Solution of Equations by Iteration

We begin with methods of finding solutions of a single
equation

(1) fx)=0

where £ Is a given function.

A solution of (1) is a value x = s such that f(s) = 0.
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Fixed-Point Iteration

In one way or another we transform (1) algebraically into the
form

(2) X = g(x).

Then we choose an x, and compute x; = d(Xy), X, = g(X;), and in
general
(3) X,41 = &(x,) (n=20,1,---).
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A solution of (2) is called a fixed point of g, motivating
the name of the method. This is a solution of (1), since

from x = g(X) we can return to the original form f(x) = 0.

From (1) we may get several different forms of (2). The
behavior of corresponding iterative sequences X,, X;, - -+

may differ, in particular, with respect to their speed of
convergence.

Indeed, some of them may not converge at all.
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EXAMPLE1

f(x) = x?>—3x + 1 =0. We know the solutions are
x = 1.5 = V1.5, thus 2.618 034 and 0.381 966,
Solution. The equation may be written
(4a)

x = g1lx) = %(_,xz + 1), thus Xp41 = g(__xnz + 1).
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Function (4a)

(1) If we choose x, = 1, we obtain the sequence
xo = 1.000, x; = 0667, xp=0481, x3=0411, x4=0.390, -
which seems to approach the smaller solution.

(2) If we choose x, = 2, the situation is similar.

(3) If we choose x, = 3, we obtain the sequence

xg = 3.000, xq = 3.333, xo = 4.037, xz = 5.766, xg = 11415, - -~

which diverges.
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Function (4b)

Our equation may also be written (divide by x)
(4b) X = golx) =3 — lr : thus Xp41 =3 — —,

(1) If we choose x, = 1, we obtain the sequence

Xo — IOOO X1 — 2000 Xo = 2500 Xg = 2600 Xq — 26]5 et

which seems to approach the larger solution.

(2) If we choose x, = 3, we obtain the sequence

Xo = 3.000,  x; = 2667, xg=2.625 xg=2619, x;=26I8 -,
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Observations

* Our figures show the following. In the lower part of Fig.
423a the slope of g,(x) is less than the slope of y = x, which
Is 1, thus |g',(X)| < 1, and we seem to have convergence. In
the upper part, g,(x) Is steeper (g',(x) > 1) and we have
divergence.

* In Fig. 423b the slope of g,(x) is less near the intersection
point (x = 2.618, fixed point of g,, solution of f(x) = 0), and
poth sequences seem to converge.

* From all this we conclude that convergence seems to depend
on the fact that in a neighborhood of a solution the curve of
g(x) Is less steep than the straight line y = x, and we shall
now see that this condition |g'(X)| < 1 (= slope of y = X) Is
sufficient for convergence.
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F19.423. Example 1, iterations (4a) and (4b)

g,(x)

8,(x)

(a) (b)
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® THEOREM 1

Convergence of Fixed-Point lteration

Let x = s be a solution of x = g(x) and suppose that g has a
continuous derivative in some interval J containing s.

Then if |[g'(X)] <K < 1inJ, the iteration process defined by (3)
converges for any x, in J, and the limit of the sequence {x.} Is
S.
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EXAMPLE?2

fX)=x3+x=1=0

Solution. A sketch shows that a solution lies near x = 1. We
may write the equation as (x? + 1)x =1 or

- o - ] Al , o2
x=g(x) = e sothat  x,,1 = Ty SO lg1(0)| = T
for any x because 4x4/(1 + x2)* = 4x?/(1 + 4x> + - ---) < 1, SO

that by Theorem 1 we have convergence for any X,
Choosing x, = 1, we obtain (Fig. 424)

x; = 0.500, xy = 0.800, x5 = 0.610, x;, =0.729, x5 = 0.653, xg = 0.701, - - -.

The solution1s s = 0.682 328.
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The given equation may also be written
X = golx) = 1 — x°. Then |g5(x)| = 3x?

and this is greater than 1 near the solution, so that we cannot
apply Theorem 1 and assert convergence. Try X, = 1, X5 =
0.5, X, = 2 and see what happens.

The example shows that the transformation of a given f(x) = 0
into the form x = g(x) with g satisfying |g'(x)| < K < 1 may
need some experimentation.
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FI19.424. Iteration in Example 2
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Newton’s Method

Newton’s method, also known as Newton-Raphson’s
method, is another iteration method for solving equations f(x)
= 0, where £ Is assumed to have a continuous derivative f'.

The underlying idea Is that we approximate the graph of f by
suitable tangents. Using an approximate value x, obtained from
the graph of f, we let x, be the point of intersection of the x-
axis and the tangent to the curve of f at X, (see Fig. 425). Then

, f(xo) f(xo)
tan B = f'(xg) = ———, hence X3 = X0 — ;..
Xo — X1 f (-XO)
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General Formula

One can algebraically solve the approximated Taylor’s
expansion

(5) f(xnle) =~ f(xn) T (‘X'}”L—f—l o x'n)ff(xn) = 0.
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F19.425. Newton’s method
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ALGORITHM NEWTON (f, f', xo. € N)

This algorithm computes a solution of f(x) = 0 given an initial approximation x, (starting
value of the iteration). Here the function f(x) is continuous and has a continuous
derivative f’(x).

INPUT: f, f ’, initial approximation xg, tolerance € > 0, maximum number of
iterations N.

OUTPUT: Approximate solution x,, (n = N) or message of failure.
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Pseudo Code

Forn=0,1,2,---,N — 1 do:
1 Compute f '(xﬁ).
2 It f ’(xn_) = ( then OUTPUT *“Failure”. Stop.

[Procedure completed unsuccessfully]

3 Else compute
(X)
5 X1 = Xp — f, —
£
4 If |x,,+1 — X,,| = €|x,| then OUTPUT x,,. 4. Stop.

[Procedure completed successfully]

End
5 OUTPUT “Failure™. Stop.
[Procedure completed unsuccessfully after N iterations]

End NEWTON
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EXAMPLES3

Compute the square root x of a given positive number ¢ and
apply ittoc = 2.

Solution. We have x = Vchence f(X) =x2—c =0, f'(x) = 2x,
and (5) takes the form

2
X,- — ¢C ] C
Xp+l = Xy — = 5 Xy, + — .
2*’5-}1 An

For c = 2, choosing x, = 1, we obtain

x; = 1500000, xo = 1416667, x5 = 1414216, x, = 1414214, - - .

X, IS exact to 6D.
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EXAMPLE
2 SIn X =X

Solution.

Setting f(X) = x — 2 sin X, we have f'(X) =1 — 2 cos x, and (5)
gives

X, — 2sinx,, 2(sin x,, — Xx,, COS X,,) N,

In+l = An o o :
Il — 2cosx, I — 2 cos x, D,
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From the graph of f we conclude that the solution is near

X = 2. We compute:

n Xn Nn D'n, Xn+1

0 2.00000 3.48318 1.83229 1.90100
] 1.90100 3.12470 1.64847 1.89552
2 1.89552 3.10500 1.63809 1.89550
3 1.89550 3.10493 1.63806 1.89549

X, = 1.89549 is exact to 5D
the exact solution to 6D 1s 1.895 494.
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EXAMPLE 5

fX)=x3+x-1=0

Solution. From (5) we have

x.n_B + x, — 1 2,\:.},1_3 + 1

Xyl = X — : = ‘ :
" " 3,2 + 1 3,2 + 1

Starting from x, = 1, we obtain

x1 = 0.750 000, xo = 0.686 047, xg = 0.682 340, x4 = 0.682 328, - - -

where x, has the error -1 + 10° A comparison with
Example 2 shows that the present convergence is much
more rapid.
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Difficulties in Newton’s Method

Difficulties may arise if |f'(x)| is very small near a solution s of
f(x) = 0. Geometrically, small |f'(x)| means that the tangent of
f(xX) near s almost coincides with the x-axis (so that double
precision may be needed to get f(X) and f'(X) accurately
enough).

In this case we call the equation f(x) = 0 ill-conditioned.
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EXAMPLE 6 An lll-Conditioned Equation

* f(x) = x> + 10%x = 0 is ill-conditioned. x = 0 is a
solution. f'(0) = 104 is small. At s = 0.1 the residual
f(0.1) = 2 + 10~ is small, but the error —-0.1 is larger in
absolute value by a factor 5000. Invent a more drastic
example of your own.
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Secant Method

Newton’s method is very powerful but has the disadvantage
that the derivative f' may sometimes be a far more difficult
expression than f itself and its evaluation therefore
computationally expensive.

This situation suggests the idea of replacing the derivative with
the difference quotient

f(x'n,) o f(x-n—l)

"){"}’L - .){-.n_ 1

- f
f () =
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F19.426. Secant method

y=1x)] /Secant
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Then instead of (5) we have the formula of the popular secant
method

| _ B | Xn An—1
(10) Xn+1 Xn f(xn) f(x%) — f(xn—l) .
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Geometrically, we intersect the x-axis at x.,, with the secant of
f(x) passing through P, , and P, in Fig. 426.

We need two starting values x, and X;.
Evaluation of derivatives is now avoided.

It can be shown that convergence is almost like Newton’s
method. The algorithm is similar to that of Newton’s method.
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EXAMPLES8 Secant Method

Solve f(x) = x— 2 sin x = 0 by the secant method, starting from
Xg =2, %X =1.9.

Solution. Here, (10) is

(x,, — 2sinx,)(x, — X,—1) N,

D

An+1 = n = An

X, — Xp—1 T 2(sinx,_y — sinx,,) n
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Numerical values are:

n Xn—1 Xn N, Ok, An+1 = An
| 2.000 000 1.900 000 —0.000 740 —0.174 005 —0.004 253
2 1.900 000 1.895 747 —0.000 002 —0.006 986 —0.000 252
3 1.895 747 1.895 494 0 0

X3 = 1.895 494 is exact to 6D. See Example 4.
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