
© Copyright by Deitel

1

Chapter 2 - Introduction to C

Programming

Outline
2.1 Introduction

2.2 A Simple C Program: Printing a Line of Text

2.3 Another Simple C Program: Adding Two Integers

2.4 Memory Concepts

2.5 Arithmetic in C

2.6 Decision Making: Equality and Relational Operators

2.7 Data Types and Variables (補充資料)

© Copyright by Deitel

2

Objectives

• In this chapter, you will learn:
– To be able to write simple computer programs in C.

– To be able to use simple input and output statements.

– To become familiar with fundamental data types.

– To understand computer memory concepts.

– To be able to use arithmetic operators.

– To understand the precedence (順序， order of evaluation)
of arithmetic operators.

– To be able to write simple decision making statements.

– To understand C’s fundamental and modified data types

© Copyright by Deitel

3

2.1 Introduction

• C programming language
– Structured and disciplined approach to program design

• Structured programming
– Introduced in chapters 3 and 4

– Used throughout the remainder of the book

• Steps to write a program
– Define the problem to be solved with the computer

– Design the program’s input/output (what the user should
give (Data)/see (Information))

– Break the problem into logical steps to achieve this output

– Write the program (with an editor)

– Compile the program

– Test the program to make sure it performs as you expected

© Copyright by Deitel

4

2.2 A Simple C Program:

Printing a Line of Text

• Comments (註解)
– Text surrounded by /* and */ is ignored by computer

– Text followed by // is ignored by computer (C++ style)

– Used to describe program

• #include <stdio.h>
– Preprocessor directive (前置處理器指令): Tells computer to load

contents of a certain file (header files, 標頭檔)

– <stdio.h> allows standard input/output operations

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 printf("Welcome to C!\n");

9

10 return 0; /* indicate that program ended successfully */

11

12 } /* end function main */

Welcome to C!

© Copyright by Deitel

5

2.2 A Simple C Program:

Printing a Line of Text
1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 printf("Welcome to C!\n");

9

10 return 0; /* indicate that program ended successfully */

11

12 } /* end function main */

Welcome to C!

• int main() 或 int main(void)
– Each C (and C++) program contains one or more functions, exactly

one of which must be main (每個 C 程式必定有一個main() 函數，而
且只能有一個)

– Parenthesis () is used to indicate a function
– int means that main "returns" an integer value
– Braces ({ and }) indicate a block (程式區塊): The body of every

function must be contained in braces

© Copyright by Deitel

6

2.2 A Simple C Program:

Printing a Line of Text

• printf("Welcome to C!\n");

– Instructs computer to perform an action

• i.e., prints the string of characters within quotes (" ") on screen

– Entire line is called a statement (敘述句)

• All statements must end with a semicolon (;, also known as the

statement terminator)

– Argument (參數，引數)

Function (argument), e.g.,

printf(“Welcome to C!\n”);

– Escape character (\, 跳脫字元)

• Indicates that printf should do something out of the ordinary

• \n is the newline character

© Copyright by Deitel

7

2.2 A Simple C Program:

Printing a Line of Text

Tab: 欄標跳欄

© Copyright by Deitel

8

2.2 A Simple C Program:

Printing a Line of Text

• return 0;

– A way to exit a function

– return 0, in this case, means that the program is terminated

normally

• Right brace }

– Indicates end of main has been reached

• Linker

– When a function is called, linker locates it in the library

– Inserts it into object program

– If function name is misspelled, the linker will produce an

error message because it will not be able to find function in

the library

© Copyright by Deitel

9

Basics of a Typical C Program Development

Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

© Copyright by Deitel

10

Basics of a Typical C Program Development

Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Outline

© Copyright by Deitel

111 /* Fig. 2.3: fig02_03.c

2 Printing on one line with two printf statements */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 printf("Welcome ");

9 printf("to C!\n");

10

11 return 0; /* indicate that program ended successfully */

12

13 } /* end function main */

fig02_03.c

Program OutputWelcome to C!

Outline

© Copyright by Deitel

12

fig02_04.c

Program Output
Welcome

to

C!

1 /* Fig. 2.4: fig02_04.c

2 Printing multiple lines with a single printf */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 printf("Welcome\nto\nC!\n");

9

10 return 0; /* indicate that program ended successfully */

11

12 } /* end function main */

© Copyright by Deitel

13

Debug the Following Source Code

Identify and correct the errors in the following program:

1 /* Fig. 2.1: fig02_01e.c

2 A first program in C */

3 #include <stdio.h>;

4

5 /* function main begins program execution */

6 int main();

7 {

8 print("Welcome to C!\n")

9

10 return 0; // indicate that program ended successfully

11

12 /* end function main */

Ans:

3 #include <stdio.h>

6 int main()

8 printf("Welcome to C!\n");

12 }/* end function main */

© Copyright by Deitel

14

Debug the Following Source Code

Identify and correct the errors in the following program:

1 // Fig. 2.1: fig02_01e.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int Main()

7 {

8 printf(Welcome to C!\n);

9

10 return 0; /* indicate that program ended successfully */

11 }

12 /* end function main */

Ans:

1 /* Fig. 2.1: fig02_01e.c

2 int main()

8 printf("Welcome to C!\n");

© Copyright by Deitel

15

Another Simple C Program -

Adding Two Integers

Outline

© Copyright by Deitel

16

Another

Program –

Adding Two

Integers

fig02_05.c

1 /* Fig. 2.5: fig02_05.c

2 Addition program */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int integer1; /* first number to be input by user */

9 int integer2; /* second number to be input by user */

10 int sum; /* variable in which sum will be stored */

11

12 printf("Enter first integer\n"); /* prompt */

13 scanf("%d", &integer1); /* read an integer */

14

15 printf("Enter second integer\n"); /* prompt */

16 scanf("%d", &integer2); /* read an integer */

17

18 sum = integer1 + integer2; /* assign total to sum */

19

20 printf("Sum is %d\n", sum); /* print sum */

21

22 return 0; /* indicate that program ended successfully */

23

24 } /* end function main */

宣告整數變數

int integer1;
變數型態 變數名稱;

從鍵盤讀取整數數值，並放到
變數 integer1 的位置，注意
變數名稱前要加 &

計算部份，將 integer1、
integer2 相加後的結果給
sum

Outline

© Copyright by Deitel

17

Program Output

Enter first integer

45

Enter second integer

72

Sum is 117

© Copyright by Deitel

18

2.3 Another Simple C Program:

Adding Two Integers
• As before

– Comments, #include <stdio.h> and int main()

• int integer1, integer2, sum;

– Definition of variables

• Variables: locations in memory where a value can be stored

– int means the variables can hold integers (-1, 3, 0, 47)

– Variable names (identifiers)

• integer1, integer2, sum

• Identifiers: consist of letters, digits (cannot begin with a digit)

and underscores (_). They are case sensitive.

– Definitions must appear before executable statements

• If an executable statement references an undeclared variable it

will produce a syntax (compiler) error

© Copyright by Deitel

19

2.3 Another Simple C Program:

Adding Two Integers

• scanf("%d", &integer1);

– Obtains a value from the user

• scanf uses standard input (usually keyboard)

– This scanf statement has two arguments

• %d - indicates data should be a decimal integer

• &integer1 - location in memory to store variable (也就是，
指向整數變數 integer1 在記憶體的位置)

• & is confusing in beginning – for now, just remember to

include it with the variable name in scanf statements. It will

be discussed later (i.e., concept of pointer)

– When executing the program the user responds to the

scanf statement by

1. typing in a number, then

2. pressing the enter (return) key

© Copyright by Deitel

20

2.3 Another Simple C Program:

Adding Two Integers

• = (assignment operator)

– Assigns a value (on the right) to a variable (on the left)

– Is a binary operator (has two operands)

sum = variable1 + variable2;

sum gets variable1 + variable2;

– Variable receiving value is on the left

• printf("Sum is %d\n", sum);

– Similar to scanf

• %d means decimal integer will be printed

• sum specifies what integer will be printed

– Calculations can be performed inside printf statements

printf("Sum is %d\n", integer1 + integer2);

© Copyright by Deitel

21

2.4 Memory Concepts

• Variables

– Variable names correspond to locations in the computer's

memory

– Every variable has:

(1) a name, (2) a type, (3) a size and (4) a value

– Whenever a new value is placed into a variable (through

scanf, for example), it replaces (and destroys) the previous

value

– Reading variables from the corresponding memory does not

change them

© Copyright by Deitel

22

2.4 Memory Concepts

•A visual representation

© Copyright by Deitel

23

2.5 Arithmetic

• Arithmetic calculations

– Use * for multiplication and / for division

– Integer division (/) truncates remainder

• 7 / 5 evaluates to 1

– Modulus operator (%) returns the remainder

• 7 % 5 evaluates to 2

• Operator precedence (優先順序)

– Some arithmetic operators act before others (e.g.,

multiplication before addition)

• Use parenthesis when needed

– Example: Find the average of three variables a, b and c

• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

© Copyright by Deitel

24

2.5 Arithmetic

© Copyright by Deitel

25

2.5 Arithmetic

© Copyright by Deitel

26

2.6 Decision Making: Equality and

Relational Operators

• Two types of executable statements

– Perform actions (calculations, input/output of data)

– Perform decisions, e.g., print "pass" or "fail" given the

value of a test grade

• if control statement

– Simple version in this section, more detail later

– If a condition is true, then the body of the if statement

executed

• 0 is false, non-zero is true

– Control always resumes after the if structure

• Keywords

– Special words reserved for C

– Cannot be used as identifiers or variable names

© Copyright by Deitel

27

2.6 Decision Making: Equality and

Relational Operators

Outline

© Copyright by Deitel

28

fig02_13.c (Part 1

of 2)

1 /* Fig. 2.13: fig02_13.c

2 Using if statements, relational

3 operators, and equality operators */

4 #include <stdio.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 int num1; /* first number to be read from user */

10 int num2; /* second number to be read from user */

11

12 printf("Enter two integers, and I will tell you\n");

13 printf("the relationships they satisfy: ");

14

15 scanf("%d%d", &num1, &num2); /* read two integers */

16

17 if (num1 == num2) {

18 printf("%d is equal to %d\n", num1, num2);

19 } /* end if */

20

21 if (num1 != num2) {

22 printf("%d is not equal to %d\n", num1, num2);

23 } /* end if */

24

if(條件式)

{

statement 1;

statement 2;

. . .

如果合乎條件的話，

就做大括號中的部份；

}

或者，如果只有一個 statement 時
，可簡化成

if(條件式)

statement ;

Question:
if (條件式) ;

printf(“This is a test.\n”);

執行結果是??

Outline

© Copyright by Deitel

29
25 if (num1 < num2) {

26 printf("%d is less than %d\n", num1, num2);

27 } /* end if */

28

29 if (num1 > num2) {

30 printf("%d is greater than %d\n", num1, num2);

31 } /* end if */

32

33 if (num1 <= num2) {

34 printf("%d is less than or equal to %d\n", num1, num2);

35 } /* end if */

36

37 if (num1 >= num2) {

38 printf("%d is greater than or equal to %d\n", num1, num2);

39 } /* end if */

40

41 return 0; /* indicate that program ended successfully */

42

43 } /* end function main */

fig02_13.c (Part 2

of 2)

Program Output

Enter two integers, and I will tell you

the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

Outline

© Copyright by Deitel

30

Program Output

(continued)

Enter two integers, and I will tell you

the relationships they satisfy: 22 12

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you

the relationships they satisfy: 7 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

© Copyright by Deitel

31

More on if Statements

if(條件式)

{

statement 1;

statement 2;

statement 3;

}

if(條件式)

statement 1;

statement 2;

statement 3;

if(條件式) ;

statement 1;

statement 2;

statement 3;

if(條件式)

{

statement 1;

statement 2;

}

statement 3;

© Copyright by Deitel

32

2.6 Decision Making: Equality and

Relational Operators

© Copyright by Deitel

33

2.7 Data Types and Variables

• C’s Fundamental Data Type

– int Integral numbers such as 1, 2, 3 and so on

– float Low/medium precision real numbers

– double Medium/high precision real numbers

– char Text characters such as ‘a’, ‘b’, ‘@’ and so on

• C’s Modified Data Type

– short int small to medium sized integral numbers

– long int Medium to large sized integral numbers,

such as -245 563, 123 456

– long double Medium/high value/precision real

numbers such as 2.0x102310

© Copyright by Deitel

34/* SIZEOF.C--Program to tell the size of the C variable */

/* type in bytes */

#include <stdio.h>

main()

{

printf("\nA char is %d bytes", sizeof(char));

printf("\nAn int is %d bytes", sizeof(int));

printf("\nA short is %d bytes", sizeof(short));

printf("\nA long is %d bytes", sizeof(long));

printf("\nAn unsigned char is %d bytes", sizeof(unsigned char));

printf("\nAn unsigned int is %d bytes", sizeof(unsigned int));

printf("\nAn unsigned short is %d bytes", sizeof(unsigned short));

printf("\nAn unsigned long is %d bytes", sizeof(unsigned long));

printf("\nA float is %d bytes", sizeof(float));

printf("\nA double is %d bytes", sizeof(double));

printf("\nA long double is %d bytes\n", sizeof(long double));

return 0;

}

A char is 1 bytes

An int is 4 bytes

A short is 2 bytes

A long is 4 bytes

An unsigned char is 1 bytes

An unsigned int is 4 bytes

An unsigned short is 2 bytes

An unsigned long is 4 bytes

A float is 4 bytes

A double is 8 bytes

A long double is 8 bytes - for Visual C++ Compiler

A long double is 10 bytes - for Borland Compiler

© Copyright by Deitel

35

• Binary Digits (bit): 1 and 0

– The computer can combine the two digital states to represent letters, numbers, colors, sounds,
images, shapes, and even odors.

– An “on” or “off” electronic state is represented by a bit, short for binary digit

• Encoding Systems: Bits (位元) and Bytes (位元組)

– Bits are combined according to an encoding system to represent letters, numbers, and special
characters, collectively referred to as alphanumeric characters

– The combination of bits used to represent a character is called a byte (Binary Term, 8 bits/byte)

– 8 bits = byte

• Representation of a Character

– ASCII (American Standard Code for Information Interchange) is the most popular encoding
system for PCs and data communication

• ASCII – 7 bits

• ANSI – 8 bits/byte

• UNICODE – 16 bits

• Big5 – 16 bits

• Storage Capacities

– KB (kilobyte) = 210 Bytes = 1,024 Bytes  103 Bytes

– MB (megabyte) = 220 Bytes = 1,024 KB = 1,048,576 Bytes  106 Bytes

– GB (gigabyte) = 230 Bytes = 1,024 MB  109 Bytes

– TB (terabyte) = 240 Bytes = 1,024 GB  1012 Bytes

© Copyright by Deitel

36

Typical Size and Range of Data Types

For Borland Compiler

Data Type Size Bytes Min Value Max Value

char 1 -128 127

short int 2 -32768 32767

int 4 -2147483648 2147483647

long int 4 -2147483648 2147483647

float 4 1.17549e-38 3.40282e+38

double 8 2.22507e-308 1.79769e+308

long double 10 3.3621e-4932 1.18973e+4932

For Visual C++ and C Compiler

Data Type Size Bytes Min Value Max Value

char 1 -128 127

short int 2 -32768 32767

int 4 -2147483648 2147483647

long int 4 -2147483648 2147483647

float 4 1.17549e-38 3.40282e+38

double 8 2.22507e-308 1.79769e+308

long double 8 2.22507e-308 1.79769e+308

1 byte, 28 = 256

2 bytes, 216 = 65536

4 bytes, 232 = 4294967296

© Copyright by Deitel

37

Errors in Addition of Two Large Integers

/* IntegerError.c

Error in large integer addition

Overflow in integer addition

IntegerError.c

*/

#include <stdio.h>

int main()

{ int A1, A2, A3, B1, B2;

A1 = 1500000000;

A2 = 1500000000;

A3 = 500000000;

B1 = A1 + A2;

B2 = A1 + A3;

printf("A1 + A2 = %d + %d = %d\n", A1, A2, B1);

printf("A1 + A3 = %d + %d = %d\n", A1, A3, B2);

return 0; /* indicates successful termination */

} /* end main */

A1 + A2 = 1500000000 + 1500000000 = -1294967296

A1 + A3 = 1500000000 + 500000000 = 2000000000

int 4 byte

B1=3,000,000,000> 2,147,483,647

B2=2,000,000,000< 2,147,483,647

© Copyright by Deitel

38

Conversion between Types
/*Test integer/float Conversion by calculating 5/3 + 4 testIntFloat.c */

#include <stdio.h>

int main()

{ int A1, A2, A3;

float B1, B2, B3, B4, B5, B6, B7, B8, B9, B10;

A1 = 3;

A2 = 5;

A3 = 4;

B1 = A2/A1 + A3;

B2 = A2/3.0 + A3;

B3 = (float)A2/(float)A1 + A3;

B4 = (float)A2/A1 + A3 ;

B5 = A2/(float)A1 + A3 ;

B6 = A2/A1 + (float)A3 ;

B7 = (float)A3 + A2/A1 ;

B8 = (float)(A2/A1) + A3 ;

B9 = A3 + (float)A2/A1 ;

B10= A2/A1*(float)A1 + A3;

printf(" A1 = 3 ; A2 = 5 ; A3 = 4 \n\n");

printf(" A2/A1 + A3 = %f\n", B1);

printf(" A2/5.0 + A3 = %f\n", B2);

printf(" (float)A2/(float)A1 + A3 = %f\n", B3);

printf(" (float)A2/A1 + A3 = %f\n", B4);

printf(" A2/(float)A1 + A3 = %f\n", B5);

printf(" A2/A1 + (float)A3 = %f\n", B6);

printf(" (float)A3 + A2/A1 = %f\n", B7);

printf(" (float)(A2/A1) + A3 = %f\n", B8);

printf(" A3 + (float)A2/A1 = %f\n", B9);

printf(" A2/A1*(float)A1 + A3 = %f\n", B10);

return 0; /* indicates successful termination */

} /* end main */

Outputs:

A1 = 3 ; A2 = 5 ; A3 = 4

A2/A1 + A3 = 5.000000

A2/3.0 + A3 = 5.666667

(float)A2/(float)A1 + A3 = 5.666667

(float)A2/A1 + A3 = 5.666667

A2/(float)A1 + A3 = 5.666667

A2/A1 + (float)A3 = 5.000000

(float)A3 + A2/A1 = 5.000000

(float)(A2/A1) + A3 = 5.000000

A3 + (float)A2/A1 = 5.666667

A2/A1*(float)A1 + A3 = 7.000000

© Copyright by Deitel

39

Variables

A variable is a named data storage location in your
computer's memory.
Every variable has a name, a type, a size and a value

By using a variable's name in your program, you are, in
effect, referring to the data stored there.

Variable Names
To use variables in your C programs, you must know
how to create variable names. In C, variable names
must adhere to the following rules:

– The name can contain letters, digits, and underscore character (_).
– The first character of the name must be a letter. The underscore is

also a legal first character, but its use is not recommended.
– Case matters (that is, upper- and lowercase letters). Thus, the

names count and Count refer to two different variables.
– C keywords can't be used as variable names. A keyword is a

word that is part of the C language.

© Copyright by Deitel

40

Keywords

© Copyright by Deitel

41

Some Examples of Legal and Illegal C

Variable Names
Variable Name Legality

Percent Legal

y2x5__fg7h Legal, but not advised

annual_profit Legal

_1990_tax Legal but not advised

savings#account Illegal: Contains the illegal character #

double Illegal: Is a C keyword

9winter Illegal: First character is a digit

Because C is case-sensitive, the names percent, PERCENT, and Percent would be

considered as three different variables.

For many compilers, a C variable name can be up to 31 characters long. (It can

actually be longer than that, but the compiler looks at only the first 31 characters of

the name.) With this flexibility, you can create variable names that reflect the data

being stored.

Outline

© Copyright by Deitel

42

Another

Program –

Adding Two

Integers

fig02_05.c

1 /* Fig. 2.5: fig02_05.c

2 Addition program */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int integer1; /* first number to be input by user */

9 int integer2; /* second number to be input by user */

10 int sum; /* variable in which sum will be stored */

11

12 printf("Enter first integer\n"); /* prompt */

13 scanf("%d", &integer1); /* read an integer */

14

15 printf("Enter second integer\n"); /* prompt */

16 scanf("%d", &integer2); /* read an integer */

17

18 sum = integer1 + integer2; /* assign total to sum */

19

20 printf("Sum is %d\n", sum); /* print sum */

21

22 return 0; /* indicate that program ended successfully */

23

24 } /* end function main */

宣告整數變數

int integer1;
變數型態 變數名稱;

從鍵盤讀取整數數值，並放到
變數 integer1 的位置，注意
變數名稱前要加 &

計算部份，將 integer1、
integer2 相加後的結果給
sum

© Copyright by Deitel

43

More on printf() Conversion Specifiers

The format string must contain one conversion specifier for each printed variable.

printf() then displays each variable as directed by its corresponding conversion
specifier. For example, if you're printing a variable that is a signed decimal integer (types
int and long), use the %d conversion specifier. For an unsigned decimal integer (types
unsigned int and unsigned long), use %u. For a floating-point variable (types float and
double), use the %f specifier.

Specifier Meaning Types Converted Examples

%c Single character char A

%d Signed decimal integer int, short 1234

%ld Signed long decimal integer long 1234

%f or
%.3f or
%15.3f

Decimal floating-point number float, double
1234567.890000;
1234567.890

1234567.890

%s Character string char arrays This is a test

%u Unsigned decimal integer unsigned int, unsigned short 1234

%lu Unsigned long decimal integer unsigned long 1234

%e or %E Floating-point value in exponential notation float, double
1.234568e+006;
1.234568E+006

%g or %G Floating-point value in f or e (or E) form,
whichever is shorter float, double 1.23457e+006

© Copyright by Deitel

44/* printf_format testing */

/* Printing floating-point numbers with

floating-point conversion specifiers */

#include <stdio.h>

int main()

{ float test1;

double test2;

test1 = 1234567.890123456789;

test2 = 1234567.890123456789;

printf("%f\t%f\n", test1,test2);

printf("%.3f\t%.3f\n\n", test1,test2);

printf("%.8f\t%.8f\n\n\n", test1,test2);

printf("%e\t%e\n", test1,test2);

printf("%E\t%E\n\n", test1,test2);

printf("%.4e\t%.4e\n\n", test1,test2);

printf("%.10e\t%.10e\n\n\n", test1,test2);

printf("%g\t%g\n", test1,test2);

printf("%G\t%G\n", test1,test2);

return 0; /* indicates successful termination */

} /* end main */

© Copyright by Deitel

45Outputs Format Specifiers

1234567.875000 1234567.890123 "%f\t%f\n"

1234567.875 1234567.890 "%.3f\t%.3f\n\n"

1234567.87500000 1234567.89012346 "%.8f\t%.8f\n\n\n"

1.234568e+006 1.234568e+006 "%e\t%e\n"

1.234568E+006 1.234568E+006 "%E\t%E\n\n"

1.2346e+006 1.2346e+006 "%.4e\t%.4e\n\n“

1.2345678750e+006 1.2345678901e+006 "%.10e\t%.10e\n\n\n"

1.23457e+006 1.23457e+006 "%g\t%g\n"

1.23457E+006 1.23457E+006 "%G\t%G\n"

© Copyright by Deitel

46

Case Study – Converting Miles to Kilometers

• Steps to write a program (repeat)
1. Define the problem to be solved with the computer

2. Design the program’s input/output (what the user should give/see)

3. Break the problem into logical steps to achieve this output

4. Write the program (with an editor)

5. Compile the program

6. Test the program to make sure it performs as you expected

• Step 1: Define Problem:
– Convert Miles to Kilometers

• Step 2: Identify Input/Output
– Input: miles /* the distance in miles */

– Output: kms /* the distance in kilometers */

• Step 3: Devise Algorithm (演算法、演算步驟)
Step 3.1: Get the distance in miles (from keyboard)

Step 3.2: Convert the distance to kilometers

The distance in kilometers is 1.609 times the distance in miles

Step 3.3: Display the distance (on screen)

• Step 4: Write the program

© Copyright by Deitel

47

Case Study – Converting Miles to Kilometers

/*

* program Mile2Km.c

* Converts distance in miles to kilometers.

*/

#include <stdio.h> /* printf, scanf definitions */

int main()

{

float miles, /* input - distance in miles. */

kms, /* output - distance in kilometers */

kms_per_mile; /* conversion constant */

/* Get the distance in miles. */

printf("Enter the distance in miles> ");

scanf("%f", &miles);

/* Convert the distance to kilometers. */

kms_per_mile = 1.609;

kms = kms_per_mile * miles;

/* Display the distance in kilometers. */

printf("That equals %f kilometers.\n", kms);

return 0;

}

© Copyright by Deitel

48

Case Study – Converting Miles to Kilometers

• Step 5: Compile the program

– Using Visual C++ or any ANSI-C Compiler

– If something goes wrong during compiling – syntax errors?

• Step 6: Testing

– To verify the program works properly, enter a few test values of miles (e.g., 10.0
miles).

– If something goes wrong during executing (running) the program – logical errors?

© Copyright by Deitel

49

Exercises
2.7Identify and correct the errors in each of the following statements

(Note: there may be more than one error per statement):
a) scanf("d", value);

ANS: scanf(“%d”, &value);

b) printf("The product of %d and %d is %d"\n, x, y);

ANS: printf("The product of %d and %d is %d\n", x, y, z);

c) firstNumber + secondNumber = sumOfNumbers

ANS: sumOfNumbers = firstNumber + secondNumber;

d) if (number => largest)

largest == number;

ANS: if (number >= largerst)

largest = number;

e) */ Program to determine the largest of three integers
/*

ANS: /* Program to determine the largest of three integers
*/

© Copyright by Deitel

50

Exercises

2.7Identify and correct the errors in each of the following statements
(Note: there may be more than one error per statement):

f) Scanf("%d", anInteger);

ANS: scanf("%d", &anInteger);

g) printf("Remainder of %d divided by %d is\n", x, y, x%y);

ANS: printf("Remainder of %d divided by %d is %d\n", x, y,

x%y);

h) if (x = y);

printf(%d is equal to %d\n", x, y);

ANS: if (x == y) /* ; removed */

printf("%d is equal to %d\n", x, y);

i) print("The sum is %d\n," x + y);

ANS: printf("The sum is %d\n", x + y);

j) Printf("The value you entered is: %d\n, &value);

ANS: printf("The value you entered is: %d\n", value);

© Copyright by Deitel

51

Review

• In this chapter, you have learned:
– To be able to write simple computer programs in C.

– To be able to use simple input and output statements.

– To become familiar with fundamental data types.

– To understand computer memory concepts.

– To be able to use arithmetic operators.

– To understand the precedence (order of evaluation) of
arithmetic operators.

– To be able to write simple decision making statements.

– To understand C’s fundamental and modified data types

© Copyright by Deitel

52

2.7 Data Types and Variables (補充)

