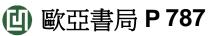
Solution of Equations by Iteration

We begin with methods of finding solutions of a single equation

$$f(x) = 0$$

where f is a given function.

A solution of (1) is a value x = s such that f(s) = 0.



Fixed-Point Iteration

continued

In one way or another we transform (1) *algebraically* into the form

$$(2) x = g(x).$$

Then we choose an x_0 and compute $x_1 = g(x_0)$, $x_2 = g(x_1)$, and in general

(3)
$$x_{n+1} = g(x_n)$$
 $(n = 0, 1, \cdots).$



- A solution of (2) is called a **fixed point** of g, motivating the name of the method. This is a solution of (1), since from x = g(x) we can return to the original form f(x) = 0.
- From (1) we may get several different forms of (2). The behavior of corresponding iterative sequences x_0, x_1, \cdots may differ, in particular, with respect to their speed of convergence.
- Indeed, some of them may not converge at all.



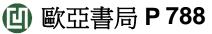
 $f(x) = x^2 - 3x + 1 = 0$. We know the solutions are

 $x = 1.5 \pm \sqrt{1.25}$, thus 2.618 034 and 0.381 966,

Solution. The equation may be written

(4a)

 $x = g_1(x) = \frac{1}{3}(x^2 + 1),$ thus $x_{n+1} = \frac{1}{3}(x_n^2 + 1).$



Function (4a)

(1) If we choose $x_0 = 1$, we obtain the sequence

 $x_0 = 1.000,$ $x_1 = 0.667,$ $x_2 = 0.481,$ $x_3 = 0.411,$ $x_4 = 0.390,$ · · ·

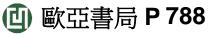
which seems to approach the smaller solution.

(2) If we choose $x_0 = 2$, the situation is similar.

(3) If we choose $x_0 = 3$, we obtain the sequence

 $x_0 = 3.000, \quad x_1 = 3.333, \quad x_2 = 4.037, \quad x_3 = 5.766, \quad x_4 = 11.415, \cdots$

which diverges.



Function (4b)

Our equation may also be written (divide by *x*)

(4b)
$$x = g_2(x) = 3 - \frac{1}{x}$$
, thus $x_{n+1} = 3 - \frac{1}{x_n}$,

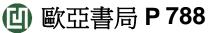
(1) If we choose $x_0 = 1$, we obtain the sequence

 $x_0 = 1.000, \quad x_1 = 2.000, \quad x_2 = 2.500, \quad x_3 = 2.600, \quad x_4 = 2.615, \cdots$

which seems to approach the larger solution.

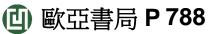
(2) If we choose $x_0 = 3$, we obtain the sequence

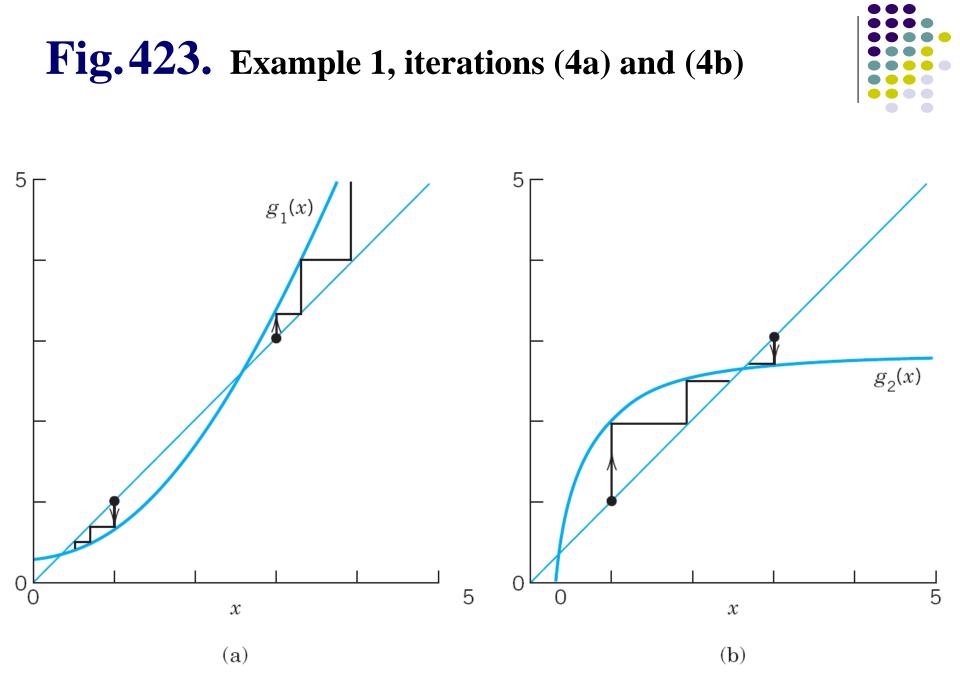
 $x_0 = 3.000,$ $x_1 = 2.667,$ $x_2 = 2.625,$ $x_3 = 2.619,$ $x_4 = 2.618, \cdots$



Observations

- * Our figures show the following. In the lower part of Fig. 423a the slope of $g_1(x)$ is less than the slope of y = x, which is 1, thus $|g'_1(x)| < 1$, and we seem to have convergence. In the upper part, $g_1(x)$ is steeper $(g'_1(x) > 1)$ and we have divergence.
- * In Fig. 423b the slope of $g_2(x)$ is less near the intersection point (x = 2.618, fixed point of g_2 , solution of f(x) = 0), and both sequences seem to converge.
- ★ From all this we conclude that convergence seems to depend on the fact that in a neighborhood of a solution the curve of g(x) is less steep than the straight line y = x, and we shall now see that this condition |g'(x)| < 1 (= slope of y = x) is sufficient for convergence.



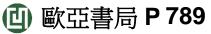


THEOREM 1

Convergence of Fixed-Point Iteration

Let x = s be a solution of x = g(x) and suppose that g has a continuous derivative in some interval J containing s.

Then if $|g'(x)| \le K < 1$ in *J*, the iteration process defined by (3) converges for any x_0 in *J*, and the limit of the sequence $\{x_n\}$ is *s*.



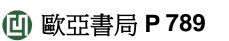
$$f(x) = x^3 + x = 1 = 0$$

Solution. A sketch shows that a solution lies near x = 1. We may write the equation as $(x^2 + 1)x = 1$ or

$$x = g_1(x) = \frac{1}{1+x^2}$$
, so that $x_{n+1} = \frac{1}{1+x_n^2}$. Also $|g_1'(x)| = \frac{2|x|}{(1+x^2)^2} < 1$

for any x because $4x^2/(1 + x^2)^4 = 4x^2/(1 + 4x^2 + \cdots) < 1$, so that by Theorem 1 we have convergence for any x_0 . Choosing $x_0 = 1$, we obtain (Fig. 424)

 $x_1 = 0.500, x_2 = 0.800, x_3 = 0.610, x_4 = 0.729, x_5 = 0.653, x_6 = 0.701, \cdots$ The solution is s = 0.682328.



The given equation may also be written

$$x = g_2(x) = 1 - x^3$$
. Then $|g'_2(x)| = 3x^2$

and this is greater than 1 near the solution, so that we cannot apply Theorem 1 and assert convergence. Try $x_0 = 1$, $x_0 = 0.5$, $x_0 = 2$ and see what happens.

The example shows that the transformation of a given f(x) = 0into the form x = g(x) with g satisfying $|g'(x)| \le K < 1$ may need some experimentation.

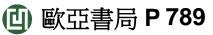
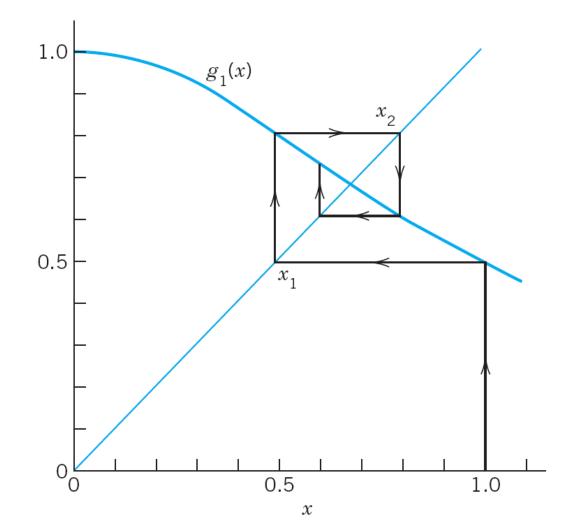
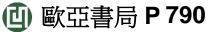


Fig. 424. Iteration in Example 2



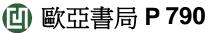


Newton's Method

Newton's method, also known as Newton–Raphson's method, is another iteration method for solving equations f(x) = 0, where *f* is assumed to have a continuous derivative *f*'.

The underlying idea is that we approximate the graph of f by suitable tangents. Using an approximate value x_0 obtained from the graph of f, we let x_1 be the point of intersection of the x-axis and the tangent to the curve of f at x_0 (see Fig. 425). Then

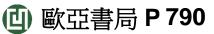
$$\tan \beta = f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$
, hence $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

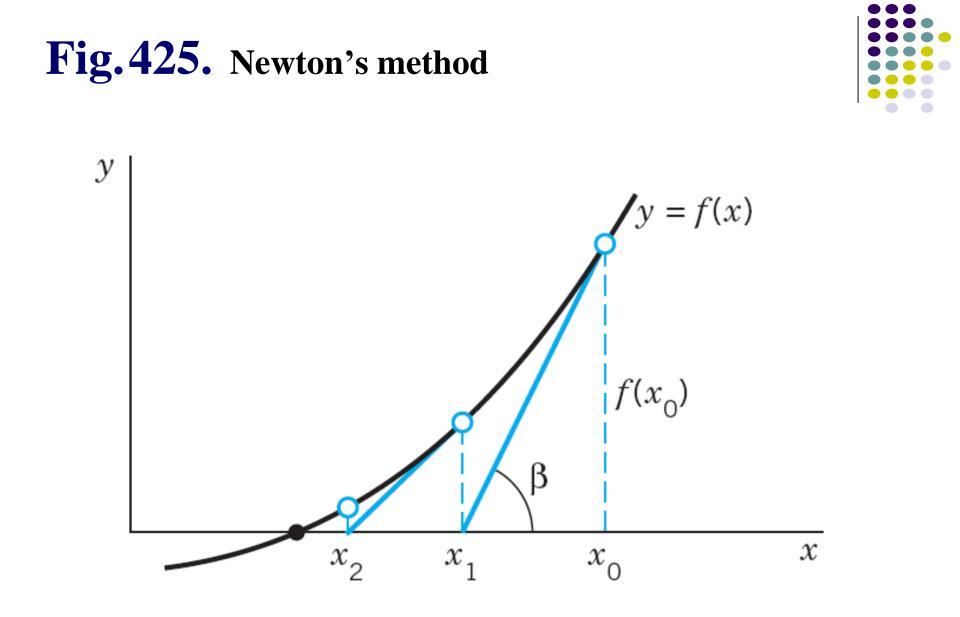


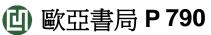
General Formula

One can algebraically solve the approximated Taylor's expansion

(5)
$$f(x_{n+1}) \approx f(x_n) + (x_{n+1} - x_n)f'(x_n) = 0.$$





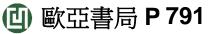


ALGORITHM NEWTON $(f, f', x_0, \epsilon, N)$

This algorithm computes a solution of f(x) = 0 given an initial approximation x_0 (starting value of the iteration). Here the function f(x) is continuous and has a continuous derivative f'(x).

INPUT: f, f', initial approximation x_0 , tolerance $\epsilon > 0$, maximum number of iterations N.

OUTPUT: Approximate solution x_n ($n \leq N$) or message of failure.



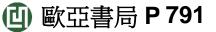
Pseudo Code

For $n = 0, 1, 2, \dots, N - 1$ do: Compute $f'(x_n)$. 1 If $f'(x_n) = 0$ then OUTPUT "Failure". Stop. 2 [*Procedure completed unsuccessfully*] 3 Else compute $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. (5) If $|x_{n+1} - x_n| \leq \epsilon |x_n|$ then OUTPUT x_{n+1} . Stop. 4 [Procedure completed successfully] End

5 OUTPUT "Failure". Stop.

[Procedure completed unsuccessfully after N iterations]

End NEWTON



Compute the square root x of a given positive number c and apply it to c = 2.

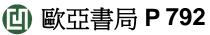
Solution. We have $x = \sqrt{c}$ hence $f(x) = x^2 - c = 0$, f'(x) = 2x, and (5) takes the form

$$x_{n+1} = x_n - \frac{{x_n}^2 - c}{2x_n} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right).$$

For c = 2, choosing $x_0 = 1$, we obtain

 $x_1 = 1.500\ 000, \quad x_2 = 1.416\ 667, \quad x_3 = 1.414\ 216, \quad x_4 = 1.414\ 214, \cdots$

 x_4 is exact to 6D.

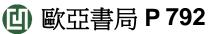


 $2\sin x = x$

Solution.

Setting $f(x) = x - 2 \sin x$, we have $f'(x) = 1 - 2 \cos x$, and (5) gives

$$x_{n+1} = x_n - \frac{x_n - 2\sin x_n}{1 - 2\cos x_n} = \frac{2(\sin x_n - x_n\cos x_n)}{1 - 2\cos x_n} = \frac{N_n}{D_n}$$

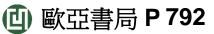


From the graph of *f* we conclude that the solution is near $x_0 = 2$. We compute:

n	x_n	N_n	D_n	x_{n+1}
0	2.00000	3.48318	1.83229	1.90100
1	1.90100	3.12470	1.64847	1.89552
2	1.89552	3.10500	1.63809	1.89550
3	1.89550	3.10493	1.63806	1.89549

 $x_4 = 1.89549$ is exact to 5D

the exact solution to 6D is 1.895 494.



$$f(x) = x^3 + x - 1 = 0$$

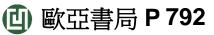
Solution. From (5) we have

$$x_{n+1} = x_n - \frac{x_n^3 + x_n - 1}{3x_n^2 + 1} = \frac{2x_n^3 + 1}{3x_n^2 + 1} .$$

Starting from $x_0 = 1$, we obtain

 $x_1 = 0.750\ 000, \quad x_2 = 0.686\ 047, \quad x_3 = 0.682\ 340, \quad x_4 = 0.682\ 328, \cdots$

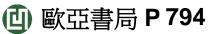
where x_4 has the error $-1 \cdot 10^{-6}$. A comparison with Example 2 shows that the present convergence is much more rapid.



Difficulties in Newton's Method

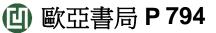
Difficulties may arise if |f'(x)| is very small near a solution *s* of f(x) = 0. Geometrically, small |f'(x)| means that the tangent of f(x) near *s* almost coincides with the *x*-axis (so that double precision may be needed to get f(x) and f'(x) accurately enough).

In this case we call the equation f(x) = 0 **ill-conditioned.**



EXAMPLE 6 An Ill-Conditioned Equation

★ $f(x) = x^5 + 10^{-4}x = 0$ is ill-conditioned. x = 0 is a solution. $f'(0) = 10^{-4}$ is small. At $\tilde{s} = 0.1$ the residual $f(0.1) = 2 \cdot 10^{-5}$ is small, but the error -0.1 is larger in absolute value by a factor 5000. Invent a more drastic example of your own.

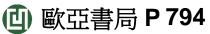


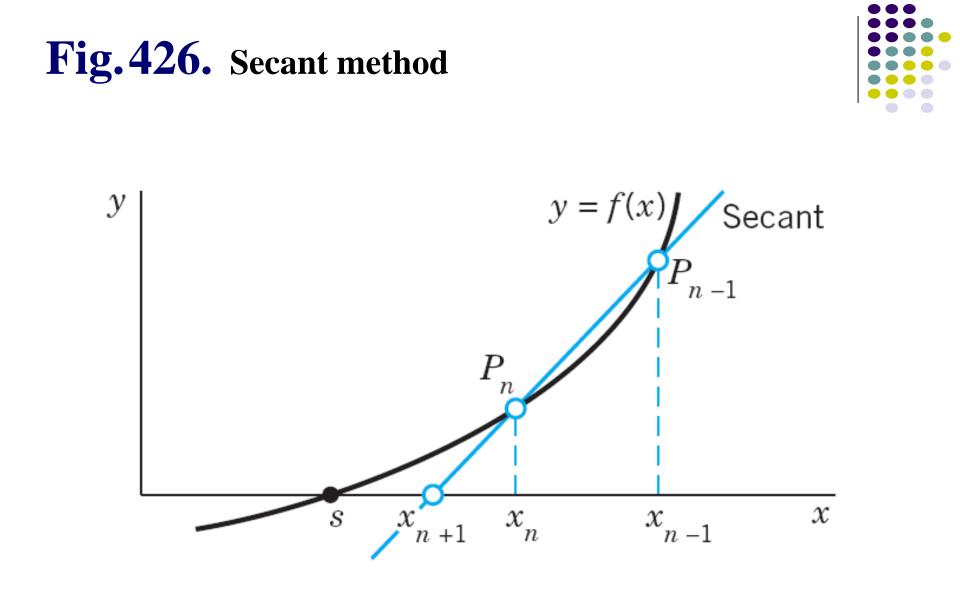
Secant Method

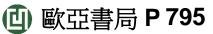
Newton's method is very powerful but has the disadvantage that the derivative f' may sometimes be a far more difficult expression than f itself and its evaluation therefore computationally expensive.

This situation suggests the idea of replacing the derivative with the difference quotient

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

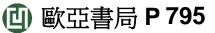






Then instead of (5) we have the formula of the popular secant method

(10)
$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$
.

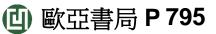


Geometrically, we intersect the *x*-axis at x_{n+1} with the secant of f(x) passing through P_{n-1} and P_n in Fig. 426.

We need two starting values x_0 and x_1 .

Evaluation of derivatives is now avoided.

It can be shown that convergence is almost like Newton's method. The algorithm is similar to that of Newton's method.

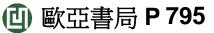


EXAMPLE8 Secant Method

Solve $f(x) = x - 2 \sin x = 0$ by the secant method, starting from $x_0 = 2, x_1 = 1.9$.

Solution. Here, (10) is

$$x_{n+1} = x_n - \frac{(x_n - 2\sin x_n)(x_n - x_{n-1})}{x_n - x_{n-1} + 2(\sin x_{n-1} - \sin x_n)} = x_n - \frac{N_n}{D_n}$$



Numerical values are:

п	x_{n-1}	x_n	N_n	D_n	$x_{n+1} - x_n$
1	2.000 000	1.900 000	-0.000740	-0.174005	-0.004 253
2	1.900 000	1.895 747	$-0.000\ 002$	-0.006986	$-0.000\ 252$
3	1.895 747	1.895 494	0		0

 $x_3 = 1.895 494$ is exact to 6D. See Example 4.

