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Abstract

This paper analyzes the effect of surfactant on the linear stability of an annular film in a capillary undergoing a time-periodic pressure
gradient force. The annular film is thin compared to the radius of the tube. An asymptotic analysis yields a coupled set of equations with time-
periodic coefficients for the perturbed fluid—fluid interface and the interfacial surfactant concentration. Wei and Rumschitzki (submitted for
publication) previously showed that the interaction between a surfactant and a steady base flow could induce a more severe instability than a
stationary base state. The present work demonstrates that time-periodic base flows can modify the features of the steady-flow-based instability,
depending on surface tension, surfactant activity, and oscillatory frequency. For an oscillatory base flow (with zero mean), the growth rate
decreases monotonically as the frequency increases. In the low-frequency limit, the growth rate approaches a maximum corresponding to the
growth rate of a steady base flow having the same amplitude. In the high-frequency limit, the growth rate reaches a minimum corresponding to
the growth rate in the limit of a stationary base state. The underlying mechanisms are explained in detail, and extension to other time-periodic
forms is further exploited.
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1. Introduction and usually include events of how the fluid—fluid interface
evolves, depending on flow conditions and fluid properties.
When two immiscible fluids are subjected to an external In some instances the interface could remain intact while in
pressure in a cylindrical tube, they typically flow coaxially others it could become discontinuous (e.g., snap-off). This is
in a core—annular flow (CAF) arrangement in which one the interfacial instability that affects the integrity of a CAFF
(the annular) fluid coats the wall and surrounds the other (theand hence the subsequent fate of the system. It is so critical
core) fluid (sedig. 1). CAFs have been extensively studied to a CAFF that one needs to properly manage it to encourage
and served as useful models in a variety of contexts suchor discourage instability for desired processes. In this paper,
as lubricated pipeliningl], liquid—liquid displacement in  we restrict our attention to CAFFs and relevant physics in
porous medi§2], secondary oil recoverg] and pulmonary interfacial instability.
airway closur¢4,5]. In most applications, the annular thick- The motivation of the present study of CAFFs arises from
ness is small compared to the tube radius. A CAF in this efforts to understand, for example, oil recovery processes
situation is called a core—annular film flow (CAFF). The dy- and the mechanisms involved in airway closure. In these
namics of a CAFF are often controlled by the annular film, applications, flows are typically time-periodic and often con-
tain surface-active agents such as surfactants. The role of
" Corresponding author. time periodicity, surfactant, or their combination could be
E-mail addresshhwei@mail.ncku.edu.tH.-H. Wei). vital to these processes. In secondary oil recovery, it is usual
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Fig. 2. A sketch of capillary instability in a CAFF. The instability arises
from the presence of the circumferential curvature of the interface.

The instability, however, can be arrested by nonlinear effects

Fig. 1. Geometry of a core—annular film flow in the presence of surfactant.

to pump an immiscible fluid (e.g., water) into porous rocks
to extract residual oil lodged therein. As the interfacial in-
stability occurs due to high interfacial tensions, the wetting

[9-11], leading to an intact CAFF.

The aforementioned stability analyses of CAFFs are
based on steady base flows and are well understood. How-
ever, time-periodic base flows could change the stability
features of a CAFF. Coward et §1.2] investigated the sta-

layer (oil) snaps and brings the nonwetting phase (water) bility of a pulsatile CAFF. The resulting leading order linear
into contact with the capillary pore wall, thereby making growth rate, similar to the steady or stationary base state
recovery more difficult. Adding surfactant reduces surface case, is attributed to capillarity and is independent of the
tension, discouraging the inception of instability and thus base flow. They also found that the growth of the instabil-
improving recovery efficiency. Time-oscillatory forces gen- ity could be restrained by nonlinear effects. Halpern and
erated by acoustic waves could also discourage the interfaceGrotberg[13] recently studied the interfacial stability in a
from contacting the wall, and thus could provide an efficient liquid-lined tube subject to an oscillatory flow. They showed
means to displace residual oil out of porous mgélja that sufficiently high frequency could saturate the capillary
In the lung, air travels through a network of airways instability. The mechanism is analogous to a “butter-knife”
whose walls are coated by a thin fluid layer. The interfa- action in which a growing interface could be suppressed by
cial dynamics of such a liquid layer is critical to maintain- the shear through the back-and-forth stroke of the airflow.
ing normal breathing. For premature infants suffering from In addition, from the viewpoint of hydrodynamic stability, a
respiratory diseases such as respiratory distress syndromeertain class of planar Rayleigh—Taylor flow systems shares
(RDS), insufficient surfactant or the surfactant deficiency some similarities with those of CAFE$4].
could exaggerate the interfacial growth during a breath-  Most of the earlier investigations on the effects of surfac-
ing cycle. This growth in turn blocks the pathway for air tants on the interfacial stability of CAFF's were devoted to
to reach alveoli, where gas exchange takes place. To prethe case without a base flow. Halpern and Grotljéfgand
vent such a catastrophic event, one should discourage theDtis et al.[5] developed lubrication theory models to ex-
surface-tension-induced (capillary) instability. Surfactant re- amine the instability of a surfactant-laden liquid lining that
placement therapy (SRT) is often a remedy for RDS. Normal occurs in airway closure. They showed that surfactants pro-
procedures involve instillation of a liquid bolus into the lung long closure times because of the Marangoni retardation on
as a vehicle to deliver exogenous surfactants. Such liquid of-the capillary instability. This has been experimentally veri-
ten forms a liquid plug and leaves a trailing film behind or fied by Cassidy et a[15]. In particular, for sufficiently high
ahead of the plug. In contrast to airway closure, it is neces- surfactant activity, the interface becomes rigid and the re-
sary to appropriately manage the formation of liquid plugs, sulting growth rate is reduced to one-fourth of that of the
e.g., via breathing rates, in order to efficiently deliver surfac- clean interface. The mechanism of the Marangoni retarda-
tants. tion of the capillary instability has been explained by Otis et
The dominant effects on the linear stability of a CAFF are al. [5]. As the capillary instability occurs, the annular fluid
capillarity and viscosity stratification. The detailed features is drained from the thinner to the thicker portions of the
of each effect and their combined influence have been stud-layer due to capillary pressure differences. Such capillary
ied thoroughly[1,7,8]. The capillary instability is in particu-  flow sweeps surfactant likewise, and causes a higher surfac-
lar appreciable in small-scale flow environments. A sketch of tant concentration on the thicker-portion interface, which in
the mechanism is shown ig. 2. According to the Young—  turn creates Marangoni forces opposing the capillary growth
Laplace equation that describes the force balance betweerof the interface.
the fluid pressure and surface tension on the interface, the There are only a few investigations that address how
surface tension works with the interfacial curvature whose steady base flows influence the surfactant-induced Maran-
circumferential component destabilizes (i.e., causes inter-goni effect. Frenkel and Halper[l6] and Halpern and
face growth) and longitudinal component stabilizes. Basi- Frenkel [17] studied the linear stability of a two-layer
cally, the capillary instability can prevail when the annular Couette—Poiseuille flow in the presence of an insoluble sur-
layer is more viscous unless the flow is sufficiently fast. factant. Their analysis showed that surfactant could desta-
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2. Base state, governing equations, and boundary
conditions

Consider the axisymmetric flow of two immiscible, vis-
cous, incompressible fluids in a core—annular arrangement
in a straight tube with radiu®,, as shown inFig. 1L The
interface is given by* = S*(z*, t*) where(r*, 6*, z*) are
the radial, azimuthal, and axial coordinates used to define
a cylindrical geometry. Fluid 1, with viscosity;, occupies
the core region & r* < S*(z, t), and fluid 2 having vis-
cosity u» fills the annular regiors™(z*, t*) < r* < R2. Our
present study is focused on a thin-annular system in which
Fig. 3. A sketch of the floyv-ihduped Marangoni ins_tability. A base fI.ow e the density stratification does not contribute to the leading-
arranges the surfactant distribution through a varying surface velocity along - . . .
the deformed interface. The induced Marangoni forces in turn cause the order §tablllt){8]. In the case of a mlcr_OQraVIty enVIror_]ment
growth of the interface. or a higher-than-normal surface tension that occurs in RDS,

the gravitational effect could be negligible, similarly in oil
bilize the system that is stable in the absence of surfac-"€COVery. This can be justified based on the magnitude of the

tant. Blyth and Pozrikidig18] later demonstrated that the Bond numberBo= ApgR3/o* (Ap the fluid density dif-
Marangoni-induced instability could be arrested by nonlin- férence,c* the surface tension). For an alr—I|qu2|d system
ear effects. Although these studies have addressed how basl®! RPS occurring in small airway$o is about 10. Dur-
flows interact with Marangoni effects to affect the interfa- "9 g" recovery in small capillaries, the estimate &6 is
cial stability, they focus on planar systems that inherently 10~ for a typical water—oil system. For simplicity, the den-
lack the interfacial circumferential curvature that is critical Sities of both fluids are assumed to be matched and denoted
to the capillary destabilization of cylindrical interfaces. by p. Because the flow fields are assumed to be axisym-
The incorporation of the capillary destabilization in the Metric, the velocity vector is given by* = (u*, 0, w*). To
presence of surfactant has been recently investigated by Westudy the linear stability of the system, one begins with the
and Rumschitzk{19]. They asymptotically examined the Unperturbed or base state. Let= Ry be the undisturbed
effect of surfactant on the linear stability of a CAFF. The cylindrical interface. The base flow is driven by a time-
features of the stability strongly depend on the capillary Periodic pressure gradient™p* = —F(r*)e.. In general,
numberCa, which represents the ratio of viscous to sur- this driving force is of the form¥” = Fo + F1(%), in which
face tension forces. In particular, in the limit of lar@e, Fo is the steady part, and the time-oscillatory péjtis the
the Marangoni effect destabilizes disturbances for all wave- time-oscillatory part having frequeney*. If the Womersley
lengths. That is, even when the capillarity effect is absent, Numbera® = pwR%/u1 is sufficiently small, then the base
the system becomes unstable due to the presence of surfadlow can be represented by a quasi-steady Poiseuille flow.
tant. For moderately smaBa, surfactant could cause more The base states are given by
severe destabilization than capillarity does. s _
As illustrated by Wei and RumschitzL9], the flow- V"= (0,0, w*(*, %)), [p*]= R—O, r“=rg, (1)
induced Marangoni instability can be understood by observ- !
ing the dynamics in the thin-annular region that normally

where

controls the stability of a CAFF. The mechanism is depicted O = — F(t*) (r*2 B R2) n F@*) (R2 B RZ)

in Fig. 3. The steady base flow in this region behaves like a O 1 4u, ~ 2 1

shear flow that_varies linearly in the radial directi_on._ Th_is for0<r* < Ry, (2a)

shear flow basically rearranges the surfactant distribution F(1%)

through a varying surface velocity along the deformed inter- w*(r*, 1*) = m (R3—r*?) forRi<r*< R, (2b)
2

face. The induced Marangoni forces in turn cause the growth

of the interface. A similar mechanism is also present in two- Here [-1 = ()1 — (-)2, Iy is a constant representing the

fluid channel flowg16—18] undisturbed surfactant concentration along the undisturbed
When a base flow is time-periodic, it is not clear, how- interface, andsy is the corresponding interfacial tension.

ever, how it modifies the stability features of a surfactant- Because we perform a linear stability analysis, we can use

laden CAFF. In Sectior?, we begin with the governing alinear relation between™ and I"*:

equations, boundary conditions as well as the base state. In_,, x "

Section3, we utilize scaling analysis to derive a coupled set 7 =%~ y(F — 1o ) )

of evolution equations governing the corresponding linear wherey = —(ao*/ar*)rg is the surfactant elasticity.

stability. Results and discussion are presented in Sedtion Next, the governing equations and boundary conditions

applications are discussed in Sectrand conclusions and  are nondimensionalized. We choa®e as the characteristic

final remarks are made in Sectién length. The velocity is scaled with respect to the centerline
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velocity Wo = AF(Rf(,uz —u)+ R%,ul)/4,u1u2, where the whereo (I") is given by(5). The kinematic condition, in ei-
strength of the driving forcd r can be either the steady part ther core or film variables, is

Fo(# 0), or the amplitude of the oscillatory pafy (when

Fo = 0). The pressure and time scales argWo/R, and u=>S +ws; onr=S5(1). (11)
R1/Wo, respectively. The surfactant concentration is scaled Finally, the surfactant transport equation for an insoluble
with respect tol;. The base statei@a) and (2b) then be- surfactant along the interfag20,21]is

come
] 2 e S,SZZFZ+ 1 (S(w+uSZ)F)
W(r’t):f(t)<1_7(a2+m—l)> for0<r<1, (4a) 1+ 8: S\/l—i-SZZ \/1‘*'5? .
2

B 1) :f(t)(%) forl<r<a, (4b) + ((Li:;;zz) (lJFSSZ —Su>r=o. (12)
[5]= i F=1, (4c) Here we neglect the effects of surface diffusion sincg the

Ca estimated Peclet numbBe= WyR1/ Ds (Ds the surface dif-
wherem = ju»/ 11 is the viscosity ratiog = Ry/R1 is the ra- fusivity) is 10° or larger for applications of our interest.

tio of the tube radius to the unperturbed core radjus) is

the dimensionless time-periodic function of the dimension- ] ] o ) )
less frequency = w* R1/ W that characterizes the strength 3 Scaling analysisand derivation of evolution equations
of the pressure gradient, at& = 111 Wo/0oy is the capillary

number. The nondimensional equation of st8lgbecomes ~ Our goal is to asymptotically examine the linear stabil-
ity of the present system in the thin-film limit. The pre-
o=1-—El(I -1, (5) vious thin-film analysig8] for a clean-interface CAF has
been justified in view of its agreement with the full lin-
whereEl = y I'f' /oy is the elasticity number. ear stability analysi§1]. The recent study in a surfactant-
The nondimensional continuity and Navier—Stokes equa- |aden CAFF[19] also confirmed its consistency with the
tions for each fluid are full analysis based on Stokes flows. We are thus confident
1 that the present asymptotic stability analysis not only cap-
;(W)r +w; =0, (6a) tures some of the essential features that should appear in the

full stability analysis, but also furnishes a more lucid way
to understand the underlying physics prior to performing a
1 lete linear analysis
ReL(u; + uuy + wiuy) = —py +mi( Vu — Su ), 6C comp 3 ysis. .
aur " == '( r2 > (6c) We defines to be the ratio of the undisturbed annular

Re(w; + uw, + ww,) = —p, +m; V2w, (6b)

thickness to the core radius. The thin-annulus litaitg 1)

where ) ) .
allows one to introduce a stretched film variaple= 1 —
o2 2 19 92 (r — 1)/e. Form ~ O(1), the base flowg4a) and (4b) to
T or2 ' ror | 972 leading order ire in the annulus and the core are, respec-
and Re, = pWpR1/u1 is the Reynolds number based on tively,
the core andn; = 1 andm for i = 1 and 2, respectively. _ _ % 2
Note thatRe = Re /m. At the rigid wall the no-slip and w(y, 1) = m Oy +0@E) (132)
no-penetration-velocity conditions are applied, so that and
wr=up=0 atr=a. 7 W, 1) = fO) (A —r?) + 0(e). (13b)

At the interfacer = S(z, t), continuity of velocity, and tan-  Let us introduce an infinitesimal axisymmetric disturbance
gential and normal stress conditions are applied: of orderd; andé; to the circular interface and the uniform
surfactant concentration, respectively,

[w]=0,  [u]=0, (8)
1 5 S(z,t) =1+61n(z, 1), (14a)
@ 5ol ¥ (L= 82) + 20 +wo)S] Pt = 148G, 1), (14b)
_ _—EIF ) wheren andG areO (1) functions for the interfacial and sur-
T ca' © factant concentration perturbations, respectively. Following
_[p — Uy — (—p + 2w,) S? + 2(u, + wr)Sz] Wei and RumschitzKi19], we estimate the scales of pertur-
< bation quantities and establish the scaling criterion for cap-
= o) [Szz — }(1 + 512)] (1+ 53)—3/27 (10) Furing both capillary_and Maran_go_ni effe_cts in_ the same lead-
Ca S ing order. The detailed analysis is outlinedAppendix A
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The required scaling conditions are summarized as
(15)

Based on the scalings (15), the scalings of perturbation ve-
locities can be identified. As a result, it can be shown that
the leading order stability is governed by the dynamics of
the annular film to which those of the core are slaved. We

Ca~ 82, El ~ 52, 81 ~ &62.

773

slower than the clean interface. In this limit, E46a)sug-
gests that for ~ O(1), G ~ 1/Ma (i.e., an almost uniform
G). By rescalingG = G/Mawith G = 0(1), Egs.(16a)and
(16b)can be reduced to

can then derive the corresponding set of evolution equationsat leading order iMa~—1. Using

governing the leading order linear stability of the system.
The detailed derivation is provided Byppendix B As such,
letting Cag = Ca/¢2 andMa = El/Ca, we arrive at the fol-
lowing coupled set of equations:

MaG

2m T —

2
ne+—f(@n + 0,
m

1
m(ﬂu + Mzzzr) +

(16a)

2 2
G+ _f(T)Gz - Zf(f)nz - M2z + Nzz22)

1
2mCag
— —GZZ =0, (16b)

where a long time scale = ¢ is necessary for obtaining
nontrivial dynamics.

4. Analysisof the leading-order linear stability

We begin with analyzing the leading-order linear stability
of the system by considering first the limits of small and
largeMa.

4.1. Small and large Marangoni number limits
As Ma— 0, Eq.(16a)reduces to

(17a)

2
ne + Zf(f)nz o (Mg + Nzzr) =

3mCag

which corresponds to the clean-interface case with a time-

periodic base flow. Applying the transform

n= ﬁexp(—ZI—k / f(r)dr)eiszrST,
m

wherek is the wavenumber of perturbations ands the
growth rate, we find

k%1 — k2. (17b)

" 3mCag
As a result, the growth rateis dominated by capillarity and
is independent of the base flow. This is also consistent with
the linear stability results of Georgiou et 8] and Halpern
and Grotberg13].
In contrast, in the limit of larg&a, the surfactant concen-

1
ne + Zf(f)rlz + m(’lzx +1z222) =0 (18a)
n= ﬁexp(—l— / f (@ dr)e’k””,
m
the resulting growth rate becomes
2 2
=—k“(1- 1
12mCaok( k<), (18Db)

which is just one-fourth of that of the clean-interface case
(17b) and is again independent of the base flow. This also
agrees with the previous studi¢s5,19] Notice that the
maximum growth rates for bott1 7b)and(18b)occur at the
same wavenumbeér= kmax= 1/+/2.

In general, how the growth rate behavesMa varies,
e.g., the transition froni17b) to (18b) is not a trivial mat-
ter, particularly in the presence of a base flow. The previous
study for a steady CAFIF19] showed that the maximum
growth rate could be greater or smaller tHaib), depend-
ing on the strength of the base flow (reflecteds). In the
next section we explore the influence of a time-oscillatory
base flow in more detail.

4.2. The effect of a time-oscillatory base flow

We choose the functiof(t) = coq$21) to characterize a
time-oscillatory base flow and examine how such a base flow
interacts with surfactant to affect stability. Since E(j$a)
and (16bxontain time-dependent coefficients, the usual nor-
mal mode analysis is not applicable. We thus utilize Floquet
theory and an initial-value-problem approach as alternative
solution methods to analyze the features of stability. The de-
tails of these methods are givenAppendix C

According to(C.4)in Appendix G the system stability is
determined by the growth rate the real part of the Floquet
exponents. Fig. 4 shows the effect of frequencg on the
linear growth rate, as a function of the wave numblerWe
further confirm that both results using eigenvalue and initial
value solution methods are in excellent agreemEig. 4
shows that ag? increases, the growth rate decreases and
shifts the critical wavelengths2/ k. toward a larger value,
bounded between the small and la@dimits. In the limit
of 2 — 0, the growth rate approaches that of the steady base
flow case with the same flow strength as the maximum of the

tration becomes uniform and the interface becomes tangen-ime-oscillatory one (i.e.f(r) = 1). On the other hand, in

tially immobile. Such interface, however, still tends to grow
due to the capillary instability. Since the tangentially immo-
bile interface retards the flow more than the clean-interface

the limit of large §2, the growth rate approaches that of the
stationary base state case (i.£(r) = 0).
To explain the above observations, we should first note

does, the corresponding growth rate should be expected to behat in the presence of surfactant, a steady base flow case
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Fig. 5. The effect of frequencg on the maximum growth ratg max as a

Fig. 4. The effect of frequencs on the growth rate, as a function of the function ofMa. Cag = 1, m — 1.The base flow is the same . 4

wave numbek. Cag = 1, Ma=1,m = 1. The base flow is time-oscillatory
and has strength of (t) = cog£27). As £2 — 0, the growth rate tends to ) ) ) )
that of a steady-base-flow case with strenfith 1. As 2 — oo, the growth in Fig. 4 For a small2 (< 1), s, max rises asMa in-

rate approaches that of the stationary case (f.e-,0). creases (in the smallta regime) and then reaches a max-
imum atMa = Ma* beyond which a further increase a
is less stable than a stationary case due to the base-flowsesults in a reduction in, max. This is because the base-
induced Marangoni destabilizatioji9]. The system be- flow-induced Marangoni destabilization is magnified in the
comes less stable as the strength of the base flow increasessmallMa regime, while it is suppressed by the less mobile
When the base flow is time-oscillatory, disturbances ex- interface in the largé4a regime[19]. For a large2 (~100),
perience time-varying strengths of the base flow in the however, since the situation should closely follow the case
courses of their evolutions. This suggests that respondingof no base flows, max Simply declines with increasiniyla.
growth rates vary between the stationary case (least un-Both trends for small and large suggest that for a moder-
stable) and the steady base flow case with the maximumate §2, there must be more than one local extremum in the
strength (most unstable). Whehis small, the system could s, max—Ma plane, indicating a transition between small- and
stay with almost unchanged growth rate over a long pe- large<2 limits. The curves forf2 =1, 5, and 10 irFig. 5
riod of time. During the period when the system has the illustrate such situations. Further notice that for small and
fastest growth rate corresponding to the maximum base flowlargeMa, all the curves approach the maxima(é¥b)and
strength, the change of the base flow strength is the slowest(18b) or the limits Ma — 0 and Ma — oo, respectively,
The exponential growth of a disturbance thus overwhelms which are independent @?.
other relatively slower growths during other periods. The  The impact of2 on the maximum growth ratg max as a
smallers2 becomes, the longer the system can stay with the function of Cag is shown inFig. 6. For a smallCag (<0.1),
fastest growth rate. Therefore, in the limit of smgl| the all curves for varioug2 merge into asingle curve. We iden-
growth rate approaches the result for the steady base flowtify such a curve as the asymptot;é:l_]ZCaO which is just
case. the maximum of(17b) for the clean- mterface limit. This is
For larges2, the direction of the base flow (with a zero because for a smala, the system behaves like the sta-
mean) changes rapidly. There is thus no time for surfactant totionary case where the capillarity dominates the instability.
interact with the base flow to establish a surface tension gra-The base flow thus does not have a significant impact on
dient to cause the Marangoni destabilization. Accordingly, the instability regardless o2. In addition, the Marangonl
the system with rapidly changing base flow acts in a manner correction to the leading-order growth rate @{Cay ) is
similar to a steady base flow with the same mean. Since theO(MaCag), which is small compared to the leading order.
mean of the base flow is zero here, the situation is similar Obviously, in this smallEay regime, the maximum growth
to the stationary case where the capillary instability domi- rate decreases with increasi@go.
nates. In this case, the Marangoni force simply responds to  Fig. 6also shows that aS&j increases beyond the small-
the capillarity and acts as a suppressing force on the capillaryCay regime, the effect of2 on s, nax starts to manifest.
instability. In Sectiond.3we will apply the initial value ap-  Again, for a fixedCay (andMa), s, max decreases with in-
proach with different wave forms for both small and lafge creasings? (see alsdrig. 4). For each givens2, the curve
Fig. 5 shows the effect of2 on the maximum growth has a minimum aCap = Ca&j, beyond whichs, max starts to
rate s, max as a function ofMa for Cag = 1. For a given rise asCag increases. This is because the Marangoni desta-
Ma, s, max decreases with increasiig just as demonstrated  bilization due to the base flow becomes more pronounced at



H.-H. Wei et al. / Journal of Colloid and Interface Science 285 (2005) 769-780 775

10'
V12 Ca;
10°F
N2 em=m T
Srmm \\‘;\'~._-.O_'.li """"""
10"} \\'
‘Q:.\.{ s T
\\
. /
107} \\__ /
\"\,‘l__:-’
N
\1\00.
10\'5 1 1 1 N
10° 107 10° 10"
Cag

Fig. 6. The effect of frequenc{2 on the maximum growth rate max as
a function ofCag, whereMa =1, m = 1, and with the same base flow as
Fig. 4 As Cag — 0, s max tends to the rigid-interface limit/12 Cagl.

10

10 . Py
| i \
9 ! Pl
L} \
| |_ 1 \ \
8 1 R Stable
! LR
P \
H H . \
6 HEE A \
amerd iy
0. | \
Ma 5 1 ::20' ' \.\ LY
1 ‘ AN
: i \
4 [ o \ \\‘
3} Unstable !; / \ \\
HY NN
2 | I AN ASRY
] NS
1 £ N or, Y
Mo o,
%8 1 12 14 16
k

Fig. 7. The effect of frequencs on the neutral stability curves in théa—

1.8

plane. Her&Cag = 1, m = 1, and the base flow is the sameFag. 2

large, all the curves for variou® gradually approach the
k = 1 asymptote. This is because in the laia-limit the
growth rate follows(18b), which hask; = 1 regardless of
the base flow.

4.3. The effects of different wave forms

So far, the results and discussions are based on the base
flow whose strength varies sinusoidally with time with a sin-
gle frequency. During the normal pattern of breathing, the
ratio of the inspiratory time required for a tidal volume to be
delivered to the expiratory time before the next breath (i.e.,
the I:E ratio) is 1:2. Normally, the inspiratory time also in-
cludes a pause. For simple sinusoidal waveforms, we find
that the growth of the instability is not significantly affected
when the |:E ratio is changed from 1:1 to the normal value
of 1:2 (not shown). This is because for these waveforms the
first-harmonics frequency dominates; the higher frequency
contributions to the growth rates are less significant. To fur-
ther elucidate the effect of I:E by making higher frequency
contributions more important, we chose a simple rectangular
wave form. This choice is also motivated to test the hypothe-
sis that the longer the system stays at the maximum strength
of the base flow, the less stable the system is on average.

The functional form of the rectangular wave having a zero
time average is given by

0, if0 <t <tiandry + 1 <17 <211 + 12,
f(r)y=131, if 11 <17 <711+ 12, (19)
-1, f2uut+o<t<T,

where 21 denotes the time during a cycle = 27 /2 =

2(t1 + t2) when the strength function is turned off, ang 2
denotes the remainder of the time during the cycle when the
amplitude of the strength function is unity. fig. 8we show

the impact of different ratios of; to t2 on the growth rate
se(k) for a case with2 = 1, Cap = 10, Ma = 1. For any
combination ofr; andtz and for some fixed, the value of

sy Is somewhere in between the steady and no-base flow val-
ues, just as the purely oscillatory case. At all wavenumbers,
sy for 71:72 = 1:1 falls below the purely oscillatory case per-

largerCag (since the relative strength of the base flow to cap- haps because of the increased time during which the strength

illarity, reflected byCag, becomes larger). Since at higher

function is switched off over the oscillatory case represented

surfactant has less time to interact with the base flow to gen-by the sine function. Increasing (or decreasingy) results

erate the Marangoni destabilization, a lar@e is needed
at highers2. It is thus evident that in the large-limit, Caj

tends to infinity (e.g., see the = 100 curve).

Fig. 7shows the effect of2 on the neutral stability curves
in the Ma—k plane. In conjunction with-ig. 4, increasing

in a reduction of, toward the no-base-flow value, while de-
creasingr; (and hence increasing) results in an increase
of s, toward the steady base flow value.

For steady base flows or stationary base states, the growth
rate is the real part ofifdz /. We define an instantaneous

£2 shifts the neutral stability curve toward a longer critical growth rate8(t) to be this ratio, namely

wavelength (smaller critical wave numbky) and shrinks

the unstable region. A typical curve has a turning point be- g(r) = ‘h[m} (20)
n

yond which a further increase iMa results in a decrease
of kc. Such a turning point occurs at largeta for higher

Fig. 9shows hows(t) varies witht for Cag = 10,Ma=1,

£2 since the capillary instability becomes more dominant at k =2, =1, 71:72 = 2:1. After an initial transient period of

higher £2 so that a largeMa is required to generate an ef-
fective Marangoni destabilization. Whéta is sufficiently

time due to the choice of initial conditiong(t) oscillates
with period £2, with an amplitude that is greater than the
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N — sinusoidal (1:1) N
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Fig. 8. sr versusk using a rectangular wave form for the strength of ~Fig. 10. The effect of increasing the ratig:z to 9:1 on the instantaneous
the pressure gradient (Eq19)). Here %1 is the time during a cycle growth rateB. In this case, the Floquet exponent is negative, and there are

T =2m/$2 = 2(t1 + 12), when the strength function is turned off, ang2 longer periods during whicff < 0 compared to the case shown in figure.
is the rest of the cycle when the amplitude of the strength function is unity. This occurs while the strength function is turned off. Also, note that for this
HereCag=10,Ma=1,2 =1. particular case, the no-flow and square-wave cases are stable but the steady

case is unstable. Hef@éag = 10,Ma=1,2 =1,k =2.

0.7 realidn e ) has been turned off before it starts to decrease towards its
0.6 ——— o Floqu;expc’fﬂem minimum value.Fig. 1Qshows what happenfs ﬁ)jf the pe-
] == No base flow riod of time during which the strength function is turned off
0.5 e Steady base flow is increased, so that:to = 9:1. The maximum value of
3 ——————a—. — Flow strength function s .
4 . o - has diminished by approximately a factor of 4 compared to
3 the t1:12 = 2:1 case, ang8 remains at its minimum value

over a longer period of the cycle. This seems to suggest that
the Floguet exponent, which gives a measure of the growth
rate over one period of the strength function cycle, has to
decrease with increasing.

4.4. Extension to pulsatile base flows

The above results and discussions are based on a time-
3 oscillatory base flow that has a zero mean. It is also instruc-
E tive to extend the analysis to a pulsatile base flow that has
B T e a steady part modulated with a smaller oscillatigiiy) =
0 3 1+ Acogq£2rt), whereA (< 1) is the oscillation amplitude.
ML '2' T 3' T '4' Y ‘5 We also find that the effect a2 on the growth rate follows
T T ,En T * trends similar to those shown Fig. 4. That is, the growth
rate varies between those of the steady base flows having the
Fig. 9. The ins.tantaneous growth ragtedefined by Eq(20) is plotted as mean valuef = 1 (at the high2 limit) and the maximum
a function of time forCa =10, Ma =1, & = 1, r:rp = 2:1, k = 2. value f =1+ A (at the low<2 limit). Since the former (lat-
B lies between the no-base-flow and steady-flow growth rates and has a : .
mean close to the Floguet exponent. ter) has the slowest (faster) growth rate, this also suggests
that the introduction of pulsatility causes more severe desta-
for the no-base-flow case, which is negative for our choice bilization than a steady system. Clearly, for a fix@dthe
of parameters, but does not exceed gheorresponding to  growth rate increases with since the strength of the base
steady base flows(t) increases withr during the period of  flow is enhanced. All other stability features are qualitatively
time (z2) when the strength function is turned on, and keeps similar to those of an oscillatory base flow. We thus do not
on increasing for a short period after the strength function repeat them here.
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5. Application to oil recovery and to thelung For liquid plug formation, as in surfactant replacement

therapy, consider a slightly larger airway, say at the 10 gener-
As a typical example of a liquid—liquid displacement, &tion having a diameter of 0.13 cm. The core fluid is still air

consider an oil film ofii; = 10 cP surrounding a water slug (0.02 cP) and the annular film has similar properties to water

(11 = 1 cP) with an interfacial tension of 10 dyem in a (1 cP). The film thickness is about 10% of the airway diame-

200 pm diameter tube (whose circumference is 628 um). t€f. i.e..e = 0.1. The air-liquid surface tension is 20 ¢yym

A typical slug velocity scale is about 1 ¢im[8]. The sur- ~ When exogenous surfactant is present. For a breathing rate

face concentration of an insoluble surfactant can range from©f 30 breaths per minute and a tidal volume of 500 ml, the

1012 to 10719 mol/cn? [22]. Consider a film thickness of ~ average air speed in this airway is about 17/smThese

10 pm ore = 0.1. These numbers givee ~ 1, Ca~ 10-2, conditions giveRe~ 2 x 10, Ca~ 1073 andm = 50. If a

m = 10, andMa ranging from 2.5 to 250, which is within surfactant is selected to have property or dosagdaf- 1,

. . . 1 .
the range of validity of our analysis. With these parameters, then the resulting maximum growth rate i€ 2nin™*, which
the zero-surfactant-activity limit gives a maximum growth is about five times faster than that of the clean-interface case.

rate of 005 min2, i.e., about a 14-min doubling time. The Liquid plug formation could be regarded as a result of the in-
corresponding wavelength is 888 um fakax = 1/+/2 and terfape’s snap-off extrapolated from the linear growth at the
the critical wave number ig; = 1. For a steady base flow ~Maximum growth rate. The presence _of s_urfactant t_hus could
with a moderateMa ~ 2.5, our theory predicts the maxi- pptenually promote the fo.rmgtlon of liquid pIug;. Since the
mum growth rate of A5 min~2. This growth rate is three ~ SiZ€ OF length of such a liquid plug can be estimated to be
times the zero-surfactant-activity case. The corresponding@P0out half of the wavelength occurring hax = 1.5, the
wavelength is 560 um fokmax ~ 0.94. The critical wave- predicted length of a I|qU|d'pIug is about'0.94 cm, which is
length shifts to a shorter wavelength, 443 um ior- 1.42. shorter than (23 of) the periphery of an airway.
Introducing a small oscillation into a steady-flow part can
modify the above predictions. For example, if the amplitude
of the oscillation is 0.2, the same parameters give maxi- 6. Concluding remarks
mum growth rates varying from 05 min~* (high-frequency
limit) to 0.18 min! (low-frequency limit), depending on We use scaling and asymptotic analysis to investigate
the frequency. The latter is 1.2 times the former (the steadythe fate of a CAFF by examining the effects of a time-
case). The corresponding wavelength ranges from 587 umperiodic base flow coupled with Marangoni and capillary
(kmax ~ 1.07) to 668 pum(kmax ~ 0.94). The critical wave- forces. In the thin-annulus limit, we derive a set of linear evo-
length also shifts from 361 itk ~ 1.74) to 443 pm(kc ~ lution equations coupling the interface with the surfactant
1.42). concentration that govern the stability of the system. Since

For largeMa ~ 250, the predicted maximum growth rate these equations have time-periodic coefficients, we employ
should be one-fourth of that of the zero-surfactant-activity Floquet theory, or alternatively an initial-value-problem ap-
case, and is.0125 min L. Itis independent of the base flow proach, to solve for the linear growth rate of the system,
and is relatively stable compared to the surfactant-free casewhich enables us to investigate the effects of the frequency
The correspondingmax remains virtually unchanged. £2 and different wave forms.

Consider now the liquid lining along the small airways As demonstrated by the previous studid$,17,19]
in the lung. At generation 18, the airway diameter is ap- destabilization can be caused solely by the base-flow-
proximately 400 uni23]. The core fluid here is ain; = induced Marangoni effect. In particular for CAFF, destabi-
0.02 cP), and it is assumed that at the distal end of the lization could be further reinforced by a combination of both
lung the liquid layer has a viscosity similar to that of wa- Marangoni and capillary effects. Such destabilization be-
ter, so thatups = 1 cP. A liquid layer of thickness 5 pm  comes stronger with increasing strength of a base flow. Since
(e =0.025 coats the airways. The air-liquid surface ten- a time-periodic base flow has a time-varying flow strength,
sion is 10 dyricm in the presence of surfactants. The ve- it could modify the features of such destabilization.
locity of air in this small airway is 0.4 cifs. These give For a time-oscillatory CAFF (having a zero mean), in-
Re ~5x 1072, Ca~ 102, andm = 50; thusCais clearly creasings? decreases the growth rate and thus stabilizes
small (say,< O(g?)), and the system is close to the zero the system. The maximum growth rate occurs at the limit
flow limit. The zero-surfactant-activity limit has a maximum of small 2 and approaches that of a steady CAFF having
growth rate of 8B min~!, i.e., about a 0.9-min doubling the same base flow strength as the maximum of an oscilla-
time. Since the surface tension is much stronger than thetory CAFF. In the largeR limit, however, the growth rate
strength of the base flow in this case, surfactant tends toreaches a minimum corresponding to that of a stationary
stabilize the system (i.e., the Marangoni destabilization is CAF. Therefore, the introduction of a smaller oscillation into
extremely weak) and the critical wave numligr~ 1. For a steady CAFF (i.e., pulsatile CAFF) makes the system more
large Ma, the maximum growth is reduced ta20min~! unstable than a steady CAFF. The effects of various wave
(one-fourth of the zero-surfactant-activity case). forms have also been explored and provide further verifica-
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tion of our hypotheses for our results at small and la@ye  That s,
limits.

For the future, it would be interesting to extend the &2~ d81¢/El (A.2)
grehsent I|ne§1|r theory into theflweakl)_/ rr:pnlmear Tleglmel'to S€€ if the Marangoni numbeka = El/Ca~ O(1) or El ~ &2,
if the instability can be confined within a small-amplitude s "¢ an order ofe lower (i.e., larger) thars; because of
regllme. In the absence fOf surfact.ﬁnt, thIE? rgcel_n§ study of o, . ¢2 Thus the surfactant contamination perturbs the an-
Halpern and GrOtbe@S] or ar;fpgu ?tc;]r.y r:qf”'d ining in I nular pressure by an amousiEl/Ca~ 81/¢, which is of
a tube dehmonst_rl]a\tedt at a;]su. rl:':lemly' Igl reqlillency coly d 2 higher order ire than the capillary pressure perturbation
restrain the capillary growth within relatively smallerampli- 5, ,ca 5, /¢2. Note also that the leading-order tangential
tudes, preventing the snap-off of the core. When surfactantStress conditior(9) now only involves the film quantities,

is present, the Marangoni destabilization due to the coupling and thus the annular problem is closed without acquiring any

with the base flow works for alD (1) wavelengths. Itis, j;tormation from the core. That is, the annular flow governs
however, offset by the shortwave capillary stabilization. FOr ¢ jinear interfacial stability and the dynamics of the core
a time-periodic base flow, such destabilization also depends, . g1aved to those of the film.

on the frequency of the base flow. T_herefore, the uItin_wfate Finally, we check thatA.2) is consistent with the scaling
fate of the interface would seem to arise from a competition ¢ ,its from the perturbed surfactant transport equitiaj

between the Marangoni destabilization, the shortwave capil- 1o leading order ofL2) s
lary stabilization, the flow frequency, and the nonlinear wave
steepening to determine whether such a CAFF could retain

. 1_ "
its integrity. €82Gy + D526 — ~iby| Sy +w! = 0(ed). (A3)

y=1
The first term(0(g62)) is the local time rate of change
of surfactant concentration, and the other terms all come
from the surface convection—the third term of E&2)—
in the surfactant balance. The secam@(¢é2)) and fourth
(0(81)) terms are the surface convective terms due to the
interfacial base floww (1) = 2¢f(r)/m and the perturba-
tion w” ~ 28,/Ca~ 8, velocities. The third termQ (51),
arises from the change in the axial velocity of the base flow
(w = 2¢yf(r)/m) evaluated at the perturbed interface. The
remaining terms in Eq(12) are O (¢81) or of higher orders.

hi di line th i vsi Therefore, the scalin¢A.2) is consistent with retaining all
. In this appendix, we outline the scaling analysis 0 €S- ot the convective terms in E@A.3), provided thatEl ~ ¢2
timate the scales of the perturbed quantities. Our strat- . \1o 0(1)

egy essentially follows Wei and Rumschitzki9]. Let
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Appendix A. Scaling analysis

T d W' U p" he disturbed The above scaling is based on the capillary-driven stabil-
(w”,u”, p7) and (W7, U7, P7) represent the disturbed i echanism that requires strong interfacial tensions and

quantities for t.he _annulu§ and the core, respectively. The accommodates Marangoni effects. In fact, the stability can
perturbed capillarity fumnishes a perturbed annular pres- be driven solely by Marangoni effect. This scenario could

sure p” ~ &;/Ca via the normal stress balan¢g0). This .0\, when the capillarity is weak, i.6Ca > £2. In this
capillary pressure, via the equations of motion and continu- .o qe the film velocities resulting from the balance with the
ity (6a)—(6c) drives the perturbed film flow gnd results in Marangoni stress are’ ~ e5,Ma and u’ ~ £25,Ma. In-

tr)/e follsowmg disturbed velocity scales!” ~ e“61/Caand  gh0cting Eq(A.3) for retaining all relevant terms demands

u” ~ e°81/Ca The velocity scalings of the film demands a \15 _ (1), which is again consistent with that derived from
long t|m_e scale; =e¢t, in 'Fhe klnematlg _condmomll), o) the preceding capillary scaling.

that the interfacial dynamics are nontrivial. A balance of all As such, the analysis can be indeed extended beyond the
terms in Eq(11) leads tae®51/Ca~ é1, or, regime ofCa~ «2. In Appendix B we shall establish the
formulation based oiCa~ &2 for capturing both capillary
and Marangoni effects in the same leading order. The case
That is, we are interested in the strong-surface-tensionof Ca>> ¢2 can be regarded as the larGedimit.

regime. The resulting disturbed annular quantities are

w” ~ 81, u' ~ 81, and p” ~ 81/¢2. For the core quanti-

ties, the continuity of the axial velocity across the interface Appendix B. Derivation of evolution equationsfor the

and the lack of a separation of scales determine the perturbedeading order stability

core quantities a®¥” ~ 81, U” ~ 81, andP” ~ §1. The tan-

gential stress conditiof®) now balances the film viscous In this appendix, based on the scaling conditi(i), we
stress and the Marangoni stress to give/Ca~ §>El/Ca. derive a coupled set of evolution equations for the interfacial

Ca~ &2 (A.1)
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deflection and the surfactant concentration. For the applica-in the radial direction in the film. Thus predictions of the

tions of our interestRe ~ O(1) or less. We postulate the
following expansions for the film (small) and core (capital)
quantities:

w=w+ 81w + 0(ed1), u=edu’ + 0(251),

p=p+©61/e9p + 0(), (B.1)
W=W+8W + 0(h), U =58U"+ 0(e81),
P =P +8P'+ 0(edy). (B.2)

After substitution of(B.1) and(B.2) into Egs.(6a) and (6h)

the governing equations in the annular region become
ro_
u, = wz,

¥ 0=—p}. (B.3)
Using(B.1) and(B.2), and expanding the base state interfa-

0=—p. +mw,

yy?

cial velocities about their values at the base state interface,

we find that the tangential and normal stress balaf®esnd
(10) become

mw), = —MaG, (B.4)

, 1
p = a@ﬂ-ﬁu), (B.5)

whereCag = Ca/¢? andMa = El/Ca are O(1). The solu-
tion to (B.3) that satisfies the no-slip condition at= 0 and
(B.4)is

_ 1 1 Ma
w pz PR -—G,,
1 1 1 Ma
r_ = 3_~-.2|_Me
u = mpzz[Gy 5V ] o 022 (B.6)

where p’ is given by(B.5). The kinematic condition at the
interface(11)is

. 2
u =n;+—f(o)n;. (B.7)
m

The surfactant transport equatiti?) has the same form as
(A.3):

2 2
G+ —f(0)G;— —f(t)n. + (w/(y = 1))1 =0, (B.8)
m m

where we have invoked a long time scale= st in (B.7)
and(B.8) in order to capture all nontrivial evolutions. Sub-
stituting of (B.6) with (B.5) into (B.7) and(B.8), we derive
the following coupled set of evolution equations given by
Egs.(16a) and (l6b)

2 Ma
e+ —f(On; + 5—=—01zz + Nzzz2) + G =0,
m 3m C
2 1
G + Zf(t)GZ - Zf(f)nz - Zm—Cao(nZZ + Nzzz2)
Ma
——G,,=0.
m

Notice that, as in Georgiou et gB], our theory is based

present theory only hold fo© (1) wavelength of a distur-
bance compared te. The theory breaks down when the
wavelength is comparable to the thickness of the annulus.

Appendix C. Solution methods

A normal mode analysis cannot be used to determine the
growth rate of disturbances since E¢6a) and (16bfon-
tain time-periodic coefficients. In this appendix, we provide
alternative solution methods as follows.

C.1. Eigenvalue analysis

One approach to determining the growth rate of the dis-
turbances is to perform an eigenvalue analysis based on Flo-
quet theory. It is more convenient to use the transformation

2i
(n, G) = (i (v), G(f))exp(——/f(f)df>€ s (Cy

wherek is the O (1) wavenumber of the disturbances. Sub-
stitution of (C.1)into Egs.(16a) and (16byields

1

Ma 5 4
. (2 i 2
= —— —k —k“G =0, C.2
1 3mCao( i ~ 5 (C.2)
6o~ X ron+ K2 — ki + 26 g
oom 2mCag m '
(C.3)

The transformatiorfC.1) allows the base interfacial veloc-
ity terms 2f (t)n,/m and 2f (r)G,/m to be eliminated in
(C.2) and (C.3), respectively. It is also equivalent to the
system being in a moving reference frame such that
z—(2/m) [ f(r)dz. The growth rate does not change since
our current system is inertial-free in the film.

We now employ the Floguet theorem to solve Hx2)
and (C.3)and let

e’7 Z (a,,,b )em(h

n=—0oo

(7o), G(f) (C.4)
where$2 = w/¢ is the dimensionless frequency, ant an
eigenvalue (the Floquet exponent) whose real patdeter-
mines the growth rate of the system. Also, lettifigr) =
3% f2€"27, and then substitutingC.4) into (C.2) and
(C.3), a set of equations far, andb, is obtained:

Ma
Q= — 2=k )a, — =22, = _
<s+m 3Ca (k“—k ))a 2 kb, =0, (C.5)
(s +in2 + Mak?)b, + ﬁ(k2 —Ya,
21k ad
Z fian—; =0. (C.6)
Jj=—00

on lubrication in the film annulus, which demands that the EquationgC.5) and (C.6xan then be written in a standard
length scale in the axial direction is much longer than that matrix form and the eigenvalue is solved subsequently.
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C.2. Initial value problem

When the forcing function consists of multiple Fourier
modes, itis more convenient to solve an initial value problem
for Egs.(C.5) and (C.6)These equations can be written as

y = Ay, (C.7)

wherey = (4, G), A is a 2x 2 matrix containing time-
periodic coefficients, and the dot denotes differentiation with
respect tor. A 2 x 2 solution matrixx is obtained by solv-
ing Eq.(C.7)numerically twice over one perictl = 2 /2,
such the first column of is y(T') with y(0) = (1, 0), and the
second column af is y(7') with y(0) = (0, 1). Appealing to
the Floquet Theorenx satisfies

X(T) = e Tx(0), (C.8)

wherey is a 2x 2 matrix, which, usingC.7), is determined
as follows:

_X(T) - X*(0)

T =B="" "
X(0) - x*(0)

(C.9
Herex*(0) is the complex conjugate of(0). The eigenval-

ues ofy, which are the Floquet multipliers, can be readily
computed onc® is known.
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