臺灣總督府 天然瓦斯研究所報告 第 五 號

論乙炔的氫化反應 On the Hydrogenation of Acethylene 鹽見賢吾、岩本友一

臺灣總督府天然瓦斯研究所 昭和十四年七月

[英文摘要部份]

論乙炔的氫化反應 鹽見賢吾 岩本友一

我們已經以流動法(flow method)調查了,為獲得液態烴和乙烯,在一般壓力下,以乙炔加氫聚合所用之觸媒,而且調查顯示,鎳、鈷和鉻之混合觸媒,對各種狀況皆最為適合。

表 1 所示即其各種典型的條件和反應之結果。

表1

還原溫度(°C)	400	500	500
觸媒重量(g)	10	20	30
流率(1hr)	11.4	19.2	19.2
氣體消耗體積(I)	61.0	147.0	1062.0
比率 (H ₂ :C ₂ H ₂)	1.6:1	1.2:1	1.2:1
收縮 (%)	37	43	45.5
油量 (cc/m³C₂H₂)	221	299	405
C ₂ H ₂	3.4	15.0	10.4
C ₂ H ₄	9.9	31.0	30.6
氣體分析 CnH₂n	1.0	4.5	4.5
C ₂ H ₆	17.0	2.3	4.9
H ₂	67.6	46.0	48.5
N ₂	1.1	1.2	1.5

以上即是有關分餾聚合液時所得數據,而表 2、表 3、表 4 所示,則是有關

其推定化學成分的一個討論結果。

表 2

不飽和烴	44.6%
芳烴	26.9%
環烷烴	10.7%
鏈烷烴	18.4%

表3

餾分(°C)	E.P-110	110-140	140-170	170-
折射率nn	1.421	1.444	1.451	1.464
密度 dan	0.685	0.739	0.749	0.778

表 4

餾分(fraction)的	内蒸餾試驗可達 200℃
---------------	--------------

100cc. 油蒸餾性質試驗(A.S.T.M. distillation) °C 起始沸點(Initial b.p.) 35

蒸餾百分比

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5	98
10	104
15	110
20	117
25	119
30	124
35	130
40	134
45	137
50	140
55	144
60	147
65	152
70	155
75	160
80	165
85	170
90	179
95	191
終餾點	192
殘留物	1.2 cc.

[緒言]

歷來,有關乙炔的氫化反應,主要目的在著力於合成乙烯,此不管在理論上或者工業上,皆已有相當詳盡之討論。然而,若將此反應於適當條下進行的話,會同時引起氫化反應與聚合反應,其結果可合成液狀碳化氫,而針對此,則尚無充分之檢討。然後,若列舉歷來所發表的研究文獻來看的話,Peter 及 Neumann¹實驗報告指出,使用 Fe-Ni-Cu, Fe-Ni, Fe-Ni-Pd.等觸媒,可得最高 30%的油分。再者,Fischer 及 Peters²報告指出,若於液狀介質中進行此反應,藉由適當地調節反應溫度,可使乙炔的液化反應,進行地更加順利。再者,最近 Ackermann³在多處敘述了,當其嘗試使用 Ni 或 Co 系為觸媒,將乙炔合成乙烯之時,無法避免地會生成液狀碳化氫,並說明其中約 50%左右的乙炔會變化成油分。然而,上述各研究成果,不僅未能在此反應中選擇適當觸媒,同時目前也未見有針對生成油的性質與狀態有任何報告。而為企求能補足此點,底下報告本研究所所做的部分實驗內容。

總 結

- 1) 針對乙炔氫化以合成聚合油之反應,我們研究了何者觸媒最為 適當,其結果判定 Co-Ni-Cr2O3 系的觸媒最為適當。
- 2) 在進行聚合油之分溜試驗、成分試驗中,我們也一併測定了各成分的比重及折射率。

¹ Peter and Neumann: Ges. Abh. Reimt. Kohle. 11, 423.

² Fischer and Peters: Brennstoff chemi. 12 (1931), 286.

³ Ackermann: Brennstoff chemi. 18 (1937), 357.