Chapter 2 - Introduction to C
Programming

Outline

2.1 Introduction

2.2 A Simple C Program: Printing a Line of Text

2.3 Another Simple C Program: Adding Two Integers
2.4 Memory Concepts

2.5 Arithmetic in C

2.6 Decision Making: Equality and Relational Operators
2.7 Data Types and Variables (f§ 72 &k})

© Copyright by Deitel

Objectives

* In this chapter, you will learn:

© Copyright by Deitel

To be able to write simple computer programs in C.
To be able to use simple input and output statements.
To become familiar with fundamental data types.

To understand computer memory concepts.

To be able to use arithmetic operators.

To understand the precedence (" % ° order of evaluation)
of arithmetic operators.

To be able to write simple decision making statements.
To understand C’s fundamental and moditied data types

2.1 Introduction

¢ C programming language

Structured and disciplined approach to program design

* Structured programming

Introduced in chapters 3 and 4
Used throughout the remainder of the book

e Steps to write a program

© Copyright by Deitel - -

Define the problem to be solved with the computer

Design the program’s input/output (what the user should
give (Data)/see (Information))

Break the problem into logical steps to achieve this output

Write the program (with an editor)

Compile the program

Test the program to make sure it performs as you expected

2.2 A Simple C Program:
Printing a Line of Text

1

2

3 #include <stdio.h>
4

5

6 int main ()

7 {

8 printf (),
9

10 return

11

12 }

Welcome to C!

« Comments (31f%)
— Text surrounded by /* and */ is ignored by computer
— Text followed by // is ignored by computer (C++ style)
— Used to describe program

« #include <stdio.h>

— Preprocessor directive (7@ ¥ aJ2 E 4y £): Tells computer to load
contents of a certain file (header files, % 2¢ 4%)

- <stdio.h> allows standard input/output operations

© Copyright by Deitel - -

2.2 A Simple C Program:
Printing a Line of Text

1

2

3 #include <stdio.h>
4

5

6 int main ()

7 {

8 printf (),
9

10 return 0O;

11

12 }

Welcome to C!

e int main() B int main(void)
- Each C (and C++) program contains one or more functions, exactly
one of which must be main (# # C 425" % 27 - # main() S #c> @
T rRG - B)
- Parenthesis () is used to indicate a function
- int means that main "returns" an integer value

- Braces ({ and }) indicate a block (#2.5* % #.): The body of every
function must be contained in braces

© Copyright by Deitel - -

2.2 A Simple C Program:
Printing a Line of Text

e printf("welcome to C!\n");

— Instructs computer to perform an action
* i.e., prints the string of characters within quotes (" ") on screen

— Entire line is called a statement (&cif &7)

« All statements must end with a semicolon (;, also known as the
statement terminator)

— Argument ($-#c > 51 k)
Function (argument), e.g.,
printf(“Welcome to C!\n”) ;
— Escape character (\, gz =)
» Indicates that printf should do something out of the ordinary
« \n is the newline character

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text

Escape sequence Description

\n Newline. Position the cursor at the beginning of the next line.
\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Sound the system bell.

\\ Backslash. Insert a backslash character in a string.

\" Double quote. Insert a double-quote character in a string.

Tab: R B

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text
e return O;

— Away to exit a function

— return 0, in this case, means that the program is terminated
normally

« Right brace }

— Indicates end of main has been reached

« Linker
— When a function is called, linker locates it in the library
— Inserts it into object program

— If function name is misspelled, the linker will produce an
error message because it will not be able to find function in
the library

© Copyright by Deitel

Basics of a Typical C Program Development
Environment

* Phases of C Programs:

1. Edit

2. Preprocess
3. Compile
4. Link

5. Load

6

Execute

© Copyright by Deitel

Editor

Preprocessor

Compiler

Linker

a, Phase |
I Programmer creates program
Disk in the editor and stores it on

=>

Disk

disk.

Phase 2:
* Preprocessor program
processes the code.

Phase 3:

{ Compiler creates
object code and stores
it on disk.

Phase 4:

Linker links the object

* code with the libraries,
creates an executable file and
stores it on disk.

Fig. 1.1 | Typical C development environment. (Part | of 2.)

10

Basics of a Typical C Program Development
Environment

* Phases of C Programs:

Primary 3\

E d i t Memory
Loader I—»

Preprocess

Phase 5:
» Loader puts program
in memory.

1

2

3. Compile

4. Link e
5

6

Phase 6:

CPU takes each
instruction and

» executes it, possibly
storing new data
values as the program
executes.

Load

Execute

Fig. 1.1 | Typical C development environment. (Part 2 of 2.)

© Copyright by Deitel - -

12
13

/* Fig. 2.3: fig02_03.c
Printing on one line with two printf statements */
#include <stdio.h>

/* function main begins program execution */
int mainQ)

{
printf("welcome ");

printf("to c!\n");

return 0; /* indicate that program ended successfully */

} /* end function main */

Welcome to C!

© Copyright by Deitel

A Outline
W
fig02_03.c

Program Output

11

1 /* Fig. 2.4: fig02_04.c A 12
2 Printing multiple lines with a single printf */ Outline
3 #include <stdio.h> v

4 fig02_04.c

5 /* function main begins program execution */

6 1int main(Q)

7 A{

8 printf("welcome\nto\nc!\n");

9

10 return 0; /* indicate that program ended successfully */

11

12 } /* end function main */

Welcome

to Program Output
c!

© Copyright by Deitel

13

Debug the Following Source Code

Identify and correct the errors in the following program:

1

2

3 #include <stdio.h>;
4

5

6 int main();

7 {

8 print()
9

10 return

11

12

Ans:

3 #include <stdio.h>

6 int main ()

8 printf () ;
12}

© Copyright by Deitel

14

Debug the Following Source Code

Identify and correct the errors in the following program:

1

2

3 #include <stdio.h>

4

5

6 int Main/()

7 {

8 printf (),
9

10 return

11 }

12

Ans

1

2 int main ()

8 printf (),

© Copyright by Deitel

Another Simple C Program -
Adding Two Integers

15

© 00 N O O B~ W N P

N NN P P R R R PR R
N B O © 00 N O U1 M W N B O

23
24

/* Fig. 2.5: fig02_05.c
Addition program */
#include <stdio.h>

/* function main begins program execution *

int main(Q)

{

I‘k 16

%

PR
int integerl;
EURUSE o Eap

Outline
4

Another

int integerl; /* first number to be input by user */
int integer2; /* second number to be input by user */
int sum; /* variable in which sum will be stored */

printf("Enter first integer\n"); /*
scanf("%d", &integerl); /*

prompt */

read an integer

printf("Enter second integer\n"); /*
scanf("%d", &integer2); /4

prompt */

read an integer *

-

sum = integerl + integer2; /*

assign total to

sum */

Program —
Adding Two
Integers

fig02_05.c

G b = Tl At
% #cintegerl chiz ¥ > 1 &
RBE-HD & 4 &

printf("Sum 1is %d\n", sum); /*

print sum */

return 0; /* indicate that program ended successfully

} /* end function main */

© Copyright by Deitel

3 E i o #-integerl -
integer?2 1p4e i kg % X
sum

17

. Outline

Program Output

© Copyright by Deitel

2.3 Another Simple C Program:

Adding Two Integers
» As before

— Comments, #include <stdio.h>and int main()

e« int integerl, integer2, sum;
— Definition of variables
« Variables: locations in memory where a value can be stored
— 1int means the variables can hold integers (-1, 3, 0, 47)
— Variable names (identifiers)
e integerl, integer2, sum

« |dentifiers: consist of letters, digits (cannot begin with a digit)
and underscores (_). They are case sensitive.

— Definitions must appear before executable statements

« |f an executable statement references an undeclared variable it
will produce a syntax (compiler) error

© Copyright by Deitel - -

18

2.3 Another Simple C Program:
Adding Two Integers
e scanf("%d", &integerl);
— Obtains a value from the user
« scanf uses standard input (usually keyboard)
— This scanf statement has two arguments

« %d - indicates data should be a decimal integer

« &integerl - location in memory to store variable (~ rja«fa\
dp o F i B integer] Az fRAg g g)

« & is confusing in beginning — for now, just remember to
include it with the variable name in scanf statements. It will
be discussed later (i.e., concept of pointer)

— When executing the program the user responds to the
scanf statement by

1. typing in a number, then
2. pressing the enter (return) key

© Copyright by Deitel - -

19

2.3 Another Simple C Program:
Adding Two Integers

« = (assignment operator)
— Assigns a value (on the right) to a variable (on the left)

— Is a binary operator (has two operands)
sum = variablel + variable?2;
sum gets variablel + variable2;

— Variable receiving value is on the left
e printf("Sum 1is %d\n", sum);
— Similar to scanf

« %d means decimal integer will be printed
« sum specifies what integer will be printed

— Calculations can be performed inside printf statements
printf("Sum is %d\n", integerl + integer2);

© Copyright by Deitel - -

20

2.4 Memory Concepts

e \ariables

— Variable names correspond to locations in the computer's
memory

— Every variable has:
(1) a name, (2) a type, (3) a size and (4) a value

— Whenever a new value is placed into a variable (through
scanf, for example), it replaces (and destroys) the previous
value

— Reading variables from the corresponding memory does not
change them

© Copyright by Deitel

21

2.4 Memory Concepts

A visual representation

integerl 45

integer?2 72

Fig. 2.7 | Memory locations after both variables are input.

integerl 45
integer? 72
sum 117

Fig. 2.8 | Memory locations after a calculation.

© Copyright by Deitel - -

22

2.5 Arithmetic

 Arithmetic calculations
— Use * for multiplication and / for division
— Integer division (/) truncates remainder
« 7/ 5evaluatesto 1

— Modulus operator (%) returns the remainder
e 7% 5 evaluates to 2

» QOperator precedence (:Ew‘t g)
— Some arithmetic operators act before others (e.g.,
multiplication before addition)
 Use parenthesis when needed

— Example: Find the average of three variables a, b and c
e Donotuse: a + b + c / 3

e Use: (a+ b+c) /3

© Copyright by Deitel - -

23

2.5

Arithmetic

Addition + f+7 f+7
Subtraction - p—c p-c
Multiplication * bm b * m
Division / x/yor)—c or x+y x /'y
Remainder % r mod s r%s

Precedence of arithmetic operators.
C) Parentheses Evaluated first. If the parentheses are nested,

Muldiplication

Division
Remainder

Addition

Subtraction

the expression in the innermost pair is evalu-

ated first. If there are several pairs of parenthe-
(44 » .

ses “on the same level” (i.e., not nested),

they’re evaluated left to right.

Evaluated second. If there are several, they're
evaluated left to right.

Evaluated last. If there are several, they're eval-
uated left to right.

© Copyright by Deitel

24

2.5 Arithmetic

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

y

2 *5 %5 4+ 3 %5 4+ 7;
2 * 5 1is 10

;________J

10 * 5 + 3 * 5 + 7;

10 * 5 is 50

|
\
50 + 3 %5 + 7;

3 * 5 4s 15
50 + 15 + 7;
50 + 15 1is 65
I

\
65 + 7;
65 + 7 1s 72

|
\
72

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in'y)

Fig. 2.11 | Orderin which a second-degree polynomial is evaluated.

© Copyright by Deitel

25

2.6 Decision Making: Equality and
Relational Operators

« Two types of executable statements
— Perform actions (calculations, input/output of data)
— Perform decisions, e.g., print "pass" or "fail" given the
value of a test grade
1T control statement
— Simple version in this section, more detail later

— If a condition is true, then the body of the i f statement
executed

« 0is false, non-zerois true
— Control always resumes after the 1 f structure

« Keywords
— Special words reserved for C
— Cannot be used as identifiers or variable names

© Copyright by Deitel - -

26

2.6 Decision Making: Equality and
Relational Operators

C equality or Example
Algebraic equality or relational of C
relational operator operator condition Meaning of C condition
Equality operators
= == X == x is equal to y
* = X =y x is not equal to y
Relational operators
> > X >y x is greater than y
< < X <y x is less than y
> >= X >= Yy x is greater than or equal to y
< <= X <=y x is less than or equal to y

© Copyright by Deitel

© 00 N o o b~ W N PP

10

12
13
14
15
16
17
18
19
20
21
22
23
24

©

/* Fig. 2.13: fig02_13.c
Using if statements, relational
operators, and equality operators */
#include <stdio.h>

/* function main begins program execution */

int mainQ

{
int numl; /* first number to be read from user */
int num2; /* second number to be read from user */

printf("Enter two integers, and I will tell you\n");
printf("the relationships they satisfy: ");

scanf("%d%d", &numl, &um2); /* read two integers */

if (numl == num2) {
printf("%d is equal to %d\n", numl, num2);
} /* end if */

if (numl !'= num2) {
printf("%d is not equal to %d\n", numl, num2);
} /* end if */

Question:

if (R)

HITEEFRIE??

Copyright by Deitel o O

printf(“This is a test.\n”); \\\\\

A
v

fig02_13.c (Part 1

Outline

of 2)

if (RO)
{

statement 1;

statement 2;

R AT -

BLABCR &SR R AV ER (T 5
}

BKE > WERHE—(F statement HF
» B bR

if(FRAEC)

statement ;

28

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

if (numl < num2) {
printf("%d is less than %d\n", numl, num2);
} /* end if */

if (numl > num2) {
printf("%d is greater than %d\n", numl, num2);
} /¥ end if */

A

Outline

\'%

if (numl <= num2) {
printf("%d is less than or equal to %d\n", numl, num2);
} /* end if */

if (numl >= num2) {
printf("%d is greater than or equal to %d\n", numl, num2);
} /* end if */

return 0; /* indicate that program ended successfully */

43 } /* end function main */

Enter two integers, and I will tell you
the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

© Copyright by Deitel

fig02_13.c (Part 2
of 2)

Program Output

29

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

© Copyright by Deitel

A

Outline

\'%

Program Output
(continued)

30

if(fFREF=L)

{

statement 1;
statement 2;
statement 3;

if(FReF=L)

{

statement 1;
statement 2;

statement 3;

© Copyright by Deitel

More on If Statements

if(FRA=)

if(PRfAF=)

statement 1;

statement 2;
statement 3;

statement 1;
statement 2;
statement 3;

31

2.6 Decision Making: Equality and

Operators Associativity

O

Relational Operators

left to right
left to right
left to right
left to right
left to right
right to left

Precedence and associativity of the operators discussed so far.

© Copyright by Deitel

32

2.7 Data Types and Variables

e (C’s Fundamental Data Type
- int Integral numbers such as 1, 2, 3 and so on
- float Low/medium precision real numbers
- double Medium/high precision real numbers
~ char Text characters such as ‘a’, ‘b’, ‘@’ and so on

e (C’s Modified Data Type

- short int small to medium sized integral numbers

- long int Medium to large sized integral numbers,
such as -245 563, 123 456

© Copyright by Deitel

33

#include <stdio.h>

main ()

{

printf("\nA char
printf("\nAn int

is %d bytes", sizeof(char));
is %d bytes", sizeof(int));

printf("\nA short is %d bytes", sizeof(short));

printf("\nA long

is %d bytes", sizeof(long));

printf("\nAn unsigned char is %d bytes", sizeof(unsigned char));
printf("\nAn unsigned int is %d bytes", sizeof(unsigned int));

printf("\nAn unsigned short is %d bytes", sizeof(unsigned short));
printf("\nAn unsigned long is %d bytes", sizeof(unsigned long));

printf("\nA float is %d bytes", sizeof(float));
printf("\nA double is %d bytes", sizeof(double));
printf("\nA long double is %d bytes\n", sizeof(long double));
return O;

}

A char is 1 Dbytes

An int is 4 Dbytes

A short is 2 Dbytes

A long is 4 Dbytes

An unsigned char is 1 bytes

An unsigned int is 4 Dbytes

An unsigned short is 2 bytes

An unsigned long is 4 Dbytes

A float is 4 Dbytes

A double is 8 bytes

A long double is 8 bytes - for Visual C++ Compiler

A long double is 10 bytes - for Borland Compiler

© Copyright by Deitel

34

Binary Digits (bit): 1 and 0

— The computer can combine the two digital states to represent letters, numbers, colors, sounds,
Images, shapes, and even odors.

— An “on” or “off” electronic state is represented by a bit, short for binary digit

Encoding Systems: Bits ({i77t) and Bytes (fiz yT4H)

— Bits are combined according to an encoding system to represent letters, numbers, and special
characters, collectively referred to as alphanumeric characters

— The combination of bits used to represent a character is called a byte (Binary Term, 8 bits/byte)
— 8 bits = byte
Representation of a Character
— ASCII (American Standard Code for Information Interchange) is the most popular encoding
system for PCs and data communication

ASCII - 7 bits

ANSI — 8 bits/byte

UNICODE - 16 bits

. Big5 — 16 bits

Storage Capacities
— KB (kilobyte) = 210 Bytes = 1,024 Bytes =~ 103 Bytes
— MB (megabyte) = 220 Bytes = 1,024 KB = 1,048,576 Bytes ~ 10° Bytes
— GB (gigabyte) = 230 Bytes = 1,024 MB ~ 10° Bytes
— TB (terabyte) = 240 Bytes = 1,024 GB ~ 102 Bytes

© Copyright by Deitel - -

35

36

Typical Size and Range of Data Types

For Borland Compiler

Data Type Size Bytes Min value Max value
char 1 -128 127

short 1int 2 -32768 32767
int 4 -2147483648 2147483647

Tong 1int 4 -2147483648 2147483647
float 4 1.17549e-38 3.40282e+38
double 8 2.22507e-308 1.79769e+308

Tong double 10 3.3621e-4932 1.18973e+4932

For Visual C++ and C Compiler

Data Type Size Bytes Min value Max Value
char 1 -128 127

short 1int 2 -32768 32767
int 4 -2147483648 2147483647

Tong int 4 -2147483648 2147483647
float 4 1.17549e-38 3.40282e+38
double 8 2.22507e-308 1.79769e+308

Tong double 8 2.22507e-308 1.79769e+308

© Copyright by Deitel - -

1 byte, 28 =256
2 bytes, 216 = 65536
4 bytes, 232 = 4294967296

Errors in Addition of Two Large Integers

/* IntegerError.c
Error in large integer addition
Overflow in integer addition
IntegerError.c

*/
#include <stdio.h>

int main()
{ int Al, A2, A3, Bl, B2;

Al = 1500000000;

A2 = 1500000000;
A3 = 500000000;
Bl = Al + A2;

B2 = Al + A3;

printf("Al + A2 3d + 3d
printf("Al + A3 = %d + %d

return 0; /* indicates successf
} /* end main */

Al + A2 = 1500000000 + 1500000000
Al + A3 = 1500000000 + 500000000 =

© Copyright by Deitel - -

int 4 byte
B1=3,000,000,000> 2,147,483,647
B2=2,000,000,000< 2,147,483,647

$d\n", Al, A2, Bl);
$d\n", Al, A3, B2);

ul termination */

= -1294967296
2000000000

37

/*Test integer/float Conversion by calculating 5/3 + 4 testIntFloat.c */

Conversion between Types

#include <stdio.h>

int main()

{ int Al, A2, A3;

float B1, B2, B3, B4, B5, B6, B7, B8, B9, B1O;

Al = 3;

A2 = 5;

A3 = 4;

Bl = A2/Al + A3;

B2 = A2/3.0 + A3;

B3 = (float)A2/(float)Al + A3;
B4 = (float)A2/Al + A3

B5 = A2/ (float)Al + A3

B6 = A2/Al1 + (float)A3

B7 = (float)A3 + A2/Al ;
B8 = (float) (A2/Al) + A3 ;

B9 = A3 + (float)A2/Al ;
B10= A2/Al* (float)Al + A3;

printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (

return O;

Al =3 ; A2 =5 ; A3 = 4 \n\n");

A2/A1 + A3

A2/5.0 + A3

(float)A2/ (float)Al + A3
(float)A2/Al + A3

A2/ (float)Al + A3

A2/Al + (float)A3
(float)A3 + A2/Al
(float) (A2/A1) + A3

A3 + (float)A2/Al

A2/Al* (float)Al + A3

/* indicates successful termination

} /* end main */

© Copyright by Deitel

$£f\n",
$£f\n",
%$£f\n",
$f\n",
$f\n",
$f\n",
$f\n",
$f\n",
$f\n",
$f\n",

Bl);
B2) ;
B3);
B4) ;
BS) ;
B6) ;
B7) ;
B8) ;
BY9) ;
B10) ;

Outputs:

A2/Al1 + A3

A2/3.0 + A3

(float)A2/ (float)Al + A3
(float)A2/Al1 + A3

A2/ (float)Al + A3

A2/Al1 + (float)A3
(float)A3 + A2/Al
(float) (A2/A1) + A3

A3 + (float)A2/Al

A2/Al* (float)Al + A3

4N 00 o o i1 b

.000000
.666667
.666667
.666667
.666667
.000000
.000000
.000000
.666667
.000000

38

Variables

A variable is a named data storage location in your
computer's memory.

Every variable has a name, a type, a size and a value

Bty using a variable's name in your program, you are, in
etfect, referring to the data stored there.

Variable Names

To use variables in your C programs, you must know
how to create variable names. In C, variable names
must adhere to the following rules:

— The name can contain letters, digits, and underscore character ().

— The first character of the name must be a letter. The underscore is
also a legal first character, but its use is not recommended.

— Case matters (that is, upper- and lowercase letters). Thus, the
names count and Count refer to two different variables.

- C keywords can't be used as variable names. A keyword is a
word that is part of the C language.

© Copyright by Deitel - -

39

Keywords

Keywords

auto double
break else
case enum
char extern
const float
continue for
default goto
do if
Keywords added in C99

_Bool _Complex _Imaginary inline

© Copyright by Deitel

int

Tong
register
return
short
signed
sizeof
static

restrict

struct
switch
typedef
union
unsigned
void
volatile
while

40

Some Examples of Legal and lllegal C
Variable Names

Variable Name Legality
Percent Legal
y2x5 fg7h Legal, but not advised
annual profit Legal
1990 tax Legal but not advised
savings#account Illegal: Contains the illegal character #
double Illegal: Is a C keyword
9winter Illegal: First character is a digit

Because C is case-sensitive, the names percent, PERCENT, and Percent would be

considered as three different va

riables.

For many compilers, a C variable name can be up to 31 characters long. (It can
actually be longer than that, but the compiler looks at only the first 31 characters of
the name.) With this flexibility, you can create variable names that reflect the data

being stored.

© Copyright by Deitel

41

© 00 N O O B~ W N P

N NN P P R R R PR R
N B O © 00 N O U1 M W N B O

23
24

/* Fig. 2.5: fig02_05.c
Addition program */
#include <stdio.h>

/* function main begins program execution *

int main(Q)

{

A 42

%

PR
int integerl;
EURUSE o Eap

Outline
4

Another

int integerl; /* first number to be input by user */
int integer2; /* second number to be input by user */
int sum; /* variable in which sum will be stored */

printf("Enter first integer\n"); /*
scanf("%d", &integerl); /*

prompt */

read an integer

printf("Enter second integer\n"); /*
scanf("%d", &integer2); /4

prompt */

read an integer *

-

sum = integerl + integer2; /*

assign total to

sum */

Program —
Adding Two
Integers

fig02_05.c

G b = Tl At
% #cintegerl chiz ¥ > 1 &
RBE-HD & 4 &

printf("Sum 1is %d\n", sum); /*

print sum */

return 0; /* indicate that program ended successfully

} /* end function main */

© Copyright by Deitel

3 E i o #-integerl -
integer?2 1p4e i kg % X
sum

43

More on printf() Conversion Specifiers

The format string must contain one conversion specifier for each printed variable.

printf () then displays each variable as directed by its corresponding conversion
specifier. For example, if you're printing a variable that is a signed decimal integer (types
int and long), use the $d conversion specifier. For an unsigned decimal integer (types
unsigned int and unsigned long), use $u. For a floating-point variable (types float and
double), use the % £ specifier.

Specifier Meaning Types Converted Examples
%c Single character char A
%d Signed decimal integer int, short 1234
$1d Signed long decimal integer long 1234
$f or 1234567.890000;
%.3f or Decimal floating-point number float, double 1234567.890
%$15.3f 1234567.890
%s Character string char arrays This is a test
$u Unsigned decimal integer unsigned int, unsigned short 1234
$1lu Unsigned long decimal integer unsigned long 1234
. 1.234568e+006;

%e or %E | Floating-point value in exponential notation float, double 1. 534568E+006
sg or s | Floating-pointvalue infore (or E) form, float, double 1.23457e+006

whichever is shorter ')

© Copyright by Deitel - -

/* printf format testing */
/* Printing floating-point numbers with
floating-point conversion specifiers */

#include <stdio.h>

int main ()

{ float testl;
double test2;

testl =
test2 =

printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (

1234567.890123456789;
1234567.890123456789;

"$E\t$£\n",
"%$.3£\t%.3£f\n\n",
"$.8f\t%.8£f\n\n\n",
"se\t%e\n",
"$E\t%E\n\n",
"%.4e\t%.4e\n\n",
"$.10e\t%.10e\n\n\n",
"%g\tsg\n",
"$G\t3G\n",

testl, test2
testl, test2
testl, test2
testl, test2
testl, test2
testl, test2
testl, test2
testl, test2
testl, test2

e ~e ~e

. Ne

e e e

N e N N e P P P
~

Ne

return 0; /* indicates successful termination */

} /* end main */

© Copyright by Deitel

44

Outputs

1234567.875000 1234567.890123
1234567.890

1234567.875

1234567.87500000

1.234568e+006
1.234568E+006

1.2346e+006

1.
1.

1.

1.2345678750e+006

1.23457e+006
1.23457E+006

© Copyright by Deitel

1.

1

1234567.89012346

234568e+006

234568E+006

2346e+006

1.2345678901e+006

23457e+006

.23457E+006

Format Specifiers

"$Ef\t$f\n"
"%.3f\t%.3f\n\n"

"%.8f\t%.8f\n\n\n"
"se\t%e\n"
"$SE\t%E\n\n"
"%.4e\t%.4e\n\n"
"%.10e\t%.10e\n\n\n"

"$g\tsg\n"
"%G\t2G\n"

45

Case Study — Converting Miles to Kilometers

. Steps to write a program (repeat)

Define the problem to be solved with the computer

Design the program’s input/output (what the user should give/see)
Break the problem into logical steps to achieve this output

Write the program (with an editor)

Compile the program

Test the program to make sure it performs as you expected

. Step 1: Define Problem:

— Convert Miles to Kilometers

. Step 2: Identify Input/Output

- Input: miles /* the distance in miles */
- Output: kms /* the distance in kilometers */

« Step 3: Devise Algorithm (i# & i ~ /& & ¥ 2%)
Step 3.1: Get the distance in miles (from keyboard)
Step 3.2: Convert the distance to kilometers
The distance in kilometers is 1.609 times the distance in miles
Step 3.3: Display the distance (on screen)

Step 4: Write the program

ok whE

© Copyright by Deitel

46

Case Study — Converting Miles to Kilometers

/*
* program Mile2Km.c
* Converts distance in miles

*/
#include <stdio.h>

int main|()
{
float miles, /*
kms, /*
kms_per mile; /*

to kilometers.

/* printf, scanf definitions */

input - distance in miles. */
output - distance in kilometers */
conversion constant */

/* Get the distance in miles. */
printf ("Enter the distance in miles> ");

scanf ("%f", &miles);

/* Convert the distance to kilometers. */

kms per mile = 1.609;

kms = kms_per_mile * miles;

/* Display the distance in kilometers. */
printf ("That equals %f kilometers.\n", kms);

return O;

© Copyright by Deitel

47

Case Study — Converting Miles to Kilometers

* Step 5: Compile the program
- Using Visual C++ or any ANSI-C Compiler
- If something goes wrong during compiling - syntax errors?
e Step 6: Testing
- To verify the program works properly, enter a few test values of miles (e.g., 10.0
miles).
- If something goes wrong during executing (running) the program - logical errors?

g-vDos prompt =0l x);
M:\>

fM:\>cl Miles2km.c
fMicrosoft (R) 32-bit C/C++ Optimizing Compiler Uersion 12.00.8804 for 80x86 i
liCopyright (C) Microsoft Corp 1984-1998. All rights reserved.

Miles2km.c]
fiMicrosoft (R) Incremental Linker Uersion 6.00.8447 i
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Bl /out :Miles2km.exe
Miles2km.obj

Bl -\ >Miles2km
Enter the distance in miles> 10.0
That equals 16.090000 kilometers.

M:\>Miles2km
JEnter the distance in miles> 20.0
liThat equals 32.179999 kilometers.

M:\>Miles2km
Enter the distance in miles> 12345.678
That equals 19864.195074 kilometers.

M:y>

© Copyright by Deitel

49

Exercises

2.71dentify and correct the errors in each of the following statements
(Note: there may be more than one error per statement):

a) scanf("d", value);
ANS: scanf(“%d”, &value);
b) printf("The product of %d and %d is %d"\n, x, y)’
ANS: printf("The product of %d and %d is %d\n", x, y, z);
c) firstNumber + secondNumber = sumOfNumbers
ANS: sumOfNumbers = firstNumber + secondNumber;
d) if (number => largest)

largest == number;
ANS: if (number >= largerst)

largest = number;
e) ;/ Program to determine the largest of three integers
*

ANS: /* Program to determine the largest of three integers

*/

© Copyright by Deitel

Exercises

2.71dentify and correct the errors in each of the following statements
(Note: there may be more than one error per statement):
f) Scanf("%d", anInteger)
ANS: scanf("%d", &anInteger),
g) printf ("Remainder of %d divided by %d is\n", x, y, x%y);
ANS: printf("Remainder of %d divided by %d is %d\n", x, vy,
X3y)7/
h) if (x =y)’
printf(%d is equal to %d\n", x, y);

ANS: if (x ==y) /* ; removed */

printf("%d is equal to %d\n", x, y);
i) print("The sum is %d\n," x + y);
ANS: printf("The sum is %d\n", x + y);
j) Printf("The value you entered is: %d\n, &value);

ANS: printf("The value you entered is: %d\n", value);

© Copyright by Deitel - -

50

Review

* In this chapter, you have learned:

© Copyright by Deitel

To be able to write simple computer programs in C.
To be able to use simple input and output statements.
To become familiar with fundamental data types.

To understand computer memory concepts.

To be able to use arithmetic operators.

To understand the precedence (order of evaluation) of
arithmetic operators.

To be able to write simple decision making statements.
To understand C’s fundamental and moditied data types

o1

2.7 Data Types and Variables (f7%)

i<] BitViewer - Unsigned Integer BEX
Options Data Type Help
B
Value: ‘1“““ | _:t:s
Hex: ‘uauuasEs | 2
X & 4
-~
< | > | ws| 1s | Eip |

OGO OO IO SOOI T T T HO

i=] BitViewer - Signed Integer

Options Data Type Help
Value: |1ﬂﬂl?4 | E:tef
Hex: |BBBBB3E8 | 2
~ 4
< | > | os | 1s | Fip | :
IEEEEE Ry E R R ENNNNNENEEE

i< BitViewer - Floating-Point Real FEX
Options Data Type Help
B
Value: [1006 |
Hex: |1m?nm]ua | 3
x & 1
8

< | > | os | 1s | Fip |

OLHOIGIOHTIOIGHOL [T O OO OO OO

© Copyright by Deitel

=1 BitViewer - Floating-Point Real [Z]@[X]
Options Data Type Help
B
Value: [1900 | —:"ES
Hex: |uusmuuuuuuuuaua | e
X -
“ 8
< | > | os | 1s | Eip |

OGO ORI AR AR AOICROIICE O
(L OICICIOIOIC IO 11T 1T O OO

52

