Chapter 4 — C Program Control

Outline

4.1 Introduction

4.2 The Essentials of Repetition

4.3 Counter-Controlled Repetition

4.4 The for Repetition Statement

4.5 The for Statement: Notes and Observations
4.6 Examples Using the for Statement

4.7 The switch Multiple-Selection Statement
4.8 The do...while Repetition Statement

4.9 The break and continue Statements

4.10 Logical Operators(&& , || , !')

4.11 Confusing Equality (==) and Assignment (=) Operators
4.12 Structured Programming Summary

© Copyright by Deitel

Objectives

* In this chapter, you will learn:
— To be able to use the for and do..while repetition
statements.

— To understand multiple selection using the switch
selection statement.

— To be able to use the break and continue program
control statements

— To be able to use the logical operators (&& |,
I, ')

© Copyright by Deitel

4.1 Introduction

 We have learned
— Selection structures (3%4£): i€, if . . . else
— Repetition structures (3[&]): while

 This chapter introduces

— Additional repetition control structures
e for

e do...while
— switch multiple selection statement

— break statement

Used for exiting immediately and rapidly from certain selection and
repetition structures

— continue statement

 Used for skipping the remainder of the body of a repetition structure
and proceeding with the next iteration of the loop

— logical operators (&& , || , !)
© Copyright by Deitel - -

4.2 The Essentials of Repetition
* Loop

— Group of instructions computer executes repeatedly while
some condition remains true
« Counter-controlled repetition
— Definite repetition: know how many times loop will execute
— Control variable used to count repetitions

 Sentinel-controlled repetition
— Indefinite repetition
— Used when number of repetitions not known
— Sentinel value indicates "end of data"

© Copyright by Deitel

4.3 Essentials of Counter-Controlled
Repetition

« Counter-controlled repetition requires
— The name of a control variable (or loop counter)
— The initial value of the control variable

— An increment (or decrement) by which the control variable
IS modified each time through the loop

— A condition that tests for the final value of the control
variable (i.e., whether looping should continue)

© Copyright by Deitel

4.3 Essentials of Counter-Controlled
Repetition

« Example:
int counter = 1; // initialization
while (counter <= 10) { // repetition condition
printf("%d\n", counter);
++counter; // increment

}

— The statement
int counter = 1;

Names counter

Defines it to be an integer
Reserves space for it in memory
Sets it to an initial value of 1

© Copyright by Deitel

N e e
~N o o b~

ROWooNOGOOUVTDh WN R

o

A .
Counter-Control Repetition v Outline

1 /* Fig. 4.1: fig04_01l.c

2 Counter-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 1int mainQ

T fig04 0l.c

8 int counter = 1; /* initialization */

9

10 while (counter <= 10) { /* repetition condition */

11 printf ("%d\n", counter); /* display counter */

12 ++counter; /* increment */

13 } /* end while */

return 0; /* indicate program ended successfully */

} /* end function main */

Program Output

4.3 Essentials of Counter-Controlled
Repetition
e Condensed code

— C Programmers would make the program more concise
— Initialize counterto 0

counter = 0; JERE counter 5511 > FEHIETEA <= 10 }

while (++counter <= 10)
printf(“%d\n, counter);

] A P R 7
S

while (counter++ <=

10)
printf(“%d\n”, counter);

AL ?

, 0O

© Copyright by Deitel

4.4 The for Repetition Statement

Control Required Final value of control Required
for variable semicolon variable for which semicolon
keyword name separator the condition is true separator

for (counter = 1; counter <= 10; counter++)

P S
T Increment of

Loop-continuation control variable
condition

Initial value of
control variable

© Copyright by Deitel

4.4 The for Repetition Statemaht

A 10

Outline

Rewrite the program on the lower-right corner with £or repetition statement

© 0O N O o M W N P

10
11
12
13
14
15
16
17

/* Fig. 4.2: fig04_02.c
Counter-controlled repetition with the for statement */

#include <stdio.h>

/* function main begins program execution */

.i

{

nt main(Q)

int counter; /* define counter */

/* initialization, repetition

for (counter = 1; counter <=
printf("%d\n", counter);
} /* end for */

11 included in the £ head %/

condition, and increment

10; counter++) {

return 0; /* indicate program

18 } /* end function main */

ended successfully */

© Copyright by Deitel

i int counter = 1; /* initialization */

§ 10 while (counter <= 10) { /* repetition condition */
§ 11 printf ("%d\n", counter); /* display counter */

§ 12 ++counter; /* increment */

13 } /* end while */

4.4 The for Repetition Statement

» Format when using for loops
for (initialization; loopContinuationTest; increment)

statement
« for loops can usually be rewritten as while loops:
Initialization;
while (loopContinuationTest) {
statement;
Increment;
}
« Example:
for(counter = 1; counter <= 10; counter++)
printf("%d\n", counter); /
— Prints the integers from one to ten No
semicolon
(;) after last
expression

© Copyright by Deitel - -

11

4.4 The for Repetition Statement

 [Initialization and increment
— Can be comma-separated lists

— Example:
for (i =0, j=0; Jj+ i<=10; j++, i++)

printf("%d\n", j + i);
* Increment Expression (= = fa4ie *)

counter = counter + 1

counter += 1
++counter
counter++ /* preferred */

 Arithmetic expressions
— Initialization, loop-continuation test, and increment can contain arithmetic
expressions. If x =2andy =10
for (J=x%x; J<=4 *x*y; jJ+=y / x)

IS equivalent to
for (J =2, J <=80; Jj += 5)

© Copyright by Deitel - -

12

4.5 The for Statement : Notes and
Observations

» Notes about the for statement:
— "Increment" may be negative (decrement)
— If the loop continuation condition is initially false

» The body of the for statement is not performed
 Control proceeds with the next statement after the for statement

— Control variable
 Often printed or used inside for body, but not necessary

Establish initial
value of control
variable

counter = 1

t-
true

counter <= 10 —»

printf("%d", counter); —® counter++

o / Body of loop Increment
Determine if final false (this may be many the control
value of control statements) variable
variable has been
reached

<>

© Copyright by Deitel

13

Using £or to Sum Numbers

1 /* Fig. 4.5: fig04_05.c

2 Summation with for */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main(Q)

7 {

8 int sum = 0; /* initialize sum */

9 int number; /* number to be added to sum */

10

11 for (number = 2; number <= 100; number += 2) {
12 sum += number; /* add number to sum */

13 } /* end for */

14

15 printf("sum is %d\n", sum); /* output sum */
16

17 return 0; /* indicate program ended successfully */
18

19 } /* end function main */

sum is 2550

2+4+6+8+... 100=2550

© Copyright by Deitel

<>

fig04_05.c

Outline

14

4.6 Example: Computing Compound Interest

A person invests $1000.00 in a savings account yielding 5% interest
per year. Assuming that all interest is left on deposit in the account,
calculate and print the amount of money in the account at the end
of each year for 10 years. Use the following formula for determining
these amounts:

a=p(l+r)y
where

p is the principal (» £)

r is the interest rate (41 &)

n is the number of years

a is the » 4|4r (deposit)

© Copyright by Deitel

15

Calculating Compound Interest with for

16
A Outline
4

1 /* Fig. 4.6: fig04_06.c

2 Calculating compound interest */ figO4_06-C (Part 1 of 2)
3 #include <stdio.h>

4| #include <math.h> —<[e % ﬁi;‘ vl Eljg’t? ﬁ'ﬁ’tk_& » % Jf 5l » math.h *%Eﬁﬁ" }

5

6 {* fun?twn main begins program execution */ od- integers

7 1int main(Q) 2 .

6 o %f: floating-point values
9 double amount; /* amount on deposit */ $s: Strings ($$)

10 double principal = 1000.0; /* starting principal */

11 double rate = .05; /* interest rate */

12 int year; /* year counter */

13 %4s%21s in the printf, same as
14 /* output table column head */ printf ("Year Amount on deposit\n");

15 printf("%4s%21s\n", "Year", "Amount on deposit");

16
17 /* calculate amount on deposit for each of ten years */
18 for (year = 1; year <= 10; year++) {
19
o pow (x,y) calculates x¥ where x and y

20 /* calculate new amount for specified year */

. are double
21 amount = principal * pow(1.0 + rate, year);
22 Need #include <math.h>
23 /* output one table row */)
24 printf("%4d%21.2f\n", year, amount); \%4d%21-2f in the Prlntf
25 } /* end for */

© Copyright by Deitel

27 return 0; /* indicate program ended successfully */

28

29 } /* end function main */
Year Amount on deposit

1477

owWwooNOOUVTIHA WN R

=

© Copyright by Deitel

1050.
1102.
1157.
1215.
1276.
1340.
1407 .
.46
1551.
1628.

00
50
63
51
28
10
10

33
89

I‘k 17

Outline
4

fig04_06.c (Part 2
of 2)

Program Output

sqrt(x)

exp(x)

log(x)

1ogl0(x)

fabs(x)

ceil(x)

floor(x)

5.3 Math Library Functions

square root of x
exponential function ¢
natural logarithm of x (base)

logarithm of x (base 10)

absolute value of x

rounds x to the smallest integer not
less than x

rounds x to the largest integer not
greater than x

A Outline
\Y%

sqrt(900.0) iS 30.0
sqrt(9.0) 1S 3.0

exp(1.0) 1S 2.718282
exp(2.0) 1S 7.389056

log(2.718282) 1S 1.0
log(7.389056) 1S 2.0

Togl0(1.0) i.S 0.0
logl0(10.0) 1S 1.0
log10(100.0) 1§ 2.0

fabs(13.5), iS 13.5
fabs(0.0) 1§,0.0
fabs(-13.5) 1S 13.5

ceil(9.2) IS 10.0
ceil(-9.8) 1S -9.0
floor(9.2) 1S 9.0
floor(-9.8) 1S -10.0

Fig. 5.2 | Commonly used math library functions. (Part | of 2.)

© Copyright by Deitel

. Outline
5.3 Math Library Functions[¥

Function Description Example
pow(X, y) x raised to power y (x”) pow(2, 7) 1§ 128.0
pow(9, .5) 1S 3.0
fmod(x, y) remainder of x/y as a floating-point fmod(13.657, 2.333) 1S
number 1.992
sin(x) trigonometric sine of x (x in radians) sin(0.0) 1S 0.0
cos(x) trigonometric cosine of x (x in radi- cos(0.0) 1S 1.0
ans)
tan(x) trigonometric tangent of x (x in radi- tan(0.0) 1S 0.0
ans)

Fig. 5.2 | Commonly used math library functions. (Part 2 of 2.)

© Copyright by Deitel

20

ijLi 7£%% — Nested for Loops

1x2= 1%3= 3 1x=4= 4
2%2= 4 2%3= b 2x4= 8
3x2= b 3x3= 9 3x4=12
Yx2= 8 H4x3=12 HxY4=16
5x2=10 5x3=15 Sx4=20
Bx2=12 bx3=18 6x4=24
T=2=14 T=3=21 T=4=28
8x2:=16 8x=3:=24 8x4=32
9%2:=18 9x3=27 9=4=36
Press any key to continue_

2
3
Y
5
6
[{
8
9

/* Example Table99.c, nested for loops EFIHSLILIEER */
#include <stdio.h>

int main ()

{

int i,j;
for (i=1 ; i<=9 ; i++) /*
{

for (3=1 ; j<=9 ; Jj++) /*

printf ("%$d*%d=%2d ",i,]j,i*]);

printf ("\n") ;
}

return 0O;

© Copyright by Deitel

LA — Nested while Loops

/* Example Table99, nested while loops K9*9FEEFER */

#include <stdio.h>

int main ()

/* BRI BBHEME */

{
int i=1, j=1;
while (i<=9) /* INEERE *7
{
while (j<=9) /* NgHEE */
{
printf ("%d*%$d=%2d " ,i,j,i*3j);
j++;
}
printf ("\n") ;
i++;
J=1;
}
return O;
}

© Copyright by Deitel

21

© Copyright by Deitel

W o DU E o o —

JUSLIEEZR — Nested for Loops

Question: How to modify the source code to produce

8x8=64
9=8=T2

1x8= 8
2x8=16

9%9=81

1%9= 9

22

4.7 The switch Multiple-Selection
Statement

e switch

— Useful when a variable or expression is tested for all the values it can

assume and different actions are taken

e Format

— Series of case labels and an optional default case

23

switch (value){

case 1:

break;

case 2:

actions;
break;

default:

}

actions;
break;

acti;:z;:::[

YRS 2 FE value ZEEAYES » R case 1 Hify 1
f value FVE{E - (HEZ15 value &7 THYES > B
case ‘A’ » Ha1{y A E value BI{H o

1

//AFRAT br

/ /R IR0

- break; exits from statement

© Copyright by Deitel

eak

 FHEERT NHEHRY actions

4.7 The switch Multiple-Selection
Statement

 Flowchart of the sw1itch statement

{

true

case a — case aactions(s) —» break —>
false¢

true ,
case b —» case b actions(s) —» break —>

false¢
true

case z —» case 7z actions(s) —» break —>]

false¢

default actions(s)

|‘-
~aif}

© Copyright by Deitel I .

Counting Letter Grades with switch

/* Fig. 4.7: fig04_07.c
Counting letter grades */
#include <stdio.h>

A 25

Outline
4

fig04_07.c (Part 1 of
3)

/* function main begins program execution */
int mainQ

{ Hi grade &BTUL

char grade; /* one grade */.
int aCount = 0; /* number of As */

int bCount = 0; /* number of Bs */

int cCount = 0; /* number of Cs */ Jﬁt&% aCount, bCount %ﬁ%”%ﬁfﬁp\ i
int dcount = 0: /* number of Ds */ B> ... f%?:?ijﬁiEﬁJ%ﬁzE%i o

int fCount = 0; /* number of Fs */

printf("Enter the letter grades.\n");
printf("Enter the EOF character to end input.\n"
in variable grade
/* Toop until user types end-of-file key sequen
while ((grade = getchar()) != EOF) {

The getchar() function reads one character
from the keyboard and stores that character

EOF (end-of-file) is system dependent. In
MS Windows, EOF is <crtl-z>

/* determine which grade was input */
switch (grade) { /* switch nested in while */

-

case A" tEEE value 27T » FrDAH case ‘A’
g -

case 'a': /* or lowercase a *

++aCount; /* increment aCount

» Hohiy A B value (Y

= * . —
CopyﬂghtbleeREPak' /* necessary to exit switch */

29 case 'B':

30 case 'b':

31 ++bCount;
32 break;

33

34 case 'C':

35 case 'c':

36 ++cCount;
37 break;

38

39 case 'D':

40 case 'd':

41 ++dCount;
42 break;

43

44 case 'F':

45 case 'f':

46 ++fCount;
47 break;

48

49 case '\n':
50 case '\t':
51 case ' ':

52 break;

53

© Copyright by Deitel

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

*/

grade was uppercase B

26

A
v

fig04_07.c (Part 2 of
3)

or lowercase b */

Outline

increment bCount */
exit switch */

grade was uppercase
or lowercase c */
increment cCount */

exit switch */

JEE ¢ BHE case s /AL break > ik
H switch [&BE - BRIZEEHTT F—E

*
/ case -

grade was uppercase D
or lowercase d */

increment dcCount */
exit switch */

grade was uppercase F */
or lowercase f */
increment fCount */

exit switch */

ighore newlines, */
tabs, */
and spaces in input

*/

exit switch */

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

default:
printf("Incorrect letter grade entered."”);

/* catch all other characters */

printf(" Enter a new grade.\n");

break;
} /* end switch */

} /* end while */

/* optional; will exit switch anyway */

/* output summary of results */

printf("\nTotals for each letter grade

printf(
printf(
printf(
printf(
printf(

"A:

%d\n",

"B: %d\n",
"C:
"D
"F

%d\n" ,

1 %d\n",
: %d\n",

acount
bCount
cCount
dCount
fCount

); /* display
); /* display
); /* display
); /* display
); /* display

are:\n");

number
number
number
number
number

of A grades
of B grades
of C grades
of D grades
of F grades

return 0; /* indicate program ended successfully */

72 } /* end function main */

© Copyright by Deitel

*/
*/
*/
*/
*/

I‘l 27

Outline
4

fig04_07.c (Part 3 of
3)

28

. Outline

Program Output

© Copyright by Deitel

4.8 The do...while Repetition Statement

* The do...wh1 e repetition statement
— Similar to the wh1i Te structure
— Condition for repetition tested after the body of the loop is
performed
« Implication: All actions are performed at least once

— Format:
do {
statement;
} while (condition);

« Example (initially, counter = 1):
do {
printf("%d ", counter);
} while (++counter <= 10);

— Prints the integers from 1 to 10
© Copyright by Deitel - -

29

4.8 The do...wh1le Repetition Statement

* Flowchart of the do...wh1i 1e repetition statement

Cf...

action(s)

condition

false})

© Copyright by Deitel - -

true

The wh1ile Repetition Statement

int product = 2;

while (product <= 1000)
product = 2 * product;

h

true
product <= 1000 — product = 2 * product

falseg

The final value of product will be 1024.

© Copyright by Deitel - -

31

The for Repetition Statement

for(counter = 1; counter <= 10; counter++)
printf(''%d\n"", counter);
Establish initial
value of control
variable

counter = 1

t-

true
counter <= 10 — printf("%d", counter); —® counter++
o / Body of loop Increment
Determine if final false (this may be many the control
value of control statements) variable

variable has been
reached

© Copyright by Deitel

Example of do ... while Statement

1 /* Fig. 4.9: fig04_09.c

2 Using the do/while repetition statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 1int main(Q

7 {

8 int counter = 1; /* initialize counter */

9

10 do {

11 printf("%d ", counter); /* display counter */
12 } while (++counter <= 10); /* end do...while */
13

14 return 0; /* indicate program ended successfully */
15

16 } /* end function main */

1 2 3 45 6 7 8 9 10

Question: What if we set while (counter++ <= 10); ?

1234567891011

© Copyright by Deitel

Outline

<>

fig04_09.c

Program Output

33

34

s while, for, do . . . while Z[EEg

for (initialization; loopContinuationTest; increment)

{

statement;,

}

initialization;

while (loopContinuationTest) {

.?tatement; for ~ while E2 do while ;@Y &L
increment;, e
Nm[E IE T
} Qs for while do while
A1 i Bl 5 # B R 14 B 2 &
e) . 12 Ui B 50 3 B R 14 & & 2
initialization;
REBFEPESENTHIBEBVE B 2 2
do { O R 5 B 2 = s |
statement; DB EROIRE 20 BLH] =gl
; ZOHIT OB EENRE 0Rr o 1R
increment;, —
TiFEENTEE 1EERRTL | BRAERRIL 3G Ay

} while (loopContinuationTest) ;

© Copyright by Deitel - -

4.9 The break and continue Statements

e break

— Causes immediate exit from a repetition (i.e., while, for,
do...while) or aselection (i.e., switch) structure.

— Program execution continues with the first statement after
the structure
— Common uses of the break statement
 Escape early from a loop
« SKip the remainder of a switch statement

© Copyright by Deitel

35

Using the break Statement in a £or Statement %

A Outline
\Y%

1 /* Fig. 4.11: fig04_11.c

2 Using the break statement in a for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */ figO4_]_1_C
6 1int main(Q)

7 {

8 int x; /* counter */

9

10 /* loop 10 times */

11 for (x =1; x <= 10; x++) {

12 Use break to break out of the loop at x
13 /* if x is 5, terminate loop */ S0, (';é‘,f Xipe=h H%:‘EJEH:', for }E
14 if (x=5) { =

15 break; /* break loop only if x is 5 */ 44)

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nBroke out of loop at x == %d\n", x);

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

1234

Y UYL VY il

The continue Statement

continue

— Skips the remaining statements in the body of a repetition
(while, for or do...while) structure and proceeds with
the next iteration of the loop (“F & Bk A FE)

- whileand do...while

« Loop-continuation test is evaluated immediately after the
continue statement is executed

- for
1. Increment expression is executed, then
2. loop-continuation test is evaluated

© Copyright by Deitel

37

Using a continue Statement in a £or Statement A .

Outline

© 0 N O o b W N PP

N N NN P B P B R PP R R
W NP O © 0 N O 0 W N L O

24
25

1

/* Fig. 4.12: fig04_12.c
Using the continue statement in a for statement */
#include <stdio.h>

/* function main begins program execution */
int mainQ

{

int x; /* counter */

/* 1oop 10 times */

\'%

fig04_12.

for (x =1; x <= 10; x++) {

/* if x is 5, continue with next iteration of loop */
if (x=5) {

continue; /* skip remaining code in loop body */
} /* end if */

printf("%d ", x); /* display value of x */
} /* end for */

Use continue to skip printing the
value 5

x HEEN— /2B for R -
Bl break A[g ! |

printf("\nUsed continue to skip printing the value 5\n");

return 0; /* indicate program ended successfully */

} /* end function main */

234678910

YIfEl for HPEIGEY
while ERE ? FEIFEIIL
#h7 7

AU

4.10 Logical Operators
e & & (logical AND)

— Returns true if both conditions are true
e || (logical OR)
— Returns true if either of its conditions are true
e | (logical NOT, logical negation)
— Reverses the truth/falsity of its condition
— Unary operator, has one operand
 Useful for testing the conditions in a repetition or
selection structure

EXpression Result
true && false false
true || false true
Ifalse true

© Copyright by Deitel - -

39

40

4.10 Logical Operators

expression | expression2 expression| && expression2
0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

Fig. 4.13 | Truth table for the logical AND (&&) operator.

expression | expression2 expression| | | expression2
0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Fig. 4.14 | Truth table for the logical OR (| |) operator.

expression lexpression

0 1

nonzero 0

Fig. 4.15 | Truth table for operator ! (logical negation).

© Copyright by Deitel - -

4.10 Logical Operators

41

 The Code
if (a>b >c) /* R */
int a=5, b=4, ¢ = 3;
should be (et s e
if (a > b && b > c|) printf(“ a > b > ¢ is true \n”);
S5 EIuE ?
 The Code
if (semesterAverage >= 90 || finalExam >= 90)

printf("Student grade is A\n");

 The Codes (withx=10,y=1,a=3,b=3,g=5,i=2,j=9)
1(x<5) && 1 (y>=7)

'(a=Db) || '"(g !'=5)
1((x<=8) & (y > 4))
'((1 >4) || (J<=6))

© Copyright by Deitel - -

4.10 Logical Operators

Assumei=1,)=2, k=3and m = 2. What does each of the
following statements print?
printf("%d", i =1);

printf (
printf (
printf (
printf (
printf (

printf (
printf (
printf (
printf (

© Copyright by Deitel

" %d" ,
" %d" ,
1A} %d" ,
" %d" ,

" %d" ,

1A} %d" ,
1A} %d" ,
1A} %d" ,

1A} %d" ,

ANS:
j=3); ANS:
i>1 && J < 4); ANS:
m<=99 &§8& k <m); ANS:
3> 1i || k=m); ANS:
k+m< jJ || 3 -3>%k);

ANS:
'm) ; ANS:
'"(J -m)); ANS:
'"(k>m)); ANS:
'(3 >k)); ANS:

R O R O K

R O KB O o

42

4.10 Logical Operators

Operators

Associativity

43

++ @Oﬁﬁx) -- @Oﬁﬁx)

- U 4+ (prefix) -- (prefix) (yped
.3 / %

Fig. 4.16 | Operator precedence and associativity,

© Copyright by Deitel

right to left
right to left
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

postfix

unary
multiplicative
additive
relational
equality
logical AND
logical OR
conditional
assighment

comima

4.11 Confusing Equality (==) and
Assignment (=) Operators

« Dangerous error

— Does not ordinarily cause syntax errors

— Any expression that produces a value can be used in control
structures

— Nonzero values are true, zero values are false
— Example using ==:
if (payCode == 4)
printf("You get a bonus!\n");
e Checks paycode, if itis 4 then a bonus is awarded

© Copyright by Deitel

44

4.11 Confusing Equality (==) and
Assignment (=) Operators

— Example, replacing == with =:

if (payCode = 4)
printf("You get a bonus!\n");

* This sets payCode to 4

4 IS nonzero, SO expression is true, and bonus awarded no
matter what the payCode was

— Logic error, not a syntax error

© Copyright by Deitel

45

Assignment (=) Operators

e |values

— EXxpressions that can appear on the left side of an assignment
operator

— Their values can be changed, such as variable names
e X = 4;

e rvalues

— Expressions that can only appear on the right side of an
assignment operator

— Constants, such as numbers
o Cannotwrite 4 =
e Mustwrite x = 4;

— lvalues can be used as rvalues, but not vice versa
*y = X;

X5

© Copyright by Deitel - -

46

47

4.12 Structured-Programming Summary

Sequence

I

© Copyright by Deitel

Selection

if statement if...else statement

? (single selection) T (double selection)

o o
ij—II |

switch statement
(multiple selection)

Y
RO

T

—_— —» break —»
f
T—-— —» break —»

&F
T—- —» break —»

lF

—
-

4.12 Structured-Programming Summary

Repetition

while statement do...wh1ile statement for statement

© Copyright by Deitel

4.12 Structured-Programming Summary

¢ Structured Programming

Easier than unstructured programs to understand, test,
debug and, modify programs

* Rules for Forming Structured Programming

© Copyright by Deitel

Rules developed by programming community

Only single-entry/single-exit control structures are used

Rules:

1.
2.

Begin with the “simplest flowchart”

Stacking (3% 4r) rule: Any rectangle (action) can be replaced
by two rectangles (actions) in sequence

Nesting (% ;) rule: Any rectangle (action) can be replaced by
any control structure (sequence, if, if..else, switch,
while, do..while Or for)

Rules 2 and 3 can be applied in any order and multiple times

49

4.12 Structured-Programming Summary

Rule 1 - Begin with the
simplest flowchart

© Copyright by Deitel

Rule 2 - Any rectangle can be
replaced by two rectangles in
sequence

Rule 2

50

4.12 Structured-Programming Summary

Rule 3 - Replace any rectangle with a control structure

'
¢ _REIE
I __ i ______________
v v
.......... Jrm e
. !.'---*. ___________ e _i _________ b
! b !
| O | i : I O |
------------- i s eoe

__

© Copyright by Deitel

o1

4.12 Structured-Programming Summary

Stacked building blocks Nested building blocks

Overlapping building blocks
(lllegal in structured programs)

© Copyright by Deitel

4.12 Structured-Programming Summary

Figure 4.23 An unstructured flowchart.

© Copyright by Deitel

53

4.12 Structured-Programming Summary

 All programs can be broken down into 3 controls

© Copyright by Deitel

Sequence — handled automatically by compiler

Selection —1if, if...elseor switch

Repetition —while, do...while or for
 Can only be combined in two ways

— Nesting (rule 3)
— Stacking (rule 2)

Any selection can be rewritten as an 1 f statement, and any
repetition can be rewritten as a wh1i1e statement

54

Review

» In this chapter, we have learned:
— To be able to use the for and do...whiTe repetition
statements.

— To understand multiple selection using the switch
selection statement.

— To be able to use the break and continue program
control statements

— To be able to use the logical operators (&& ,
I, ')

© Copyright by Deitel

55

© Copyright by Deitel

Exercises

56

