Interpolation

A standard idea In Interpolation now is to find a polynomial
p,(x) of degree n (or less) that assumes the given values; thus

(1) P '}’L(XO) — fO? P -'n,(xl) - fl’ T P '}'2,(x'}'2,) - f'n,'

We call this p,(x) an interpolation polynomial and x0, - - - -, xn
the nodes. And If f(x) Is a mathematical function, we call
p.(X) a polynomial approximation of f.

We use p,(X) to get (approximate) values of f for x’s between
X0 and xn (“interpolation”) or sometimes outside this
Interval (“‘extrapolation™).
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Lagrange Interpolation

Linear interpolation is interpolation by the straight line
through (X, fo), (X1, f1); see Fig. 428. Thus the linear Lagrange
polynomial p; Is a sum p, = Lyf, + L. f; with L, the linear
polynomial that is 1 at x, and O at x;; similarly, L, is 0 at x, and
1 at x,. Obviously,

Lo) = —— L) = —2

Xo — X1 X1 = Xo

This gives the linear Lagrange polynomial

(2 i) = Lofo + Li)fy = — o+~

Xo X1 X1 — Xo
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F19.428. Linear interpolation
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*Thus |e,(X)| is O at the nodes and small near them,
because of continuity. The product (X — X;) .... (X — X,)) IS
large for x away from the nodes. This makes
extrapolation risky. And interpolation at an x will be
best if we choose nodes on both sides of that x. Also,
we get error bounds by taking the smallest and the
largest value of f("™1)(t) in (5) on the interval x, <t < X,
(or on the interval also containing x if we extrapolate).

* Most importantly, since p, is unique, as we have
shown, we have
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EXAMPLE1 Linear Lagrange Interpolation

Compute a 4D-value of In 9.2 from In 9.0 = 2.1972, In 9.5 =
2.2513 by linear Lagrange interpolation and determine the
error, using In 9.2 = 2.2192 (4D).

Solution. x, = 9.0, x;, = 9.5, f,=In 9.0, f, =In 9.5. In (2) we
need

X =95

Lo(x) = r_o ! Lo9.2) = —2.0(=0.3) = 0.6
x —9.0

L = oo =200 —9.0) L,092) =2-0.2 = 0.4

and obtain the answer

In9.2 ~ p1(9.2) = Ly(9.2)fo + L1(92)f; = 0.6-2.1972 + 0.4-2.2513 = 2.2188.
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Theerrorisge=a—a=2.2192 -2.2188 = 0.0004.

Hence linear interpolation is not sufficient here to get 4D-
accuracy; i1t would suffice for 3D-accuracy.
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FI19.429. L,and L, in Example 1
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Quadratic interpolation

The Interpolation of given (X, fo), (Xy, f1), (X5, f5) by a second-
degree polynomial p,(x), which by Lagrange’s idea IS
(33) Pa(x) = Lo)fo + Li(0)f1 + La(0)f>

with Ly(X,) = 1, Ly(X)) =1, Ly(X,) = 1, and Ly(X;) = Ly(X,) = 0,
etc. We claim that

lo(X) (X — XX — Xg)

Lo(x) = =
( 3b) o) lo(Xp) (Xo — X(Xp — Xo)
[1(Xx) (X — X)X — Xy)
L(x) = —
10 l1(x1) (X1 — Xo)(X1 — Xo)
==
l5(X2) (Xg — Xo)(Xg — Xp)
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EXAMPLE?Z Quadratic Lagrange Interpolation

Compute In 9.2 by (3) from the data in Example 1 and the
additional third value In 11.0 = 2.3979.

Solution. In (3),

Lot = DD 2 054 045, £g(92) = 0.5400
o= 90 -9500—11.0) " o 2 Lo:2) = 0.0400,

L e L2200+ 99), L49.2) = 0.4800
1) = 95— 90095 —11.0) _ 075 (x= — 20x + 99), 19.2) = 0. ,
(x —9.0)(x — 9.5) Iy,
Ly(x) = = — (%~ 185x +855),  Ly(92) = —0.0200,

(11.0 = 9.0)(11.0 — 9.5) 3
so that (3a) gives, exact to 4D,

In 9.2 = py(9.2) = 0.5400 - 2.1972 + 0.4800 - 2.2513 — 0.0200 - 2.3979 = 2.2192.
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General Lagrange Interpolation Polynomial

For general n we obtain

n n / L,(' )
(48)  f) =~ p0) =D Lfs =S 7,
k=0

o lk(X)

where L,(x,) = 1 and L, is O at the other nodes, and the L, are
Independent of the function f to be interpolated. We get (4a)
If we take

(4b) lo(x) = (x — X)X — Xg) =+ - (X — X)),
[(X) = (X —Xg) "+ (X — Xp)X — Xpep) =0 - (X — X)), 0<k<n,

ln(x) = (x — XO)(X - xl) R xn—l)-

We can easily see that p,(x,) = f..
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Error Estimate

If f is itself a polynomial of degree n (or less), it must coincide
with p, because the n + 1 data (x,, fo), - - - -, (X,, f,,) determine
a polynomial uniquely, so the error Is zero.

Now the special f has its (n + 1)st derivative identically zero.

This makes 1t p
derivative f("+1 s

ausible that for a general f its (n + 1)st
nould measure the errol €,(x) = f(x) — p,,(x).

If £("+1) exists and is continuous, then with a suitable t between

X, and X

(%)
€,(x) = f(x)
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® THEOREM 1

Error of Interpolation

Formula (5) gives the error for any polynomial
Interpolation method if f(x) has a continuous (n +

\1)st derivative.

~

/

() BxTEE /S P 800



EXAMPLES3 Error Estimate (5) of Linear
Interpolation. Damage by Roundoff.
Error Principle

* Estimate the error in Example 1 first by (5) directly and
then by the Error Principle (Sec. 19.1).

* Solution. (A) Estimation by (5). We have n =1, f(t) =
Int, f'(t) = 1/t, f"(t) = —-1/t°>. Hence

(_—l) 0.03
thus €92) = —5—.
f

€ 1(.«\7) = (

t = 9.0 gives the maximum 0.03/92 = 0.00037 and t =
9.5 gives the minimum 0.03/9.5% = 0.00033, so that we
get 0.00033 < ¢,(9.2) < 0.00037, or better, 0.00038
because 0.3/81 = 0.003 703 .....
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* But the error 0.0004 in Example 1 disagrees, and we
can learn something! Repetition of the computation
there with 5D instead of 4D gives

In9.2 = py(9.2) = 0.6-2.19722 + 0.4 -2.25129 = 2.21885

with an actual error € = 2.21920 — 2.21885 = 0.00035,
which lies nicely near the middle between our two error
bounds.

* This shows that the discrepancy (0.0004 vs. 0.00035)
was caused by rounding, which is not taken into
account in (5).
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* (B) Estimation by the Error Principle. We calculate
P.(9.2) = 2.21885 as before and then p,(9.2) as in
Example 2 but with 5D, obtaining

p9(9.2) = 0.54-2.19722 + 0.48-2.25129 — 0.02-2.39790 = 2.21916.

* The difference p,(9.2) — p,(9.2) = 0.00031 is the
approximate error of p;(9.2) that we wanted to obtain;
this is an approximation of the actual error 0.00035
given above.
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Newton’s Divided Difference Interpolation

The kth divided difference, recursively denoted and defined

as follows: | 1= fo
a; = flxo. X11 =

X1 — Xo
] o f[xl'r X2] o f[x(), xl]
do = flXo, X1, Xo| = - -
.)(-2 _ ‘K'D
and in general
3
( ) _ | | _ f[xl.) I 'Xk'] _ f['XO"J - .- X’{‘—l]
a, = flxp, =+, Xl = _ :
X, — Xo
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f(X)=f(x%)+(X=%,) f[%,X]
f %, X]= %, % |+ (x=x)f[x,%,X]
f %%, X] = F[%, %, % |+ (X=%,) [ %,, %, X, X]

F X000 Xy ees Xou X] = F [ X0, Xy g0 X0, X |

(X=X, ) T X, Xo g0 0 X0, Xg, X]
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With py(x) = f, by repeated application withk =1, - - - -, n this
finally gives Newton’s divided difference interpolation
formula

(10)

f) = fo + (x — Xp)f[Xg, X1]1 + (x — X)X — x9)f[Xg, X1, Xo]

—+ - 4 (_)C — _)CO)(X — Xl) L (X o x'n,—l)f[x{)e B xn]-
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Table 19.2 Newton’s Divided Difference Interpolation

ALGORITHM INTERPOL (X, - -, X3 for " * "+ Foi )

This algorithm computes an approximation p,,(X) of f(X) at X.

INPUT: Data (xq, fo), (X1, f1). == - (o fr)i X
OUTPUT: Approximation p,,(X) of f(X)
Set fl;] =f; (j=0,--+,n).
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Form=1,---,n — 1do:

Forj=0,---,n — mdo:

f[xja et Xj+m] = f[XjH’ B XﬁM] — f[Xj’ > J(;?'Hn—l]
xj+m o xj

End
End
Set po(x) = fo.
Fork=1,---, n do:

pk(}%) - pk_l(j&) T (X o XO) U (‘)2‘ - ‘xk—l)f['xoa Ty, Xk]
End
OUTPUT p,,(£)

End INTERPOL
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EXAMPLE4 Newton’s Divided Difference
Interpolation Formula

Compute £(9.2) from the values shown in the first two columns
of the following table.

Xj fi = 1) flx %41] flx X1 Xje2] Flxg, = Xj43]
9.0 2.197 225 (—0.006 433)

0.108 134
9.5 2.251 292 —0.005 200

0.097 735

11.0 2.397 895
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Solution

We compute the divided differences as shown. Sample
computation:

(0.097 735 — 0.108 134)/(11 — 9) = —0.005 200.

The values we need in (10) are circled. We have

f(x) = pg(x) = 2.079 442 + 0.117 783(x — 8.0) — 0.006 433(x — 8.0)(x — 9.0)
+ 0.000 411(x — 8.0)(x — 9.0)(x — 9.5).
£(9.2) = 2.079 442 + 0.141 340 — 0.001 544 — 0.000 030 = 2.219 208.
The value exact to 6D Is £(9.2) =1In 9.2 = 2.219 203. Note that

we can nicely see how the accuracy increases from term to
term:

p1(9.2) = 2.220 782, p2(9.2) = 2.219 238, ps(9.2) = 2.219 208.
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Equal Spacing: Newton’s Forward Difference
Formula

Newton’s formula (10) is valid for arbitrarily spaced nodes as
they may occur In practice in experiments or observations.

However, in many applications the x;’s are regularly spaced—
for instance, in measurements taken at regular intervals of time.
Then, denoting the distance by h, we can write

(11)

X, X1 =Xot+t h, Xo=x9+2h ~---, x,=x9+ nh.

We can show how (8) and (10) now simplify considerably!
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Let us define the first forward difference of f at x; by

Af:} — gf}—f—l o tfja

and the second forward difference of f at x; by

2 ~ » 3
A fj - Afj+1 o Afje

and, continuing In this way, the kth forward
difference of f at x; by

(12) AFf, = AN, — AR k=1,2,-"").
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( X X J
( X X J
(X J
®
Formula (10) becomes Newton’s (or Gregory—Newton'’s)
forward difference interpolation formula
(14 nog
F) = pp(x) = > ( S) Afo (x=xo +rh, r=&—x0)lh)
s=0
ot A + ;r‘(r2—l 1) AZfo 4 -+ r(r—1) - '}:ﬂ(r —n+1) A,

where the binomial coefficients in the first line are defined by

(15) (}) = 1, (}) = AU R U I A (s > 0, integer)

0 R s!

andsl =12 -.--5,
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Error

From (5) we get, with x — X, = rh, X — X, = (r — 1)h, etc.,

(16) / n+1
Y) = Y) — y) = r(r — 1Y -« « (pr — (n+1)
En(-x) f(x) Pn(X) (?’l n l)’ ! (i 1) (} i’l)f (f)

with t as characterized in (5).
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EXAMPLEDS Newton’s Forward Difference
Formula. Error Estimation

Compute cosh 0.56 from (14) and the four values in the
following table and estimate the error.

i Xj fj‘ = cosh Xj Afj Azfj Agfj
0 0.5 1.127 626
0.057 839
1 0.6 1.185 465 0.011 865
0.069 704 0.000 697
2 0.7 1.255 169 0.012 562
0.082 266
3 0.8 1.337 435
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Solution

We compute the forward differences as shown in the table. The
values we need are circled. In (14) we have r = (0.56 —
0.50)/0.1 = 0.6, so that (14) gives

0.6(—0.4) 0.6(—04)(—1.4)
cosh 0.56 = 1.127 626 + 0.6 -0.057 839 + 5 +0.011 865 + p - 0.000 697

= 1.127 626 + 0.034 703 — 0.001 424 + 0.000 039

= 1.160 944.
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Error estimate. From (16), since the fourth derivative is cosh®
t = cosht,

0.14

€5(0.56) = DT 0.6(—0.4)(—1.4)(—2.4) cosh ¢

= A cosh 1,

where A = —-0.000 003 36 and 0.5 <t <0.8. We do not know t,
but we get an inequality by taking the largest and smallest
cosh t in that interval:

A cosh 0.8 = €5(0.62) = A cosh 0.5.
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Since
f(x) = p3x) + e3(0),
this gives
p2(0.56) + A cosh 0.8 = cosh 0.56 = p5(0.56) + A cosh 0.5.
Numeric values are

[.160 939 = cosh 0.56 = 1.160 941.

The exact 6D-value is cosh 0.56 = 1.160 941. It lies within
these bounds. Such bounds are not always so tight. Also, we
did not consider roundoff errors, which will depend on the
number of operations.
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Equal Spacing: Newton’s Backward Difference |2
Formula

A formula similar to (14) but involving backward
differences Is Newton’s (or Gregory—Newton’s)
backward difference interpolation formula

"o r+ s —1
fx) = p,(x) =D, ( S ) Vifo (X =X+ rh,r =& — X9)/h)
s=0
(18) rir+ 1) _, rir+1)---(r+n-—-1) _
= fo + rVfo + o Vifo+ -+ Y V™ fo.
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EXAMPLE®G6 Newton’s Forward and Backward
Interpolations

Compute a 7D-value of the Bessel function J,(x) for x = 1.72
from the four values in the following table, using (a) Newton’s
forward formula (14), (b) Newton’s backward formula (18).

ijI‘ jback Xj J{)(Xj.) Ist Diff. 2nd DifT. 3rd Diff.
0 —3 1.7 0.397 9849
—0.057 9985
I —2 1.8 0.339 9864 —0.000 1693
—0.058 1678 0.000 4093
2 —1 1.9 0.281 8186 0.000 2400
—0.057 9278
3 0 2.0 0.223 8908
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Solution. The computation of the differences iIs the same In
both cases. Only their notation differs.

(a) Forward. In (14) we have r = (1.72 — 1.70)/0.1 = 0.2, and |
goes from 0 to 3 (see first column). In each column we need
the first given number, and (14) thus gives

0.2(—0.8) 0.2(—=0.8)(—1.8)
5 (—0.000 1693) + p - 0.000 409

= 0.397 9849 — 0.011 5997 + 0.000 0135 + 0.000 0196 = 0.386 4183,

Jo(1.72) = 0.397 9849 + 0.2(—0.057 9985) +

which is exact to 6D, the exact 7D-value being 0.386 4185.
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(b) Backward. For (18) we use j shown in the second column,
and in each column the last number. Since r = (1.72 — 2.00)/
0.1 =-2.8, we thus get from (18)

_ o —2.8(—1.8) —2.8(—1.8)(—0.8)
Jo(1.72) = 0.223 8908 — 2.8(—0.057 9278) + 5 -+ 0.000 2400 + p - 0.000 4093

= 0.223 8908 + 0.162 1978 + 0.000 6048 — 0.000 2750
= (0.386 4184.
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Central Difference Notation

This 1s a third notation for differences. The first central
difference of f(x) at x; is defined by

Sﬁ; — ﬁ;+1/2 - fj—1/2
and the kth central difference of f(x) at x; by

(19) 8°f; = 8" e — 8 fit1e (J=12,3--").
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