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Stability of a viscoelastic falling film with surfactant subjected to an interfacial shear
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The long-wavelength stability is analyzed for a surfactant-laden, viscoelastic liquid flowing down an in-
clined plane when the liquid undergoes additional interfacial shear. The upper convected Maxwell model is
employed for describing the elastic nature of the fluid. The system stability is characterized by the interface and
the surfactant modes. The interface mode involves both elastic and Marangoni effects that modulate the
stability with applied shears and gravity-driven flow. The surfactant mode is only determined by the shear-
induced Marangoni effects. A phase diagram is established to identify the dominant mode and the overall
features of instability. It reveals that the system is susceptible to instability, except in a stable window when the
applied shear opposes the gravity-driven flow.
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[. INTRODUCTION cations involve surface-active agents or impurities on the in-
Liquid flowing down an inclined plane is a subject of terface, their influence on the stability could be critical to
long-standing interest in fluid mechanics and engineerin%rocesses' Although there are a few studies addressing the
processes. Benjamiii] and Yih [2] first examined the sta- ffects of surfactants on the stability of Newtonian Il_qmd
bility of a Newtonian film for long-wavelength perturbations. ﬂOW_' to our bestt. knowledge, th‘? roles OT sgrfa_ctants in af-
A hydrodynamic instability arises from a combination of sur- fecting the stability feature; Of. viscoelastic |IQUI.d flow have
face waves and inertial effects. Since destabilizing effect&°! )(/jethbeef? explc;red.f It is, first tha"' esﬁ_entl?l to under-
can be compromised by hydrostatic pressures, instability octand the effects of surfactants on the stability of Newtonian
curs when the Reynolds number is greater than a certaifivid flow systems. We despnbe some features thereof below.
critical value. The development of such surface waves has 1he dominant effects introduced by surfactant are Ma-

received much attention, and extensive research studies F\ngoni forces that act on the interface and drive the fluid to
this subject can be found in an excellent review given bylOW toward lower-tension regions. For stationary systems,
Changl[3]. surfactant has a stabilizing effgdt0]. When basic flows are

Most of the stability analyses of falling film flows are present, however, the surfactant could be either stabilizing or

based on Newtonian fluids which have been studied thordestabilizing, depending on the nature of the basic flow.
oughly. The corresponding analysis based on non-Newtoniaf/hitaker and Joneisl1] examined the long-wave stability of

fluids, especially on viscoelastic liquids, has been addressed falling film flow and found that a surfactant increases the
by fewer studies due to the complex nature of the fluid rhecritical Reynolds number, indicating stabilizing effects. Their

ology. Gupta[4] used a second-order fluid model to first finding is essentially a correction to the Yih mode. In related
examine the effects of viscoelasticity on the stability of fall- WOk, Ji and Setterwa[l12] demonstrated the existence of an

ing film flow. He found that viscoelasticity has a destabiliz- Unstable mode due to Marangoni effects in the presence of a
ing effect on long-wavelength disturbances since it decreaseluble surfactant. Pozrikidigl 3] studied the stability of a
the critical Reynolds number. Shagfehal.[5] examined the surfactant-laden falllng_ fllm_f_low in the _I|_m|t of vanishing
linear stability of an Oldroyd-B falling film in more detail. R€ynolds number. He identified, in addition to the surface-
They solved the modified Orr-Sommerfeld equation andNaVe mode that is stabilized by the SurfaCtant, a surfactant
showed that although the system can be destabilized by vignode that can make the growth rate decay more slowly than
coelasticity, the resulting growth rate is too small to be dis-that of the Yih mode. In this viewpoint, surfactant can be said
cernible in practice. to have a destabilizing influence. Blyth and Pozrikifiig]

The stability analysis has also been extended to systentecently solved the Orr-Sommerfeld equation numerically
of two viscoelastic fluids flowing down an inclined plane and confirmed the above findings.
[6,7]. In addition to the surface-wave modealled the Yih Frenkel and Halperfl5,16 analyzed the linear stability
mode usually found in a single-layer problem, there is anof a two-layer Couette flow with surfactant in the limit of
interfacial mode that can modify the features of stability. Thezero Reynolds number. They demonstrated that surfactant
origin of instability of this mode is identified by a jump in could introduce destabilization to a system that is inherently
the first normal stress difference across the interf@8¢elThis  stable in the absence of surfactant. Their results were also
jump arises from an interfacial deflection; it works in the later confirmed by Blyth and Pozrikidid4]. Such destabi-
form of basic interfacial shear and can be reflected in thdizing effects due to surfactant are also found in cylindrical
elasticity contrast between the two fluids. The generabeometries in which the prevailing capillary instability could
mechanism of elastic instability was clearly illustrated bybe enhanced by the surfactdaf,18.
Hinch et al.[9]. The key to the flow-induced Marangoni destabilization

Studies so far on the stability of viscoelastic liquids arelies in the interfacial shear of the basic flow. Perturbations to
restricted to clean-interface systems. Since most of the applthe basic interfacial shear can redistribute surfactant along
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the interface. This creates a phase difference between th . interface
surfactant concentration and interface deflection; the result: Z .

ing Marangoni forces can promote interface growth. Wei
[19] considered the long-wave stability of a surfactant-laden
falling film subjected to an additional interfacial shear. He
identified that there is a surfactant mode that is solely excitec
by an imposed shear and irrelevant to gravity-driven basic
flow. The surfactant mode is destabilizitgtabilizing when
the imposed shear acts in the direction in favofagposite
to) gravity-driven flow. In the absence of imposed sHédAi,
this mode has a zero growth rate for long-wavelength distur-
bances; it is the mode that has a destabilizing influence in the
finite-wavelength regimgl3]. As for the Yih mode, the sur-
factant correction in response to the action of shear has ef- . o
fects opposite to those of the surfactant mode. The resulting FIG. 1. Geometry of a viscoelastic liquid with surfactant flow
system stability is determined by the competition betweer own an inclined plane when the liquid undergoes an interfacial
these modes, depending on the strength and direction of thsehear'
applied shear. . ]

The motivation of this study arises from the efforts to YWe definex to be the coordinate along the plane gntb be
construct an appropriate model for understanding liquid linthe coordinate perpendicular to the liquid layer witk0
ing flows in airways. The lining liquid is typically a bilayer defining Fhe plane, as shown in Fig. 1. The velocny vector of
structure that comprises a Newtonian ciliary layer overlaidthe flow isV =(u,v) whereu andv denote the velocity com-
by a mucous layer that has a viscoelastic naf2ég. Airflow  Ponents in thecandy directions, respectively is the pres-
travels back and forth during breathing and could exert sheaure. In the dimensionless form, the continuity and momen-
forces on the air-liquid interface. Since the interface is oftefum equations are
populated with surfactant, the dynamics are also influenced
by Marangoni effects. As mentioned earlier, the effects of V.-v=0, (1)
basic flows are twofold. On the one hand, they can induce
elastic instability; on the other hand, they also can modulate N
the Marangoni influence on the stability. Since an imposed Re(— +V - VV) == Vp+2e+V S, (2
shear can act to either assist or oppose the flow caused by ot

gravity, it is not clear how these effects interplay in response here S is the vi _ e
to various basic flow conditions. In this paper, we shall ad\WNere S is the viscous stress tensor aeg=e,—(coto)e,

dress this issue by examining the combined effects of interNdicates the direction of the gravity force. The Reynolds
facial shear and surfactant on the long-wave stability of g'umber is defined by Regt)sh/u. The UCM constitutive
viscoelastic liquid down an inclined plane. The rheology of€auation is

the liquid is assumed to follow the upper convected Maxwell v

(UCM) model. The UCM model can be derived from a mo- WeS+S=VV+(VV)T, (3)
lecular theory that idealizes the polymer molecules as non-

interacting dumbbell$21]. It serves as a relatively simple

o3
ey

- e surfactant

constitutive model that attains the essential physics and en- v _dS T
ables us to assess its impact on the stability. S= o *(V-V)S-VV.-S-S-(VV), (4)
Il. MATHEMATICAL FORMULATION where We=aU./h is the Weissenberg number, the ratio of

elastic relaxation to flow time scales. The system is subject

Consider an incompressible, UCM liquid flowing down to the following boundary conditions. The velocity vanishes
an inclined plane with an inclined angte(see Fig. 1L The  on the wall:
liquid has densityp, viscosity u, and relaxation time.. An
additional constant shear stregsinduced by an airflow is u=v=0 ony=0. (5
applied along the air-liquid interface and its direction can
either assist or oppose the gravity-driven flow. The base statgt the interfacey=1+7 with » being an interfacial displace-
configuration consists of a liquid layer with a uniform thick- ment, the tangential stress and normal stress conditions are
ness ofh. The air-liquid interface is covered by an insoluble given by
surfactant monolayer of a uniform concentratigp The sur-
face tension isr, corresponding td’,. We chooseh as the 1 an\? an
characteristic length and scgle the velocities with respect to me)z‘]uz "\ Sy~ x (Sx= Sy
the basic interfacial velocity = pgh?(sin 6)/(2u). The time
is scaled byhlu; Both stress and pressure are scaled by :i9_0+ - (6)
uUg/h. The surfactant concentration is normalized By Cax
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1 371)2 o } S, + Welik(U-0)S,, - 2kSywl=20',  (17)
-p+t —5 +|— -— y y y U
P [1 +((977/<9x)2]1’2{s‘/y ( X S axS‘V
_ o i @ u=v=0 aty=0 (18
T CAL+(anlax)?PR ax2’ _ _
. . . . ) ) , +S, ik =-ikMI' aty=1 19
where 7,=7.h/ uU;, is the dimensionless imposed interfacial S+ S~ KSom y (19
stress and Ca/ssUs/crg is the capillary numbeir denotes the o 2
dimensionless surface tension scaledd@y and its depen- -p-pP)np- Sy~ 2knSy=-—n aty=1, (20
dence on the surfactant concentration can be assumed to fol- Ca
low the linear equation of state
=ik[u(1) - ty=1, 21
s=1-ET-1), ® v=ik[u(l)-c]y aty (21)
where E:—(FB/JB)(O'?J*MF*)FB reflects the surfactant elas- [U(l)-clT+u'()p+u=0 aty=1, (22)

ticity. The kinematic condition at the interface is whereM=E/Ca is the Marangoni number. For eakhthe

L system of equationg12)—(22) constitutes an eigenvalue

v (9 problem that can be used to determine

For an insoluble surfactant with negligible surface diffusion,
the transport equation along the interface is given by Ref. Il LONG-WAVELENGTH STABILITY ANALYSIS

[16]: In the limit of long wavelengthgk— 0), we follow the

P a2 P a2 regular perturbation technique first adopted by Y& to
— 1+ (—) r{+— 1+ (—) l'u|=0. (100 expand perturbation quantities as
ot oX oX X

(uvvypysi narvc) = (u07k001 pOag)y 7]01F01CO)

_ . — + k(ul,kvl,pl,sl, 771,1-‘1,(.:1) + e,
U=(2y-y)+7y, p=po+2(cotf)(1-y), I'=1, (23

The base stateglenoted by overbayrare given by

= -7 <« _ —\2 Here we rescale asO(k) in view of the continuity equation
SyT UL Se= 2 Welu)*, (19 (12). We substitute Eq(23) into Egs.(12)—(22) and collect
wherepg is a constant pressure of air and the primes indicat¢he terms in each order &f We further assume that Re, We,

the derivatives with respect andM are allO(1). At O(1), we obtain

With the base states above, we now analyze the corre- . ,
sponding linear stability. We consider perturbations to be iUg+v0=0, (24
only two dimensional by appealing to Squire’'s theorem for
the UCM fluid used her¢22]. The perturbation quantity (§y '=0, (253
(.,e.,u, v, p, S 7 orl) is expressed in the form of the
normal mode f=f exdik(x-ct)] wherek is the wave num- ps=0, (25b)
ber of the perturbation antlis the complex wave speed. The
system is stable(unstabl¢ if the imaginary part ofc, §y+ We[—WSﬁy]:u(’), (263

Im(c), <0(>0). After substituting perturbation quantities
into Egs.(1)—(9) and linearizing these equations, the normal-

mode equationgdropping the overheads for perturbation §X+We[— 2(§<yu, +W‘(2y)]u<,): 0, (26b)
quantities now can be written as
iku+v' =0, (12) =0, (260
0) =vo(0) =0, 27
Reik(u-c)u+Uv]=-ikp+ S, +ikS,, (13) Uo(0) =vo(0) (279
ik Re(U=c)o == p’ +ikSy +S),, (14) (D) + S 7 =0, (27b)
g S u+S 1) =-p (V). 27
St Weik(u—0)S+ Spv — 2(ikSpu + Syu’ +U'S,)] Po(1) ==p"(V)mo (279
= 2ku, (15) vo(1) =[u(1) = col 7o, (283
Sy + Welik(U-¢)S,y+ Sy - ikSqu - U'S,y] = U’ +ikv, [u(1) = coJl'g + U (1) 730+ Ug(1) = 0. (28b)

(16) The leading order solution is

066306-3



HSIEN-HUNG WEI PHYSICAL REVIEW E71, 066306(2005

n I—H
Uo == U"npy, U(FEU 7loy2a

uy(0) =v4(0) =0, (363

_ Siyl(1) =21 We(U') 2o~ U =M, (36D)
Sy=-U'm, S,=4Wel'uy, p°=2pycotd, (29 B
~py(D) =P (D) + (1) - 2imeSy(1) =0, (360

(co ~U+ 36") =0, (303 _
2 v1(1) = ~icy 7m0 +i(U = Co) 71, (378

(€= U)o = (U= U") 7. (30D) (U=coTy =T+ U 7, + Uy = 0. (37b)

Here we defineU=0(1)=1+7, U'=U(1)=7, and U" Making use of Eqs(35b) and (350, Eq. (348 leads to
=U"(1)=-2 for simplicity. As revealed by Wei19], Egs. L _ = ) -
(309 and(30b) suggest that there are two modes as follows. U1 = 1Po =i We(U'ug = U'g) + Refi (U = Co)uo + U'vg].

For ny# 0, these equations result in, respectively, (39
co=2+U’, (319  The velocity field that satisfies Eq&36a and (36b) is
yz o yz
To=(2+U") 7. (31b) U1:|PO<E‘Y)‘4I We 7o(U +2)<E‘Y)
Sincec, is determined by the leading order kinematic con- : T i
dition (30a), we call this mode ainterfacemode as usually *[2m+ 21 We U'(U" + 2) 70 = IMToly
found in free-falling systemf2,11]. The surfactant concen- . 1— y* y?
i i i i +tinRe (U +2)| —-y|-co| T -
tration thus acts in response to the dynamics of the interface o 3 4 y 0\ 3 Y
via Eq.(30b) and is in phaséout of phasgwith the interface (398
when 24U’ >0 (<0). In addition to the interface mode,
there is asurfactantmode which can be triggered by the vy o 3
surfactant concentration perturbatiofig # 0) without nec- v1=Pol = - Y- We(U’ +2) Y _\2
: _ _ _ _ : 1=Po\ g7, Mo\ 5 Y
essarily having an interfacial deflection. For this mode, Egs.
(303 and (30b) yield - _ M
. . 2 ’ . 2
_ =il m+iWweU' (U +2)npo—i o)y
c=U, (329 2
1= (Y yz) (y“ yz)
7=0. (32b) * 70 Re[s(u +2)(2o o) \12" 2/
Note thatcy here is determined from the leading order sur- (39b)

factant transport equatigi30b). As shown above, sincg, is . . )
real, theO(1) problem does not contribute to the stability of Py can be obtained usm_g_Eq§4b), (350, and(360)._ Since
it is not used for determining th@(k) wave speeda,, it does

the system. The above results were also shown previously for - . .
a Newtonian fluid[19]. Neither viscoelastic nor surfactant ot affect the stability at this order. We thus do not pursue it

effects influence the stability at this order because Mih further.

andM are O(1) here. As we shall show next, their impacts In view of the two ques derived in the(1) problem,
on the stability will appear in th©(k) problem. we show the corresponding complex wave spegfibr each

For theO(k) problem, we obtain the following equations: mode of theO(k) problem below.

iu; +v; =0, (33 A. The interface mode
(Sh) +iS? —ipo= Rei(U-Co)ug+ Uvy], (343 As in the O(1) problem, thec; for the interface mode
Sy Se~1Po 070 0 should be determined from th®(k) kinematic condition
. 1\r _ 373. Substituting Eqs(39a and(39b) into Eqg. (373, with
i0 4 -0, 34b ( gEq q
Sy* Sy’ —pi (34D e aid of Eq(3D), yields
1 L o _ofic P P _ _
s+ Weli (U= Co) Sy + voS)y 2iSllg + Spuy +U'Sy)] cl=—gi cot0+i[iRe+We<U’+g)—EM](UWZ)-
= 2iuj (352 3 15 8/ 2
(40)

Sk + Weli(U- oS, +vS,, - U'S,]=Uj, (35D In the absence of elasticity, the result agrees with that of Wei
[19]; surfactant has a stabilizingdestabilizing influence

Sy + Wdi(Uu-cy)S),] = 201, (350  whenU’+2>0 (<0). The viscoelastic effects are reflected
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by the termi We(U’+2)(U’+2/3). In the absence of im- U’>max(M/We—2/3,—2 or U’<min(M/We—2/3,—2.
posed shears and surfactant, the result is also consistent Wiy 5 sufficiently strong applied she#lo’|>1 [but still
that of Gupta[4]; viscoelastic effects are destabilizing. <O(k™) for ensuring the validity of the smaki-expansiof

Similar to the mechanism of purely elastic instability il- - : : o .
lustrated by Hunag and Khomar] for free surface flow, the elastic effects dominate the instability, i.ec;

imposing an additional interfacial shear can either encourage’| We(U")2. In this situation, strong imposed shears lead the
or discourage the viscoelastic destabilization. A basic flondestabilizing effects of the elastic-stress junif,,z,
working through elasticity has two contributions to instabil- _ »; We(U’)Zn to become more dominant compared to other
ity. First, it drives a perturbation flow through the elastic 0
relaxation via +We(u’uy—u"ug) =-2i We(U' +2) 77, of Eq.
(38). For U’+2>0, this effect drives a perturbation flow
forward (backward for dn/dx>0 (<0). It in turn drives B. The surfactant mode

flows from troughs to peaks of the interface, promoting the  \ye now turn our attention to the surfactant mode. As in
growth of the interfacel’ +2<0 acts in the opposite way; it the O(1) problem, we should apply tH@(k) surfactant trans-

is thus stabilizing. This elastic contribution induces a paraport equation(37b) for obtainingc,. Applying Eqs.(32a and
bolic flow of u;=-2i We(U’+2) no(yzlz—l); the corre- (32b) and (393 and(39b) to Eq. (37b), we find

sponding flow rate is thuf;=(2i /_3)We(U’+2) 70 from P

which the dependence of stability @i +2 explained above G = EMU'- (41)

becomes evident.
The second elastic contribution arises from the elastidnlike the interface mode, here the stability is solely deter-

stress jump at the interfaCQy: —(Sy) m+iSwmo from Eq.  mined by Marangoni effects. It depends on whether the im-
(36b). There are three contributions from this condition asPosed shear acts to assist or oppose gravity: the former
follows. For S,(1), one can show thatSi(1)=uj(1)  (U’>0) destabilizes while the lattét)’ <0) stabilizes. This

—4i We U’ 7, from Eq.(35b). Hence, the termidVe U’ 7,is  result is also identical to the study on Newtonian flgl@],

destabilizing(stabilizing for U’ >0 (<0). As for the term ~ Suggesting that the stability of this mode does not depend on
—(§< ) =27, it is only dispersive to the stability. The term the detailed information of the fluid rheology. N _
Sy AN y disp _ N Y- The key feature of this mode is that the instability arises
iS70=21 We(U')?7, can cause instability as demonstratedfrom imbalance of surfactant mass, rather than that of fluid
by Chen[8]. The instability due to this term can be analo- mass as in the interface mode. In addition, since this mode
gous to the Rayleigh-Taylor instability, as illuminated by has 5,=0, interfacial deflections do not have sufficiently

Graham[23]; that is, the elastic stress acts as an extra forc‘?arge amplitudegof O(k) at most to furnish elastic instabil-

pointing upward upon the interface, which promotes the inity. This is evidenced by the fact that=0 makes all of the

terface growth. This term is always destabilizing regardles P ; )
of the direction of the applied shear because of the value oi:e terms vanish in Bq$398 and(39b). Since both hydro

— - — atic and inertial contributions also vanish as well when
(U")2. Hence, combining the effects &(1) andiS,mo in- 5 =0, the resulting velocity field is simply a linear flow:
duces a linear flow ofi;=2i WeU'(U’ +2 , and the flow ,

; sar flow ofy ( ) 0y up= (27 =iMIo)y, (429
rate is Q,=i WeU’(U’'+2) 7, Notice that for free surface

flow [4,7], U’ =0, there is no impact on the stability from this . i 5

elastic contribution. vy =i\ m=5MIo Jy". (42b)
Consequently, the elastic effects combining both contribu- _ .

tions shown above characteriggasi We(U’ +2)(U’ +2/3) This is just a result of the stress-driven flow, viz.,

which manifests elastic stabilization if <2U’<-2/3 and up=0 with uj(1) = 27, —iMT, (43

destabilization otherwise. In contrast to the previous studie§VhiCh is deduced from Eq$34a, (358, and (36b). Again

[47] applications of shear.o.n the interface could have $@he term 2, comes from a perturbation to the basic interfa-
bilizing effects due to elasticity. =

The presence of surfactant also can modulate the stabilit?ial stress &%, and itis only dispersive to the stability. The
L . e . nstability is caused by the Marangoni streddI’y. The

via -iM(U’+2). Itis ;tabll|2|ng ifu’>-2. Marangon[ ef- mechanism of the Marangoni-induced instability was ex-
fects are generated in response to flow caused by interfacgqina g previously19]. It is provided here for completeness.
deflections. Stability and instability can be explained by the  5¢ rovealed by Eqg374), (329, and(32b), the flat inter-
phase difference betweeny and I'o [19]. Equation(31D) 506 5 =0 admits a zero normal velocity;(1)=0. This de-
reveals that folU’>-2, 7, and I'y are in phase, so Ma- mands#,=i(M/2)T'y; that is, the perturbation to the basic
rangoni stresses push fluid toward the interface’s troughspterfacial stress balances the Marangoni stress on the inter-
relaxing corrugations of the interface. Similarly, the effectsface. As a consequence of the momentum conservation from
of U’ <-2 are the reverse. Eq. (43), there is no perturbation flow everywhere, i.e;,

For a vertical flow system with small Re, combining =v,;=0. Now inspecting Eq(37b) for the surfactant trans-
elastic and surfactant effects lead to instability whenport, we find

elastic contributions that are linear @/. Such an instability
is independent of the direction of applied shear, as expected.
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MAWe

AR
¥

3 SUrfactant mode

- ikclro + kU, M= 0. (44)

Written back in the form of a differential equation, Eg4)
is equivalent to

ar  —dn _ %/’:
E +U 5 = 0, (45) inferface moae :
{etastic + Marangani} ;1

wherein the time derivative is defined in the frame moving 7 :

T 1
with the basic interfacial velocity) in view of Eq. (323. /: i
Hence, Eq(45) just tells how surfactant transports along the ///'/f. 5

T 0 i

interface when undergoing a shear flow. EGr> 0, interface -2
perturbationgwith amplitudes ofO(k) hereg lead the surfac-
tant concentration to decreasmcrease for the interface
portions ofdn/ x>0 (<0), causingl’ to be ahead of; with
a phase ofrr/2. To maintain the interface nearly flat without
Wil the pertrbation Shear stress due to the graviy-arver, | C\ U~ 0 {he suractant mode,=iU’/2 is purely
basic ﬂovl?/. Such a nearly stationary interface \?vorkir):g withdesiab'l'zmg' The interface mode=i[We(U’+2/3)-M/
the Shear ﬂOW keeps magnifying the amp“tude Of the SurfacZ](U""Z) COU|d be alSO destabi”Zing due to e|aStiC ef'feCtS if
tant concentration perturbation. This accelerates local accibe applied shear can make elastic destabilization overcome
mulation or consumption of the surfactant mass on the interthe Marangoni stabilization, i.el)’ >M/(2 We)-2/3. The
face; hence the instability. interface mode dominates the instabilityNf <4 We/3. If

In comparison with the interface mode E40), the influ- U’ <0, the surfactant mode now becomes stabilizing. The
ence of imposed shear on the Marangoni parts for botinstability of the interface mode depends bYWe. When

modes has the same foiitd’M /2 but with opposite signs. If M <4 We/3, instability occurs ifU’<-2 or M/(2 We)
Marangoni effects dominate the instability, e.g., very ldje  _5 /3y’ <0. WhenM >4 We/3, instability takes place if
compared to both Re and We, imposing shears Wit J'<—-2 As such,U’<-2 can cause instability for all
>1 will lead to instability regardless of their direction of \j/we, which is just a consequence of the combination of
exertion. In that case, since the dispersion equation N poth elastic and Marangoni destabilization of the interface
the form of(c-U)?=0(k), the correction ta is O(k*?). The  mode. A phase diagram summarizing the instability features
resulting wave-speed correction Isl’zclz(i/2)M|U’|k1’2 discussed above is illustrated in the upper half of the

FIG. 2. Schematic phase diagram. Unstastablg regions are
shaded(white). In unstable regions, the dominant mode and the
associated effects of instability are also indicated. Reg=0z/2.

which is of O(kY?) larger than the case of moderth’L U’-M/We plane shown in Fig. 2. Figure 2 reveals that in
SuchO(kY?) wave speed is consistent with previous findingsmost of the range ol)’, the system is unstable to long-
in two-layer system§15]. wavelength perturbations, except in a stable window that is

confined within the —2U’ <0 region with the boundary

M/We=2U"'+4/3. Such a stable window is mainly attrib-

) _ uted to the Marangoni stabilization in the region of -2
As demonstrated above, we discuss the respective stabil- —, o . G

ity features for the interface and the surfactant modes. In<U =0 modified by the elastic destabilization in the range

general, since development of any perturbation can be reédf —2/3<U’<0. o

garded as a linear combination of these two modes, the sys- The above discussion is based on the absence of both

tem stability hinges on their competition for given fluid prop- inertial and hydrostatic effects. Clearly, these effects can

erties and flow conditions. The overall behavior of themodify the stability diagrantFig. 3. They are only attrib-

stability is discussed below. uted to the interface mode, but not to the surfactant mode, as
Application of interfacial shear can affect both elastic anaShown by Eqs(40) and (41). Since the Re term of E¢40)

surfactant influences on the system stability. As shown in thés also proportional tdJ’ +2, the stability boundary ob)’

interface mode Eq40), elastic effects can be either stabiliz- =-2 does not change. However, since the Re effect destabi-

ing or destabilizing, depending on the strength and directiolfizes the system fol)’ >0, it makes the lineMl/We=2U’

of the applied shear. In addition to hydrostatic and inertial+4/3 shift toward the left viz M/We:2LT’+4/3+(8/
effects, the elastic influence on the stability of the interfacels)(Re/We This shrinks th;a sta.ty)le window. depending on
mode is further mediated by Marangoni effects. As for the ' , dep g

surfactant mode, it is only reflected by Marangoni effectse/ We- AS Re=5We or larger, the system becomes vulner-

that determine the stability through the direction of the ap-able to instability for all values af'; a possible stabilization
plied shear. To illuminate the competition between these twaue to Marangoni effects for <2U’ <0 requiresM at least
modes in response to applied shear, we consider a systegneater than 4 Wi +8Re/15. As for the &ct of 0, it is
with #=7/2 and Re=0 below for eliminating both hydro- evident that the smalle#, the wider stable window due to
static and inertial effects. hydrostatic stabilization.

C. Overall stability behaviors as combining both the interface
and surfactant modes
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MiWe IV. CONCLUDING REMARKS

4 \\\\\kﬁf
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As shown above, we demonstrate how viscoelastic and
Marangoni effects influence the stability of a falling film
subjected to interfacial shear. In the absence of applied shear,
elastic effects are destabilizing while Marangoni forces are
stabilizing. Application of interfacial shear can make these
effects stabilizing or destabilizing, depending on the strength
or direction of the applied shear with respect to gravity-
driven flow. The stability features are identified by the com-
petition between the interface and surfactant modes. The in-
terface mode is the mode usually found in free falling flow.
Its stability is determined by both elastic and Marangoni
-2/3- ARefI Si¥e forces that can act to oppose each other or reinforce their

effects additively, depending on the modulation between

shear and gravity-driven flows. The surfactant mode only
413-2c0183We [3°

W

i

|
[ %]

involves Marangoni forces whose influence on stability

merely relies on the action of the applied shear. For each
mode, we identify the corresponding condition for occur-

rence of instability. Overall, the system is susceptible to in-

stability under most condition of applied shear, as shown in
the phase diagram.

Extension of the present analysis to explore nonlinear ef-
fects could be rather interesting. In principle, one can follow
the standard procedur€24] to derive a coupled set of non-
linear evolution equations for the film thickness and the sur-
2 0 i factant concentration. Although the previous weakly nonlin-
ear stability analyse$25,26 in falling viscoelastic films
without surfactant have suggested the possibility of nonlinear
saturation of elastic instability, a similar study on the present
system may reveal even rich dynamics. On the one hand, an
— instability can be excited by the exertion of interfacial shear;

Notice that the in the regime of larg®)’|, instability  on the other hand, strong applied shear could suppress the
could differ from that above mentioned. On the one hand, thenstability [27]. The issue herein is to identify whether the
interface_mode has a large growth rate ofike; instability can be restrained within the nonlinear regime or
~k2 We(U")2 due to elastic instability; on the other hand, the not. The ultimate fate of the system seems to arise from the
competition between these effects, depending on the sizes of
ethe perturbations and the ranges of the parameters.

B

FIG. 3. Effects of Re and on the phase diagranta) The Re
effect. 9=7/2. (b) The 0 effect. Re=0.

surfactant mode could have a growth rateMofU’|k32/2.
This suggests that the instability of the system could b
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