德 岡 松 雄·徐 水 泉

Ueber den "Kunsthumus" und seine Anwendung (II).

von

M. TOKUOKA und S. DYO

(昭和 14 年 5 月 22 日受理)

緒 言

著者等は前報(*) に於て遮蔽と盥酸とより常脈に 於る腐植酸生成に 封する諸條件に就て報告 したが本報に於ては加壓下に於る腐植酸生成並びに腐植給與栽培試驗結果及び之れら腐植の分解 試驗結果等について報告する。

實验 I. 加壓下に於る蔗糖と鹽酸とより腐植酸の生成。

著者等は蔗糖と酸鹽とより腐積酸の生成に及ほす胚力の影響について研究した。

實驗方法 印ち蔗糖 50g. を1L入りのビーカーに採り 500 c.c. の 2N-HCl で溶かし磁製 皿で覆ひ Autoclave の中に置き、壓力(過壓)、時間を失々 1-4 atm, 1-4 hrs に於て處理した。

窗 驗結果及考察

上述の如く處理して得たる腐植は濾別し鹽素イオンの無くなる迄水洗して全腐植とした。次 に之れを 3% のアムモニヤ水溶液 100 c.c. で 2 回浸出した液に 1N-HCI で酸性にすると一次 腐植酸か沈澱する。アムモニヤ液に不溶なる殘渣は、3% H₂O₂ 100 c.c. で 24 時間酸化して二次 腐植酸を回收した。二次腐植酸を除去した殘りを全部 Humin とした。

次に之等の結果を示す。

第1表 (1 atmの場合)

		全 1	3 杭	一次服	目植酸	:二次瓜	5 植酸	Hur	nin
時間	<u>使</u> ℃	g	%	g	%	g	%	g	%
1	121	5.2	10.4	1.7	3.4	8.2	6.4	0.3	0.6
2	120	6.4	12.8	2.0	4.0	4.2	8.4	0.2	0.4
3	122	7.0	14.0	1.9	3.8	4.6	9.2	0.5	1.0
4	121	7.0	14.0	1.9	3,8	4.5	9.0	0.6	1.5

第2五日	(2	atm	Ø	堖	合
------	----	-----	---	---	---

$\overline{\mathbb{N}}$		全!	马植	一次服	5 植酸	二文版	5 植酸	Ilur	nin
時間	E.C	g	1 70	g	%	g	%	g	9/s
1	132	6.1	12.2	1.8	3.6	4.1	8.2	0.2	0.4
2	133	6.6	13.2	1.8	3.6	4.4	8.8	0.4	0.8
. 8	182	6.9	13,8	1.6	3.2	3.4	6.8	1.9	3.8
4	134	7.1	14.2	1.6	8.2	3.2	6.4	- 2.3	4.6

114

第十一卷]

人工腐植と共運用に就て

第	3	表	(3	atm	Ø	埸	合
---	---	---	----	-----	---	---	---

		余川	15 植	一次驱	新酸	二次日	目植酸	Har	uiń
	de c	g	%	g	%	g	%	g	:6
1	141	7.7	15.4	0.9	1.8	4.5	9.0	2.3	4.6
2	143	8.0	16.0	1.9	2.4	4.8	9.6	2.0	4.0
3	142	8.3	16.6	1.1	2.0	4.2	. 8.4	3.0	6.0
4	143	8.4	16.8	0.9	1.8	4.0	8.0	3.5	7.0

第 4 表 (4 atm の場合)

		金版	5 抗	一文顺	5 植酸	二次旧	5 柏胶	Hur	min
時一諸	₩°ċ~	g	9/o	g	45	g	40	g	1/3
1	150	8.0	16.0	0.9	1.8	. 4.7	9.4	2.4	4.8
2	· 1 51	8.1	16.2	0.9	1.8	4.7	9.4	2.5	5.0
3	151	8.2	16.4	0.8	1.6	4.4	8.8	3.0	6.0
4	150	7.9	15.8	0.7	1.4	8.0	6.0	4.2	8.4

以上の結果を綜合するに 1 atm に於て加熱時間の長い程一般に全腐植、一次腐植酸、二次 腐植酸、Humin 共にその收量の増加を來してゐるが 3 及 4 時間の場合は略同收量であつた。 2 atm に於ては全腐植は 1 atm の場合より稍多く、やはり加熱時間の長い程増收して居り、一 次及び二次腐植酸は共に 1 atm の場合より少いが Humin は増加して居る。3 atm 及び 4 atm に於ては大體 2 atm に於ける傾向の更に著しい場合にして全般的に見て加熱時間の同じ場合は 脈力の高い程全腐植及び Humin は増加して居るが一次腐植酸は減收する。又二次腐植酸は加熱 時間の短い間は壓力の高い程増收するが加熱時間が長くなると減收となる。

次に同麼に於ては加熱時間の長い程全腐植及び Hemin の量増加するが一次及び二次腐植酸 は減收する。要するに加感して腐植を製造する場合の著しき特色としては二次腐植酸の極端に多 い事である。尙 Humin の最も脛力の高い程増加してる點から見れば蔗糖と鹽酸より腐積の生成 する過程は皆て BorromLey(*)の認めたる如く蔗糖から一先づ腐植酸が出来之れが更に Humin に變化して行く事は確からしい。此の Humin に變る Humin 化作用は如何なる機構に基くか は勘定は出來ないが Humin の酸化に依りて腐植酸の得られる事實からすれば恐らく一種の還元 作用らしく思はれる。即ち加呼の下では此の Humin 化作用が著しくなりその低めを量の二次腐 植酸及び Humin を生成するものと見られる。

然れども壓力に伴つて必然的に温度が上昇する故高壓に於ける Humin の増收は單に壓力を のものに基因するのみでなく高壓に作ふ温度の上昇も影響するものと考へられる。尙上記の結果 丈について見れば蘆臍と鹽酸とより腐板酸の生成に於ける最適唾力は 1-3 atm にあるらしい。

最後に加壓により腐植が増收する理由については勿論之れ位の實驗火では結論し象ねるが恐 らく歴力は加速的に腐植生成速度を促進するものと推察される。

摘 鞷

以上の結果を要約すれば次の通りである。

1. 同加熱時間に於ては照力の高い程全腐植及び Humin の増收を來すが一次腐植酸は減收 する。又二次腐植酸は加熱時間の短い間は壓力の高い程層收するが加熱時間長くなると減收する。

116

2. 同歴の下では加熱時間の長い程全腐植、Humin は増收するも一次及び二次腐植酸は減 收する。

3. 加壓の下に於ける腐植製造の著しき特色としては常壓に比し全腐植、二次腐植酸及 Humin の極端に多い事である。

實驗II. 腐植給與栽培試驗に就て。

腐植は地力維持、土地改良上極めて重要なる故その研究も相當敗範圍に亘るが今その中栽培 試験方面の文献丈に付き二、三をあける。

即ち STURGIS, M. B. 及 J. F. REED⁽³⁾ (1937) は右機物 (大豆)の添加により著しく米の 收量を増加する事を圓場試驗に依りて確め、又 NIKLEWSKI, B. 及 J. WOJCIECHOWSKI⁽⁴⁾ (1937) は泥炭既肥等から得られる腐植は著しく大麥、甘藍、豌豆、燕麥等の根の發達を促し増收を来す 事を土耕、水耕兩法に依りて認め且又之れら腐植の效果の極めて短期間であるのは土壌中でブル の狀態からゲルの狀態に變する為めであると結論した。尚 SESSONS, G. 及 H. SCHELL⁽⁵⁾ (1937) は牧草に封して Nettolin は調合肥料に比し遙かに優秀なる事を認め又既肥と Nettolin とはそ の肥效及殘效上優劣なき事を小麥甜菜等について確めた。その他 Nettolin の優秀性を認めた者 として REINHOLD, J.⁽⁶⁾ (1937)の蔬菜栽培の研究をあける事が出来る。

之れを要するに腐植は肥效上極めて優秀なる性質を具備せる事とその優秀性は腐植の種類に 依りて異る事は確實である。それ故著者等は我國の重要作物たる水稻を用ひ化學的方法で調製し た砂糖腐植及他の二、三の人工腐植につきて之れらの關係を土耕法によりて比較研究して見る事 とし本報は其豫報的發表である。

栽培條件

1. 土壤、本學附近の丘陵地より得たる第三紀砂岩頁岩質の細壤土 を 小 植 木 鉢一個に對し 5 kg 宛使用した。

2. 肥料、鉢當り三井硫安 1.9 g. 竹印 15% 過燐酸肥料 2 g. 硫酸加里 0.55 g. 宛施用した。 傷腐植添加に依る酸性化防止のため鉢當り CaCO₃ を 7.5 g. 宛施用した。

3. 移植、昭和 13 年 4 月 12 日稀培養液にて發芽した臺中 65 號の 20 cm. 苗を同年 4 月
19 日に鉢當り 3 本宛移植した。尙試驗は硝子室内で行つた。

4. 腐粒の種類及用量、各種腐粒の用量は何れも 150g. 宛にして腐植の種類と各周別とを 示せば次の如し。

砂糖腐植: 前報(い)に従つて蔗糖と鹽酸とより調製す。

オガ唇、ツンドラ、バガスの腐植: 夫々オガ唇、ツンドラ (樺太産)、バガスを鹽酸で砂糖 腐植調製と同錄件で處理したるものを用ひた。

亜硫酸蒸煮廢液腐植: 亜硫酸蒸煮廢液から濃硫酸で分離す。

土壌腐植: 七星登山口附近の腐植土壌から分離す。

6. 各種腐植の分析結果

、各種腐植についてその水分、炭素(改良クロム酸法に依る)、窒素(ガンニング氏浸法に依る)、 灰分及灰分中諸成分を分析した結果を第5表に示す。

尚表中本試驗には直接關係なき数字は將來の研究の爲めであり、又本試驗に使用せる亞硫酸 滋煮廢液腐植及土填腐植は試料不足の爲め分析しなかつた。 、第十一卷〕

人工腐額と共應用に就て

第 5 表

щ		50	砂塘窗杭	オ ガ 別昭植	バガス 脳 植	ツンドラ 陶 植	ツンドラ	オガ府	バガス	ッンドラ 發 沽	リガニン
水	纺	%	10.23	6.22	8.31	10.58	13.34	12.98	12.04	5.57	10.74
凝	棐	%	59.96	33.44	48.97	49.20	42.57		-	-	_
Ť	索	%	0.00	0.11	0.22	0.99	1.83	0.17	0.26	1.38	2.58
灰	纺	%	0.00	0.75	3.21	. 6.69	15.88	1.18	2.11	15.56	7.81
1	(砂	-	73.13	48.81	84.66	73.09	17.04	40.87	48.03	84.22
	s	i0 <u>-</u>	_	14.59	38.23	8.80	5.32	4.41	35.24	7.27	10.46
灰	s	0,		5.52	1.25	1.33	2.52	8.94	3.54	1.86	9.62
分	c c	aO		3.74	4.91	2.47	4.94	35.69	4.93	1.32	17.06
中	М	gO	-	0.00	1.36	0.27	1.27	3.88	3.86	0.80	3.16
諾) F	e <u>.</u> 03	- 1	0.57	4.43	2,11	10.03	2.78	1.69	40.02	10.95
成) P	<u>0;</u>	- 1	0.48	0.34	0.00	0.37	0.81	2.27	0.00	0.29
分	I I	0 <u>.</u> 0	-	0.89	0.29	0.12	0.53	10.63	3.93	0.23	1.87
%	N	n ₂ O	-	0.75	0.31	0.11	0.51	9.66	1.99	0.19	12.84
2	77	ñ2Û3	-	0.00	0.00	0.05	1.14	3.62	1.54	0.43	0.00
	•	Cl	-	0.29	0.06	0.03	0.14	2.63	0.20	0.00	0.00
	U e	CO2		0.00	0.00	0.00	0.00	0.51	0.00	0.00	0.00
<u>^</u>		at	-	99.96	99.99	99.95	99.86	100.63	100.11	100.15	99.97

備考 (a) 炭素窒素灰分は何れも無水物中%である。

(b) リグニンは⁽⁷⁾ 稀硝酸法によりバガスより分離す。 尚 リグニン中の窒素含量が相當 高いのは恐らく窒素はニトロ基⁽⁸⁾ と して强く結合せるに依るら しい。

(c) ツンドラ残渣: ツンドラ腐植から腐植酸を分離せる残渣。

栽措試驗結果

1. 生育調査

生育中適當に日を定めて草丈、分葉等につき調査した結果を第6表に示す。第8回(土壤 腐植區)は第1回生育調査迄に既に枯死したる故(4月29日)その調査結果がない。尚生育調 査と共に生育中各區の出穂狀態についての調査を第7表に示す。第6表の草丈は三木草丈の平均 値である。

第 6 表 (a)

R	SU	移植後 (5 月	35 日 23 日)	移植後 (6月	47日 4日)	移植後 (6月	63 日 20 日)	移植後 78 日 (7 月 4 日)	
1-1	~0	冪 丈 cm	分蘖	算文cm	分赃	算丈em	分蘖	算丈cm	分蘖
1		45.6	3	65.2	8	87.5	9	97	17
2		47.6	5 ·	63.3	12	87.0	16	93.5	. 20
3		62.4	8	82.4	14	94.2	16	95	16
4		63.0	5	78.2	12	92.6	15	100	15
5		45.0	3	58.1	5	80.0	· 7 ·	· 93 ·	12
6		34.2	3	46.6	3	66.0	3	80	.4.
7		61.8	10	82.4	18	100.0	22	103	25

部	6	麦	(h)
- 14.2	0		(0)

医别	移	移植後96日 (7月22日)		肟	珍 植 後 109 日 (8 月 4 日)			移植後124日 (8月19日)		
r". 40	武士 cm	分见	创数	賞丈em	分蘖	19. B	筑t cm	分蘖	憩 败	
1	112.2	17	0	119.0	17	8	119.0	17	15	
: 2	119.2	23	5	119.2	23	16	119.4	23	17	
3	103.2	16	10	103.5	16	10	103.2	16	10	
4	106.0	15	15	106.8	15	15	106.8	15	15	
5	93.0	12	4	93.2	12	7	98.2	12	7	
6	93.0	4	0	93.8	4	1	93.0	4	3	
7	118.0	27	20	118.5	29	22	119.0	29	25	

第 6 表の結果を見るに各區とも 7 月 22 日以後は 草丈、分蘖に於て大なる變化なく殆んど同じ結果を示し = てゐる。 全般的に見て大體のところオガ屑腐植、ツンド ラ腐植、ツンドラ、砂糖腐植の 4 箇は何れも標準區より 二 生育良好にして就中砂糖腐植區が最も良好であつた。 バ ガス腐植、廢液腐植の 2 箇は共に標準圖に劣り殊に廢液 腐植の結果に於て著しい。

Ħ	51	地上部 (g)	地下部(g)	at	T/R .
	1	48.8	14.2	63.0	3,43
	2	67.4	20.9	88.3	3.22
	3	39.0	14.0	53,0	2.78
	4	48.9	18.4	67.3	2.65
	5	23.7	10.4	34.1	2.27
••	6	11.9	3.4	15.3	3.50
	7	111.5	26.9	133,4	4.14

第8表 (a)

は何れも標準區より收量多く5,6 區は標 準區に比し劣つてゐる。併し一穂常穀實 收量について見れば6 區を除く他の區は 何れも標準區に優つてゐる。就中優秀な のは同じく砂糖腐積區で最も結果の悪い のも廢液腐積區であつた。

3. 土壌反態 收穫當日各鉢の土壌を蒸溜水及 N-KCl 溶液で處理し其の pH を測定した。第

9 表は之れらの結果である。

第7表

匨 別	出展期	M N	出展期
1 2 3 4	7月26日 7月18日 6月28日 7月9日	5 6 7	7月14日 7月29日 7月9日

出穂期について見ればッンドラ腐 植の 6 月 28 日を除けば後は皆 7 月 中に出穂して居り特に遅いのは廢液腐 植の 7月 29 日である。

2. 收穫物調査

收穫氣乾物に付き調査した結果を 第 8 表に示す。

收穫物の場合もッンドラ腐積區を 除けば他區の傾向は殆んど生育狀況の 傾向に比例してゐる。卽ち 2, 4, 7 區

第8表(b)

Ш	51	有效分型数	农管牧社(g)	一團常殺性收益(g)	
	1	15	13.1	0.87	
2		17	22.2	1.30	
3		10	10.5	1.05	
4		15	16.5	1.10	
	5	7	6.9	0.93	
6		3	2.2	0.73	
7		25	40.5	1.62	

第十一卷]

厩	54	蒸	罰	水	N-KCI	
	1	5.45			4.70	
	2	ļ	6.7	8	5.78	
	3		6.8	1	5.78	
	4		6.9	1	6.07	
	5		6.9	4	6.56	
	6		5.9	3	4.72	
	7		6.1	1	5.03	

上表に依れば腐植施用區に於ては何れも標準區に 比し pH が高い。これは腐植酸中和の目的で加へた CaCO₃ に基因するものと思ふ。

考 究

以上栽培試驗の結果を綜合考察するに生育狀況、 出穂期、收穫物收量等に於て何れも相關聯した傾向を 有してゐる。即ち腐柿施用區の中 2, 3, 4, 7 の諸區が 何れも標準區に優る成績を示すに反し 5, 6 層の方は 劣つてゐる。而して之れら腐植の中砂糖腐植最も優秀 にして廢液腐植最も劣り他はその中間に位してゐる。

次に之れら腐植優秀性の差異を支配する因子は極めて複雑ではあるが俳し窒素、灰分を全然 含まない砂糖腐植が之れらを含む他の腐植に比し遙かに優秀なる效果を楽してゐる點から考へれ ば腐植の優秀性は腐植それ自體の特性に歸すべきであると考へる。

然れども腐植優秀性の差異を支配する因子が複雑である以上此の最後的結論は勿論之れ丈の 實驗資料からは得られないが少くとも腐植は肥效上優秀なる性質を具備してる事は確かである。

摘 要

1. 生育狀況、收獲物收量に於て腐植施用區の中 2, 3, 4, 7 區は何れも標準區に優り就中 7 區の砂糖腐植が最も優秀なる事を認めた。

2. バガス腐植、廢液腐植は他の腐植に比し著しく劣り特に後者に於て著しかつた。

3. 腐植の優秀性は腐植それ自體の特性に歸着すべきである。

4. 出穂期に對しては僅かではあるが腐植施用區は一般に早い。

實驗 III. 腐植分解試驗に就て。

腐植が農業上大切なる事は實驗 II の諸文献によりて明かである。然るに腐植は特に熱帶地 に於てその分解狂盛にして著しく消耗する事も又明かである。HUTCHINGS, I. J. 及 T. L. MAR-TIN⁽⁹⁾ (1934) は此方面に就て研究し炭素率は有機物分解に對し影響なく、問題となるのは用ひる 有機物自體の組成如何にあると結論し、 MILLON, H. C., F. B. SMITH 及 P. F. BROWN^(1*) (1936) は炭素含量略等しく窒素含量の種々異なれる作物(麥類線肥作物及繊維作物)につき試驗 せるに窒素含量大なる時は分解によりて發生する全炭酸ガス量が少き事を見た。SAUERLANDT, W.^(1*) は Biohum, Nettolin, Huminal, Kalklignin 等の分解に於て Nettolin 及 Biohum は Huminal 及 Kalklignin より早い事を植木鉢及間場雨試驗によりて明かにした。 筒我園に於て も大杉、青木⁽¹²⁾ 等の研究によれば有機物分解に對して窒素の添加は著しく之れを促し P. K の 添加は影響少く、全般的に見て土壤が酸性よりも中性の方分解が著しい。又腐極消耗量の数字的 調査としてはロータムステット農事試験場と西ヶ原農事試験場の兩調査報告⁽¹³⁾をあける事が出 來る。即ち前者に於ては1箇年1エーカー當りの腐極消耗量は無肥料地で百萬大カロリー、**厩肥** 14 晒施用區は千五百萬大カロリーであつて後者によれば水田の 1 筒年 1 反步當りの腐極消耗 量は無肥料地で 50 貫、鏞物質肥料施用地では 20 貫であつた。

斯くの如く腐植は刻々と分解消耗して行くがこの分解消耗の狀態が腐植の種類及性質により て如何に相違するか且又生育状況と如何なる関係にあるかをより明かにする為めに實驗 II の栽 培試験に用ひた腐植について栽培試験と平行に無栽培鉢を設け(4月19日)、同狀態に放置して

〔熱愛詰

親察した。 而して 11 月 20 日 (放置後約 7 箇月分經過) に各鉢の土壤を均一に混合してその 一定量 (100 g. 宛) を探り、炭素 (改良クロム酸法)、窒素 (ガンニング氏變法) 及び水分等につ き測定した。第 10 表 (a) (b) は之れらの結果である。 尚表 (a) の数字は各鉢土壤中の C. N 百 分率 (無水物中)を示し、表 (b) の数字は計算によりて求めた鉢當りの全炭素量と炭素消耗量を 示す。 又表 (a) 中の分解前の数字は皆計算によりて求め分解後の方は分析で得たまゝの値であ る。

10

表 (a)

笟

1. 15	分	解	ÌŬ	分	解	後
ж эл	炭 돜(%)	宋 东(%)	C/N	炭 菜(%)	蜜素(%)	C/N
3.67	0.351	0.101	- 3.84	0.331	0.037	3.80
2.44	1.382	0.103	12.79	1.338	0.027	50.23
3.89	1.836	0.132	13.91	1.245	0.055	22.58
2.87	1.635	0.139	11.76	1.475	0.053	25.58
3.66	1.826	0.111	16.45	1.525	0.048	31.95
4.28	1.356	- 1		1.325	0.092	14.42
3.65	2.178	0.105	20.74	1.346	0.075	17.95
3.85	1.433	-	-	1.115	0.096	. 11.64
	2.44 3.89 2.87 3.66 4.28 3.65	水 分 炭 美(%) 3.67 0.331 2.44 1.382 3.89 1.836 2.87 1.635 3.66 1.826 4.28 1.356 3.65 2.178 1.78	$ \hline \hline χ 5 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$ \frac{5}{10} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{5}{3.67} + \frac{5}{3.89} + \frac{5}{3.65} + \frac{5}{3.65} + \frac{5}{2.178} + \frac{5}{3.67} + \frac$

上表によれば明かに腐植の分解によりて炭素の消耗と共に窒素も消耗してるる。又 C/N が 腐植施用国に於て何れも大きくあるのは 添加腐植の 炭素に因るものにして 全般的に見て 分解後 の C/N は分解前に比し大である。

.			<u></u>		· .
,		鉢當り全	炭素盐(g)	鉢當り炭	素消耗量
•	威 别	分 解 前	分解後	(g)	全Cに對する消耗制合 (%)
	1	16.90	16.55	0.35	2.07
	2	66.43	65.30	1.15	1.73
	3	88.45	59.85	28.65	32.39
	4	78.65	71.65	7.00	8.90
	5	87.81	73.50	14.31	16.28
	6	65,20	63.45	1.75	2.69
	7	104.74	64.85	39.89	38.03
	8	71.33	53.40	17.93	25.13

第 10 表 (b)

即ち炭素の消耗量は明かに腐植の種類によりて相異し砂糖腐植の場合最大にしてオガ層腐植 最も少い。

老 寇

第 10 表に於て砂糖腐植の消耗量最大にしてオガ屑腐植最も小さく又ツンドラ腐植とツンド ラが前者に於て炭素消耗量著しく大きい等の點から見れば炭素消耗に及ぼす因子は腐植の特性に 歸すべきであると思ふ。 第十一卷]

然れども前述せる如く腐植の分解が複雑なる因子の綜合結果によりて起ると考へられる故、 腐植の特性に基因する第二次的因子特に土壤微生物の活動をも考慮せねばならない。それ故將来 これらの點について試験を重ねて綜合的結果を得たいと思つてゐる。

次に著量の炭素消耗區たる砂糖腐積區と最小消耗區であるオガ層腐積區とが共に良好な生育 を示してる點と、割合に炭素消耗量の多い土壤腐積區に於て枯死したり又炭素消耗量の少い廢液 腐積區が最も生育に於て劣つてる點から考へれば腐積消耗量と植物生育との間には本試驗の範圍 内では確實な相關關係は認められない。

摘 要

1. 炭素消耗量は腐植の種類によりて著しく異り砂糖腐植區の 38.08% (全炭素量に對し) が最高にしてオガ層腐植區の 1.73% 最も低く其他はツンドラ腐植區、土壤腐植區、パガス腐植 區、ツンドラ區、磨液腐植區の順に小となる。

2. 一般に炭素消耗量の大なるものは小なるものに比し該鉢土壌の C/N 小く、且分解前よ りも分解後の C/N が大きい。

3. 本窖職の範圍内では炭素消耗量の大小と植物生育との間には確實な相關関係がない。

ᇩ 文

- (1) 德岡、徐、臺北農林學會報 第8卷、第1號、72, 1938.
- (2) BOTTOMLEY, W. B. J. Biochem. 9, 263, 1915.
- (3) STUROIS, M. B. and J. F. REED. J. Amer. Soc. Agron. 29, 360, 1937.
- (4) NIKLEWSKI, B. und J. WOJCIECHOWSKI. Bod. u. Pflanzenernähr. 4, 294, 1937.
- (5) SESSONS, G. und H. SCHELL. Bod. u. Pflanzenernähr. 3, 239, 1937.
- (6) REINHOLD, J. Bod. u. Pflanzenernähr. 4, 72, 1937.
- (7) PAYNE, J. H., E. FUKUNAGA and R. KOJIMA. J. Amer. Chem. Soc. 59, 1210, 1937.
- (8) 八沼、大西、竹村、工業化型進誌、38, 1491, 1935.
- (9) HUTCHINGS, I. J. and T. L. MARTIN. J. Amer. Soc. Agron. 26, 333, 1934.
- (10) MILLAR, H. C., F. B. SMITH and P. E. BROWN. J. Amer. Soc. Agron. 23, 914, 1936.
- (11) SAUERLANDT, W. Bod. u. Pflanzenernähr. 3, 219, 1937.
- (12) 大杉、青木、土壤肥料學進誌、,7 267, 333, 1933.

13) 川村一水著、土壤學語話、256, 1934.