
© Copyright by Deitel

1

Chapter 4 – C Program Control

Outline

4.1 Introduction

4.2 The Essentials of Repetition

4.3 Counter-Controlled Repetition

4.4 The for Repetition Statement

4.5 The for Statement: Notes and Observations

4.6 Examples Using the for Statement

4.7 The switch Multiple-Selection Statement

4.8 The do…while Repetition Statement

4.9 The break and continue Statements
4.10 Logical Operators (&& , || , !)

4.11 Confusing Equality (==) and Assignment (=) Operators

4.12 Structured Programming Summary

© Copyright by Deitel

2

Objectives

• In this chapter, you will learn:
– To be able to use the for and do…while repetition

statements.

– To understand multiple selection using the switch

selection statement.

– To be able to use the break and continue program

control statements

– To be able to use the logical operators (&& ,

|| , !)

© Copyright by Deitel

3

4.1 Introduction

• We have learned

– Selection structures (選擇): if, if . . . else

– Repetition structures (迴圈): while

• This chapter introduces

– Additional repetition control structures

• for

• do…while

– switch multiple selection statement

– break statement

Used for exiting immediately and rapidly from certain selection and

repetition structures

– continue statement

• Used for skipping the remainder of the body of a repetition structure

and proceeding with the next iteration of the loop

– logical operators (&& , || , !)

© Copyright by Deitel

4

4.2 The Essentials of Repetition

• Loop

– Group of instructions computer executes repeatedly while

some condition remains true

• Counter-controlled repetition

– Definite repetition: know how many times loop will execute

– Control variable used to count repetitions

• Sentinel-controlled repetition

– Indefinite repetition

– Used when number of repetitions not known

– Sentinel value indicates "end of data"

© Copyright by Deitel

5

4.3 Essentials of Counter-Controlled

Repetition

• Counter-controlled repetition requires

– The name of a control variable (or loop counter)

– The initial value of the control variable

– An increment (or decrement) by which the control variable

is modified each time through the loop

– A condition that tests for the final value of the control

variable (i.e., whether looping should continue)

© Copyright by Deitel

6

4.3 Essentials of Counter-Controlled

Repetition

• Example:
int counter = 1; // initialization

while (counter <= 10) { // repetition condition

printf("%d\n", counter);

++counter; // increment

}

– The statement

int counter = 1;

• Names counter

• Defines it to be an integer

• Reserves space for it in memory

• Sets it to an initial value of 1

OutlineOutline

© Copyright by Deitel

7

fig04_01.c

Program Output

1
2
3
4
5
6
7
8
9
10

1 /* Fig. 4.1: fig04_01.c

2 Counter-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter = 1; /* initialization */

9

10 while (counter <= 10) { /* repetition condition */

11 printf ("%d\n", counter); /* display counter */

12 ++counter; /* increment */

13 } /* end while */

14

15 return 0; /* indicate program ended successfully */

16

17 } /* end function main */

Counter-Control Repetition

© Copyright by Deitel

8

4.3 Essentials of Counter-Controlled

Repetition

• Condensed code

– C Programmers would make the program more concise

– Initialize counter to 0

counter = 0;

while (++counter <= 10)

printf(“%d\n, counter);

此處 counter 先加 1，再判斷是否 <= 10

請問迴圈會做幾次？

如果改成

while (counter++ <= 10)

printf(“%d\n”, counter);

會做幾次？

© Copyright by Deitel

9

4.4 The for Repetition Statement

OutlineOutline

© Copyright by Deitel

10

1 /* Fig. 4.2: fig04_02.c

2 Counter-controlled repetition with the for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter; /* define counter */

9

10 /* initialization, repetition condition, and increment

11 are all included in the for statement header. */

12 for (counter = 1; counter <= 10; counter++) {

13 printf("%d\n", counter);

14 } /* end for */

15

16 return 0; /* indicate program ended successfully */

17

18 } /* end function main */

4.4 The for Repetition Statement
Rewrite the program on the lower-right corner with for repetition statement

8 int counter = 1; /* initialization */

9

10 while (counter <= 10) { /* repetition condition */

11 printf ("%d\n", counter); /* display counter */

12 ++counter; /* increment */

13 } /* end while */

© Copyright by Deitel

11

4.4 The for Repetition Statement

• Format when using for loops
for (initialization; loopContinuationTest; increment)

statement

• for loops can usually be rewritten as while loops:

initialization;
while (loopContinuationTest) {

statement;

increment;
}

• Example:
for(counter = 1; counter <= 10; counter++)

printf("%d\n", counter);

– Prints the integers from one to ten No

semicolon
(;) after last

expression

© Copyright by Deitel

12

4.4 The for Repetition Statement

• Initialization and increment

– Can be comma-separated lists

– Example:

for (i = 0, j = 0; j + i <= 10; j++, i++)

printf("%d\n", j + i);

• Increment Expression (以下四種都可用)
counter = counter + 1

counter += 1

++counter

counter++ /* preferred */

• Arithmetic expressions

– Initialization, loop-continuation test, and increment can contain arithmetic
expressions. If x = 2 and y = 10

for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to
for (j = 2; j <= 80; j += 5)

© Copyright by Deitel

13

4.5 The for Statement : Notes and

Observations
• Notes about the for statement:

– "Increment" may be negative (decrement)

– If the loop continuation condition is initially false
• The body of the for statement is not performed

• Control proceeds with the next statement after the for statement

– Control variable
• Often printed or used inside for body, but not necessary

OutlineOutline

© Copyright by Deitel

14

1 /* Fig. 4.5: fig04_05.c

2 Summation with for */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int sum = 0; /* initialize sum */

9 int number; /* number to be added to sum */

10

11 for (number = 2; number <= 100; number += 2) {

12 sum += number; /* add number to sum */

13 } /* end for */

14

15 printf("Sum is %d\n", sum); /* output sum */

16

17 return 0; /* indicate program ended successfully */

18

19 } /* end function main */

fig04_05.c

Sum is 2550

2 + 4 + 6 + 8 + . . . 100 = 2550

Using for to Sum Numbers

© Copyright by Deitel

15

4.6 Example: Computing Compound Interest

A person invests $1000.00 in a savings account yielding 5% interest
per year. Assuming that all interest is left on deposit in the account,
calculate and print the amount of money in the account at the end
of each year for 10 years. Use the following formula for determining
these amounts:

a = p (1 + r)n

where

p is the principal (本金)

r is the interest rate (利率)

n is the number of years

a is the 本利和 (deposit)

OutlineOutline

© Copyright by Deitel

16

fig04_06.c (Part 1 of 2)
1 /* Fig. 4.6: fig04_06.c

2 Calculating compound interest */

3 #include <stdio.h>

4 #include <math.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 double amount; /* amount on deposit */

10 double principal = 1000.0; /* starting principal */

11 double rate = .05; /* interest rate */

12 int year; /* year counter */

13

14 /* output table column head */

15 printf("%4s%21s\n", "Year", "Amount on deposit");

16

17 /* calculate amount on deposit for each of ten years */

18 for (year = 1; year <= 10; year++) {

19

20 /* calculate new amount for specified year */

21 amount = principal * pow(1.0 + rate, year);

22

23 /* output one table row */

24 printf("%4d%21.2f\n", year, amount);

25 } /* end for */

26

Calculating Compound Interest with for

pow(x,y) calculates xy where x and y
are double

Need #include <math.h>

%4d%21.2f in the printf

如果程式中用到數學函數時，必須引入 math.h 標頭檔

%4s%21s in the printf, same as

printf("Year Amount on deposit\n");

%d: integers

%f: floating-point values

%s: strings (字串)

OutlineOutline

© Copyright by Deitel

17

fig04_06.c (Part 2

of 2)

Program Output

Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477.46
9 1551.33

10 1628.89

27 return 0; /* indicate program ended successfully */

28

29 } /* end function main */

OutlineOutline

© Copyright by Deitel

5.3 Math Library Functions

OutlineOutline

© Copyright by Deitel

5.3 Math Library Functions

© Copyright by Deitel

20

九九乘法表 – Nested for Loops

/* Example Table99.c, nested for loops 印出九九乘法表 */

#include <stdio.h>

int main()
{

int i,j;

for (i=1 ; i<=9 ; i++) /* 外層迴圈 */
{

for (j=1 ; j<=9 ; j++) /* 內層迴圈 */
printf("%d*%d=%2d ",i,j,i*j);

printf("\n");
}

return 0;
}

迴圈在哪裡？

© Copyright by Deitel

21

九九乘法表 – Nested while Loops
/* Example Table99, nested while loops 求9*9乘法表 */

#include <stdio.h>

int main()

{

int i=1, j=1; /* 設定迴圈控制變數的初值 */

while (i<=9) /* 外層迴圈 */

{

while (j<=9) /* 內層迴圈 */

{

printf("%d*%d=%2d ",i,j,i*j);

j++;

}

printf("\n");

i++;

j=1;

}

return 0;

}

© Copyright by Deitel

22

九九乘法表 – Nested for Loops

Question: How to modify the source code to produce

© Copyright by Deitel

23

4.7 The switch Multiple-Selection

Statement
• switch

– Useful when a variable or expression is tested for all the values it can

assume and different actions are taken

• Format

– Series of case labels and an optional default case

switch (value){

case 1:

actions;

break; //如果不加 break ，會繼續執行下面的 actions

case 2:

actions;

break;

default:

actions;

break; //可加可不加

}

– break; exits from statement

如果變數名稱 value 是數值的話，此處 case 1 其中的 1

為 value 的數值，但是如果 value 是字元的話，必須用
case ‘A’，其中的A 為 value 的值。

© Copyright by Deitel

24

4.7 The switch Multiple-Selection

Statement

• Flowchart of the switch statement

OutlineOutline

© Copyright by Deitel

25

fig04_07.c (Part 1 of

3)

1 /* Fig. 4.7: fig04_07.c

2 Counting letter grades */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 char grade; /* one grade */

9 int aCount = 0; /* number of As */

10 int bCount = 0; /* number of Bs */

11 int cCount = 0; /* number of Cs */

12 int dCount = 0; /* number of Ds */

13 int fCount = 0; /* number of Fs */

14

15 printf("Enter the letter grades.\n");

16 printf("Enter the EOF character to end input.\n");

17

18 /* loop until user types end-of-file key sequence */

19 while ((grade = getchar()) != EOF) {

20

21 /* determine which grade was input */

22 switch (grade) { /* switch nested in while */

23

24 case 'A': /* grade was uppercase A */

25 case 'a': /* or lowercase a */

26 ++aCount; /* increment aCount */

27 break; /* necessary to exit switch */

28

Counting Letter Grades with switch

此處 value 是字元，所以用 case ‘A’，其中的 A 為 value 的
值。

The getchar() function reads one character
from the keyboard and stores that character
in variable grade

EOF (end-of-file) is system dependent. In
MS Windows, EOF is <crtl-z>

此處 aCount, bCount 等分別是出現A，
B， . . . 等字元的次數。

宣告 grade 為字元

OutlineOutline

© Copyright by Deitel

26

fig04_07.c (Part 2 of

3)

29 case 'B': /* grade was uppercase B */

30 case 'b': /* or lowercase b */

31 ++bCount; /* increment bCount */

32 break; /* exit switch */

33

34 case 'C': /* grade was uppercase C */

35 case 'c': /* or lowercase c */

36 ++cCount; /* increment cCount */

37 break; /* exit switch */

38

39 case 'D': /* grade was uppercase D */

40 case 'd': /* or lowercase d */

41 ++dCount; /* increment dCount */

42 break; /* exit switch */

43

44 case 'F': /* grade was uppercase F */

45 case 'f': /* or lowercase f */

46 ++fCount; /* increment fCount */

47 break; /* exit switch */

48

49 case '\n': /* ignore newlines, */

50 case '\t': /* tabs, */

51 case ' ': /* and spaces in input */

52 break; /* exit switch */

53

注意：每個 case 最後必須加上 break ，跳
出 switch 區塊，否則會繼續執行下一個
case 。

OutlineOutline

© Copyright by Deitel

27

fig04_07.c (Part 3 of

3)

54 default: /* catch all other characters */

55 printf("Incorrect letter grade entered.");

56 printf(" Enter a new grade.\n");

57 break; /* optional; will exit switch anyway */

58 } /* end switch */

59

60 } /* end while */

61

62 /* output summary of results */

63 printf("\nTotals for each letter grade are:\n");

64 printf("A: %d\n", aCount); /* display number of A grades */

65 printf("B: %d\n", bCount); /* display number of B grades */

66 printf("C: %d\n", cCount); /* display number of C grades */

67 printf("D: %d\n", dCount); /* display number of D grades */

68 printf("F: %d\n", fCount); /* display number of F grades */

69

70 return 0; /* indicate program ended successfully */

71

72 } /* end function main */

OutlineOutline

© Copyright by Deitel

28

Program Output

Enter the letter grades.
Enter the EOF character to end input.
a
b
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

© Copyright by Deitel

29

4.8 The do…while Repetition Statement

• The do…while repetition statement

– Similar to the while structure

– Condition for repetition tested after the body of the loop is

performed

• Implication: All actions are performed at least once

– Format:

do {

statement;

} while (condition);

• Example (initially, counter = 1):
do {

printf("%d ", counter);

} while (++counter <= 10);

– Prints the integers from 1 to 10

© Copyright by Deitel

30

4.8 The do…while Repetition Statement

• Flowchart of the do…while repetition statement

© Copyright by Deitel

31

The while Repetition Statement

int product = 2;

while (product <= 1000)
product = 2 * product;

The final value of product will be 1024.

© Copyright by Deitel

The for Repetition Statement

for(counter = 1; counter <= 10; counter++)

printf("%d\n", counter);

OutlineOutline

© Copyright by Deitel

33

1 /* Fig. 4.9: fig04_09.c

2 Using the do/while repetition statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter = 1; /* initialize counter */

9

10 do {

11 printf("%d ", counter); /* display counter */

12 } while (++counter <= 10); /* end do...while */

13

14 return 0; /* indicate program ended successfully */

15

16 } /* end function main */

fig04_09.c

Program Output1 2 3 4 5 6 7 8 9 10

Question: What if we set while (counter++ <= 10); ?

1 2 3 4 5 6 7 8 9 10 11

Example of do ... while Statement

© Copyright by Deitel

34

while, for, do . . . while 之比較
語法：

for (initialization; loopContinuationTest; increment)

{

statement;

}

initialization;

while (loopContinuationTest) {

statement;

increment;

}

initialization;

do {

statement;

increment;

} while (loopContinuationTest);

皆可 皆可

© Copyright by Deitel

35

4.9 The break and continue Statements

• break

– Causes immediate exit from a repetition (i.e., while, for,

do…while) or a selection (i.e., switch) structure.

– Program execution continues with the first statement after

the structure

– Common uses of the break statement

• Escape early from a loop

• Skip the remainder of a switch statement

OutlineOutline

© Copyright by Deitel

36

1 /* Fig. 4.11: fig04_11.c

2 Using the break statement in a for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int x; /* counter */

9

10 /* loop 10 times */

11 for (x = 1; x <= 10; x++) {

12

13 /* if x is 5, terminate loop */

14 if (x == 5) {

15 break; /* break loop only if x is 5 */

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nBroke out of loop at x == %d\n", x);

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

fig04_11.c

1 2 3 4

Using the break Statement in a for Statement

Use break to break out of the loop at x
== 5 (當 x == 5 時，跳出 for 迴
圈)

© Copyright by Deitel

37

The continue Statement

continue

– Skips the remaining statements in the body of a repetition

(while, for or do…while) structure and proceeds with

the next iteration of the loop (不會跳出迴圈)

– while and do…while

• Loop-continuation test is evaluated immediately after the

continue statement is executed

– for

1. Increment expression is executed, then

2. loop-continuation test is evaluated

OutlineOutline

© Copyright by Deitel

38

1 /* Fig. 4.12: fig04_12.c

2 Using the continue statement in a for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int x; /* counter */

9

10 /* loop 10 times */

11 for (x = 1; x <= 10; x++) {

12

13 /* if x is 5, continue with next iteration of loop */

14 if (x == 5) {

15 continue; /* skip remaining code in loop body */

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nUsed continue to skip printing the value 5\n");

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

fig04_12.

1 2 3 4 6 7 8 9 10

Using a continue Statement in a for Statement

Use continue to skip printing the
value 5

x 值繼續加一，沒有跳出 for迴圈，
與 break不同！！

如何將 for 迴圈改成
while 迴圈？需要注意哪些

地方？

© Copyright by Deitel

39

4.10 Logical Operators

• && (logical AND)
– Returns true if both conditions are true

• || (logical OR)
– Returns true if either of its conditions are true

• ! (logical NOT, logical negation)
– Reverses the truth/falsity of its condition

– Unary operator, has one operand

• Useful for testing the conditions in a repetition or
selection structure

Expression Result

true && false false
true || false true

!false true

© Copyright by Deitel

40

4.10 Logical Operators

© Copyright by Deitel

41

4.10 Logical Operators

• The Code
if (a > b > c) /* 錯誤!! */

should be

if (a > b && b > c)

• The Code
if (semesterAverage >= 90 || finalExam >= 90)

printf("Student grade is A\n");

• The Codes (with x = 10, y = 1, a = 3, b = 3, g = 5, i = 2, j = 9)

!(x < 5) && !(y >= 7)

!(a == b) || !(g != 5)

!((x <= 8) && (y > 4))

!((i > 4) || (j <= 6))

int a = 5, b = 4, c = 3;

if(a > b > c)

printf(“ a > b > c is true \n”);

會列印嗎？

© Copyright by Deitel

42

4.10 Logical Operators

Assume i = 1, j = 2, k = 3 and m = 2. What does each of the

following statements print?

printf("%d", i == 1); ANS: 1

printf("%d", j == 3); ANS: 0

printf("%d", i >= 1 && j < 4); ANS: 1

printf("%d", m < = 99 && k < m); ANS: 0

printf("%d", j >= i || k == m); ANS: 1

printf("%d", k + m < j || 3 - j >= k);

ANS: 0

printf("%d", !m); ANS: 0

printf("%d", !(j - m)); ANS: 1

printf("%d", !(k > m)); ANS: 0

printf("%d", !(j > k)); ANS: 1

© Copyright by Deitel

43

4.10 Logical Operators

© Copyright by Deitel

44

4.11 Confusing Equality (==) and

Assignment (=) Operators

• Dangerous error

– Does not ordinarily cause syntax errors

– Any expression that produces a value can be used in control

structures

– Nonzero values are true, zero values are false

– Example using ==:

if (payCode == 4)

printf("You get a bonus!\n");

• Checks payCode, if it is 4 then a bonus is awarded

© Copyright by Deitel

45

4.11 Confusing Equality (==) and

Assignment (=) Operators

– Example, replacing == with =:

if (payCode = 4)

printf("You get a bonus!\n");

• This sets payCode to 4

• 4 is nonzero, so expression is true, and bonus awarded no

matter what the payCode was

– Logic error, not a syntax error

© Copyright by Deitel

46

Assignment (=) Operators

• lvalues

– Expressions that can appear on the left side of an assignment

operator

– Their values can be changed, such as variable names

• x = 4;

• rvalues

– Expressions that can only appear on the right side of an

assignment operator

– Constants, such as numbers

• Cannot write 4 = x;

• Must write x = 4;

– lvalues can be used as rvalues, but not vice versa

• y = x;

© Copyright by Deitel

47

4.12 Structured-Programming Summary

© Copyright by Deitel

48

4.12 Structured-Programming Summary

© Copyright by Deitel

49

4.12 Structured-Programming Summary

• Structured Programming
– Easier than unstructured programs to understand, test,

debug and, modify programs

• Rules for Forming Structured Programming
– Rules developed by programming community

– Only single-entry/single-exit control structures are used

– Rules:

1. Begin with the “simplest flowchart”

2. Stacking (堆疊) rule: Any rectangle (action) can be replaced
by two rectangles (actions) in sequence

3. Nesting (層狀) rule: Any rectangle (action) can be replaced by
any control structure (sequence, if, if…else, switch,
while, do…while or for)

4. Rules 2 and 3 can be applied in any order and multiple times

© Copyright by Deitel

50

4.12 Structured-Programming Summary

Rule 1 - Begin with the

simplest flowchart

Rule 2 - Any rectangle can be

replaced by two rectangles in

sequence

© Copyright by Deitel

51

4.12 Structured-Programming Summary

Rule 3 - Replace any rectangle with a control structure

© Copyright by Deitel

52

4.12 Structured-Programming Summary

© Copyright by Deitel

53

4.12 Structured-Programming Summary

Figure 4.23 An unstructured flowchart.

© Copyright by Deitel

54

4.12 Structured-Programming Summary

• All programs can be broken down into 3 controls

– Sequence – handled automatically by compiler

– Selection – if, if…else or switch

– Repetition – while, do…while or for

• Can only be combined in two ways

– Nesting (rule 3)

– Stacking (rule 2)

– Any selection can be rewritten as an if statement, and any

repetition can be rewritten as a while statement

© Copyright by Deitel

55

Review

• In this chapter, we have learned:
– To be able to use the for and do…while repetition

statements.

– To understand multiple selection using the switch

selection statement.

– To be able to use the break and continue program

control statements

– To be able to use the logical operators (&& ,

|| , !)

© Copyright by Deitel

56

Exercises

