the flat inter-
faceh0=0 admits a zero normal velocityv1s1d=0. This de-
mandsh1= isM /2dG0; that is, the perturbation to the basic
interfacial stress balances the Marangoni stress on the inter-
face. As a consequence of the momentum conservation from
Eq. s43d, there is no perturbation flow everywhere, i.e.,u1
=v1=0. Now inspecting Eq.s37bd for the surfactant trans-
port, we find
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− ikc1G0 + kŪ8h1 = 0. s44d

Written back in the form of a differential equation, Eq.s44d
is equivalent to

]G

]t
+ Ū8

]h

]x
= 0, s45d

wherein the time derivative is defined in the frame moving

with the basic interfacial velocityŪ in view of Eq. s32ad.
Hence, Eq.s45d just tells how surfactant transports along the

interface when undergoing a shear flow. ForŪ8.0, interface
perturbationsfwith amplitudes ofOskd hereg lead the surfac-
tant concentration to decreasesincreased for the interface
portions of]h /]x.0 s,0d, causingG to be ahead ofh with
a phase ofp /2. To maintain the interface nearly flat without
growth, the induced Marangoni stress has to be in balance
with the perturbation shear stress due to the gravity-driven
basic flow. Such a nearly stationary interface working with
the shear flow keeps magnifying the amplitude of the surfac-
tant concentration perturbation. This accelerates local accu-
mulation or consumption of the surfactant mass on the inter-
face; hence the instability.

In comparison with the interface mode Eq.s40d, the influ-
ence of imposed shear on the Marangoni parts for both

modes has the same formiŪ8M /2 but with opposite signs. If
Marangoni effects dominate the instability, e.g., very largeM

compared to both Re and We, imposing shears withuŪ8u
@1 will lead to instability regardless of their direction of
exertion. In that case, since the dispersion equation forc is in

the form ofsc−Ūd2=Oskd, the correction toc is Osk1/2d. The

resulting wave-speed correction isk1/2c1=si /2dMuŪ8uk1/2

which is of Osk1/2d larger than the case of moderateuŪ8u.
SuchOsk1/2d wave speed is consistent with previous findings
in two-layer systemsf15g.

C. Overall stability behaviors as combining both the interface
and surfactant modes

As demonstrated above, we discuss the respective stabil-
ity features for the interface and the surfactant modes. In
general, since development of any perturbation can be re-
garded as a linear combination of these two modes, the sys-
tem stability hinges on their competition for given fluid prop-
erties and flow conditions. The overall behavior of the
stability is discussed below.

Application of interfacial shear can affect both elastic and
surfactant influences on the system stability. As shown in the
interface mode Eq.s40d, elastic effects can be either stabiliz-
ing or destabilizing, depending on the strength and direction
of the applied shear. In addition to hydrostatic and inertial
effects, the elastic influence on the stability of the interface
mode is further mediated by Marangoni effects. As for the
surfactant mode, it is only reflected by Marangoni effects
that determine the stability through the direction of the ap-
plied shear. To illuminate the competition between these two
modes in response to applied shear, we consider a system
with u=p /2 and Re=0 below for eliminating both hydro-
static and inertial effects.

For Ū8.0, the surfactant modec1= iMŪ8 /2 is purely
destabilizing. The interface modec1= ifWesŪ8+2/3d−M /

2gsŪ8+2d could be also destabilizing due to elastic effects if
the applied shear can make elastic destabilization overcome
the Marangoni stabilization, i.e.,Ū8.M / s2 Wed−2/3. The
interface mode dominates the instability ifM ,4 We/3. If
Ū8,0, the surfactant mode now becomes stabilizing. The
instability of the interface mode depends onM /We. When
M ,4 We/3, instability occurs ifŪ8,−2 or M / s2 Wed
−2/3, Ū8,0. WhenM .4 We/3, instability takes place if
Ū8,−2. As such, Ū8,−2 can cause instability for all
M /We, which is just a consequence of the combination of
both elastic and Marangoni destabilization of the interface
mode. A phase diagram summarizing the instability features
discussed above is illustrated in the upper half of the

Ū8-M /We plane shown in Fig. 2. Figure 2 reveals that in

most of the range ofŪ8, the system is unstable to long-
wavelength perturbations, except in a stable window that is

confined within the −2, Ū8,0 region with the boundary

M /We=2Ū8+4/3. Such a stable window is mainly attrib-
uted to the Marangoni stabilization in the region of −2

, Ū8,0 modified by the elastic destabilization in the range

of −2/3, Ū8,0.
The above discussion is based on the absence of both

inertial and hydrostatic effects. Clearly, these effects can
modify the stability diagramsFig. 3d. They are only attrib-
uted to the interface mode, but not to the surfactant mode, as
shown by Eqs.s40d and s41d. Since the Re term of Eq.s40d
is also proportional toŪ8+2, the stability boundary ofŪ8
=−2 does not change. However, since the Re effect destabi-

lizes the system forŪ8.0, it makes the lineM /We=2Ū8

+4/3 shift toward the left, viz.,M /We=2Ū8+4/3+s8/
15dsRe/Wed. This shrinks the stable window, depending on
Re/We. As Re=5We or larger, the system becomes vulner-

able to instability for all values ofŪ8; a possible stabilization

due to Marangoni effects for −2, Ū8,0 requiresM at least
greater than 4 We/3+8Re/15. As for the effect of u, it is
evident that the smalleru, the wider stable window due to
hydrostatic stabilization.

FIG. 2. Schematic phase diagram. Unstablesstabled regions are
shadedswhited. In unstable regions, the dominant mode and the
associated effects of instability are also indicated. Re=0,u=p /2.
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Notice that the in the regime of largeuŪ8u, instability
could differ from that above mentioned. On the one hand, the
interface mode has a large growth rate of −ikc1

,k2 WesŪ8d2 due to elastic instability; on the other hand, the

surfactant mode could have a growth rate ofMuŪ8uk3/2/2.
This suggests that the instability of the system could be

dominated by the Marangoni destabilization unlessuŪ8u
*k−1/2M We−1/2 for which the elastic instability becomes at
least comparable to or more important than the Marangoni
one.

IV. CONCLUDING REMARKS

As shown above, we demonstrate how viscoelastic and
Marangoni effects influence the stability of a falling film
subjected to interfacial shear. In the absence of applied shear,
elastic effects are destabilizing while Marangoni forces are
stabilizing. Application of interfacial shear can make these
effects stabilizing or destabilizing, depending on the strength
or direction of the applied shear with respect to gravity-
driven flow. The stability features are identified by the com-
petition between the interface and surfactant modes. The in-
terface mode is the mode usually found in free falling flow.
Its stability is determined by both elastic and Marangoni
forces that can act to oppose each other or reinforce their
effects additively, depending on the modulation between
shear and gravity-driven flows. The surfactant mode only
involves Marangoni forces whose influence on stability
merely relies on the action of the applied shear. For each
mode, we identify the corresponding condition for occur-
rence of instability. Overall, the system is susceptible to in-
stability under most condition of applied shear, as shown in
the phase diagram.

Extension of the present analysis to explore nonlinear ef-
fects could be rather interesting. In principle, one can follow
the standard proceduresf24g to derive a coupled set of non-
linear evolution equations for the film thickness and the sur-
factant concentration. Although the previous weakly nonlin-
ear stability analysesf25,26g in falling viscoelastic films
without surfactant have suggested the possibility of nonlinear
saturation of elastic instability, a similar study on the present
system may reveal even rich dynamics. On the one hand, an
instability can be excited by the exertion of interfacial shear;
on the other hand, strong applied shear could suppress the
instability f27g. The issue herein is to identify whether the
instability can be restrained within the nonlinear regime or
not. The ultimate fate of the system seems to arise from the
competition between these effects, depending on the sizes of
the perturbations and the ranges of the parameters.
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