
© Copyright by Deitel

1

Chapter 3 - Structured Program

Development
Outline
3.1 Introduction

3.2 Algorithms

3.3 Pseudocode

3.4 Control Structures

3.5 The If Selection Statement

3.6 The If…Else Selection Statement

3.7 The While Repetition Statement

3.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)

3.9 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 2 (Sentinel-Controlled Repetition)

3.10 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 3 (Nested Control Structures)

3.11 Assignment Operators

3.12 Increment and Decrement Operators

© Copyright by Deitel

2

Objectives

• In this chapter, you will learn:
– To understand basic problem solving techniques.

– To be able to develop algorithms through the process of top-down,

stepwise refinement.

– To be able to use the if selection statement and if…else

selection statement to select actions.

– To be able to use the while repetition statement to execute

statements in a program repeatedly.

– To understand counter-controlled repetition and sentinel-controlled

repetition.

– To understand structured programming.

– To be able to use the increment, decrement and assignment

operators.

© Copyright by Deitel

3

3.1 Introduction
• Steps to write a program (Review):

– Define the problem to be solved with the computer

– Design the program’s input/output (what the user should
give/see)

– Break the problem into logical steps to achieve this output

– Write the program (with an editor)

– Compile the program

– Test the program to make sure it performs as you expected

• Before writing a program:
– Have a thorough understanding of the problem

– Carefully plan an approach for solving it

• While writing a program:
– Know what “building blocks” are available

– Use good programming principles

© Copyright by Deitel

4

3.2 Algorithms (演算法)

• Computing problems

– All can be solved by executing a series of actions in a specific
order

• Algorithm: procedure in terms of

1. Actions to be executed

2. The order in which these actions are to be executed

– Example: "rise-and-shine algorithm"

• Get out of bed

• Take off pajamas

• Take a shower

• Get dressed

• Eat breakfast

• Carpool to work

• Program control

– Specify order in which statements are to be executed

But if

• Get out of bed

• Take off pajamas

• Get dressed

• Take a shower

• Eat breakfast

• Carpool to work

© Copyright by Deitel

5

3.3 Pseudocode

• Pseudocode (虛擬碼)
– Artificial, informal language that helps us develop

algorithms

– Similar to everyday English

– Not actually executed on computers

– Helps us “think out” a program before writing it

• Easy to convert into a corresponding C program

• Consists only of executable statements

© Copyright by Deitel

6

3.4 Control Structures

• Sequential execution (依序執行)
– Statements executed one after the other in the order written

• Transfer of control
– When the next statement executed is not the next one in

sequence

– Overuse of goto statements led to many problems

• Bohm and Jacopini showed that
– All programs can be written in terms of 3 control structures

• Sequence structures: Built into C. Programs executed
sequentially by default

• Selection structures (選擇): C has three types: if, if…else,
and switch

• Repetition structures (迴圈): C has three types: while,
do…while and for

© Copyright by Deitel

7

3.4 Control Structures

Figure 3.1 Flowcharting (流程圖) C’s sequence structure.

© Copyright by Deitel

8

3.4 Control Structures

• Flowchart (流程圖)

– Graphical representation of an algorithm

– Drawn using certain special-purpose symbols connected by arrows
called flowlines

– Rectangle symbol (action symbol):

• Indicates any type of action

– Oval symbol:

• Indicates the beginning or end of a program or a section of code

– Small circle symbol (connector symbol):

• Beginning or end of a small portion of an algorithm

– Diamond symbol (decision symbol)

• Indicates a decision is to be made (will be discussed next section)

• Single-entry/single-exit control structures

– Connect exit point of one control structure to entry point of the next
(control-structure stacking)

– Makes programs easy to build

© Copyright by Deitel

9

Flowchart Symbols and Examples

From 洪維恩著 “C語言教學手冊”

?

© Copyright by Deitel

10

3.5 The if Selection Statement

• Selection structure:

– Used to choose among alternative courses of action

– Pseudocode:

If student’s grade is greater than or equal to 60

Print “Passed”

• If condition true

– Print statement executed and program goes on to next

statement

– If false, print statement is ignored and the program goes

onto the next statement

– Indenting makes programs easier to read

• C ignores whitespace characters

© Copyright by Deitel

11

3.5 The if Selection Statement

• C Code:
if (grade >= 60)

printf("Passed\n");

or

if (grade >= 60)
{ printf("Passed\n"); }

• Psuedocode:
If student’s grade is greater than or equal to 60

Print “Passed”

– C code corresponds closely to the pseudocode

• Diamond symbol (decision symbol)

– Indicates decision is to be made

– Contains an expression that can be true or false

– Test the condition, follow appropriate path

© Copyright by Deitel

12

3.5 The if Selection Statement

• if statement is a single-entry/single-exit structure

A decision can be made on

any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

© Copyright by Deitel

13

3.6 The if…else Selection Statement

• if

– Only performs an action if the condition is true

• if…else

Specifies

• an action to be performed when the condition is true

• another action when it is false

• Psuedocode:
If student’s grade is greater than or equal to 60

Print “Passed”

else

Print “Failed”

– Note spacing/indentation conventions

© Copyright by Deitel

14

3.6 The if…else Selection Statement

• C code:
if (grade >= 60)

printf("Passed\n");

else

printf("Failed\n");

• Ternary conditional operator (? :)

– Takes three arguments

condition ? value if true : value if false

– Our pseudocode could be written:
printf("%s\n", grade >= 60 ? "Passed" : "Failed");

– Or it could have been written:
grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

© Copyright by Deitel

15

3.6 The if…else Selection Statement

• Flow chart of the if…else selection statement

• Nested if…else statements

– Test for multiple cases by placing if…else selection

statements inside if…else selection statement

– Once condition is met, rest of statements skipped

© Copyright by Deitel

16

3.6 The if…else Selection Statement

• Compound statement:
– Set of statements within a pair of braces

– Example:
if (grade >= 60)

printf("Passed.\n");
else {

printf("Failed.\n");
printf("You must take this course again.\n");
}

– What is the difference between the above statement and
if (grade >= 60)

printf("Passed.\n");
else

printf("Failed.\n");
printf("You must take this course again.\n");

– Answer: Same as
if (grade >= 60)

printf("Passed.\n");
else

printf("Failed.\n");
printf("You must take this course again.\n");

That is,
printf("You must take this course again.\n");

would always be executed for the second case.

© Copyright by Deitel

17

3.6 The if…else Selection Statement

• Block:

– Compound statements with declarations

• Syntax errors

– Caught by compiler

• Logic errors:

– Have their effect at execution time

– Non-fatal: program runs, but has incorrect output

– Fatal: program exits prematurely

© Copyright by Deitel

18

3.6 if…else 配 對 問 題

if (x < 10)

if (y > 10)

printf("*****\n");

else

printf("#####\n");

printf("$$$$$\n");

if (x < 10)

if (y > 10)

printf("*****\n");

else

printf("#####\n");

printf("$$$$$\n");

Ans: x = 9, y =11

$$$$$

Determine the output

(1) when x = 9 and y = 11 and (2) when x = 11 and y = 9

Ans: x = 11, y =9

$$$$$

© Copyright by Deitel

19

3.6 if…else 配 對 問 題

if (x < 10) {

if (y > 10)

printf("*****\n");

}

else {

printf("#####\n");

printf("$$$$$\n");

}

if (x < 10) {

if (y > 10)

printf("*****\n");

}

else {

printf("#####\n");

printf("$$$$$\n");

}

Ans for x = 9, y =11

(1) when x = 9 and y = 11 and (2) when x = 11 and y = 9

Ans for x = 11, y =9

#####

$$$$$

© Copyright by Deitel

20

3.6 if…else 配 對 問 題

if (x < 10)

if (y > 10) {

printf("*****\n");

}

else {

printf("#####\n");

printf("$$$$$\n");

}

if (x < 10)

if (y > 10) {

printf("*****\n");

}

else {

printf("#####\n");

printf("$$$$$\n");

}

(1) when x = 9 and y = 11 (2) when x = 11 and y = 9

Nothing!

© Copyright by Deitel

21

3.6 if…else 配 對 問 題

if (y == 8)

if (x == 5)

printf("@@@@@\n");

else

printf("#####\n");

printf("$$$$$\n");

printf("&&&&&\n");

3.32 Modify the following code to produce the output shown.

Assuming x = 5 and y = 8,

the following output is produced.

@@@@@

$$$$$

&&&&&

if (y == 8)

if (x == 5)

printf(“@@@@@\n”);

else {

printf(“#####\n”);

printf(“$$$$$\n”);

}

printf(“&&&&&\n”);

Assuming x=5 and y=8, then

@@@@@

&&&&&

© Copyright by Deitel

22

3.6 if…else 配 對 問 題

int course, code;

course = 1;

code = 2;

if (course == 1)

if (code < 2)

printf("Chemical Engineering\n");

else

printf("No course listed\n");

printf("*** End of course listings *** \n");

What is the output for the following code?

Which one is the correct output?

No course listed

*** End of course listings ***

or

*** End of course listings ***

© Copyright by Deitel

23

3.6 The if…else Selection Statement

• C code:
if (grade >= 60)

printf("Passed\n");

else

printf("Failed\n");

• Ternary conditional operator (? :)

– Takes three arguments

condition ? value if true : value if false

– Our pseudocode could be written:
printf("%s\n", grade >= 60 ? "Passed" : "Failed");

– Or it could have been written:
grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

© Copyright by Deitel

24

3.6 The if…else Selection Statement

– Pseudocode for a nested if…else statement

If student’s grade is greater than or equal to 90

Print “A”

else

If student’s grade is greater than or equal to 80

Print “B”

else

If student’s grade is greater than or equal to 70

Print “C”

else

If student’s grade is greater than or equal to 60

Print “D”

else

Print “F”

© Copyright by Deitel

25

3.6 The if…else Selection Statement

if (grad >= 90)

printf(“A\n”);

else

if (grade >= 80)

printf(“B\n”);

else

if (grade >= 70)

printf(“C\n”);

else

if (grade >= 60)

printf(“D\n”);

else

printf(“F\n”);

if (grad >= 90)

printf(“A\n”);

else if (grade >= 80)

printf(“B\n”);

else if (grade >= 70)

printf(“C\n”);

else if (grade >= 60)

printf(“D\n”);

else

printf(“F\n”);

© Copyright by Deitel

26

Actions

3.7 The while Repetition Statement

• Repetition structure

– Repetition structures (迴圈):

(1) while, (2) do…while and (3) for

– Programmer specifies an action to be repeated

while some condition remains true

– 在此先介紹 while迴圈

– Psuedocode

While there are more items on my shopping list

Purchase next item and cross it off my list

– while loop repeated until condition becomes false

Condition

© Copyright by Deitel

27

3.7 The while Repetition Statement

• Example:
int product = 2;

while (product <= 1000)
product = 2 * product;

The final value of product will be 1024.

© Copyright by Deitel

28

• Loop repeated until counter reaches a certain value

• Definite repetition: number of repetitions is known

• Example: A class of ten students took a quiz. The grades
(integers in the range 0 to 100) for this quiz are available
to you. Determine the class average on the quiz

• Pseudocode for counter-controlled loops:
Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten
Input grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten

Print the class average

3.8 Formulating Algorithms

for Counter-Controlled Repetition

Initialization Phase

Processing Phase

Termination Phase

OutlineOutline

© Copyright by Deitel

29
1 /* Fig. 3.6: fig03_06.c

2 Class average program with counter-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter; /* number of grade to be entered next */

9 int grade; /* grade value */

10 int total; /* sum of grades input by user */

11 int average; /* average of grades */

12

13 /* initialization phase */

14 total = 0; /* initialize total */

15 counter = 1; /* initialize loop counter */

16

17 /* processing phase */

18 while (counter <= 10) { /* loop 10 times */

19 printf("Enter grade: "); /* prompt for input */

20 scanf("%d", &grade); /* read grade from user */

21 total = total + grade; /* add grade to total */

22 counter = counter + 1; /* increment counter */

23 } /* end while */

24

fig03_06.c (Part 1 of 2)

OutlineOutline

© Copyright by Deitel

30

fig03_06.c (Part 2 of

2)

Program Output
Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

25 /* termination phase */

26 average = total / 10; /* integer division */

27

28 /* display result */

29 printf("Class average is %d\n", average);

30

31 return 0; /* indicate program ended successfully */

32

33 } /* end function main */

© Copyright by Deitel

31
3.9 Formulating Algorithms for

Sentinel-Controlled Repetition with Top-Down,

Stepwise Refinement
• Problem in Sec 3.8 becomes:

Develop a class-averaging program that will process an

arbitrary number of grades each time the program is run.

– Unknown number of students

– Question: How will the program know to end??????

• Use sentinel value (步哨值、訊號)

– Also called signal value, dummy value, or flag value (旗標
值)

– Indicates “end of data entry.”

– Loop ends when user inputs the sentinel value

– Sentinel value chosen so it cannot be confused with a regular

input (such as -1 in this case)

© Copyright by Deitel

32

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Top-down, stepwise refinement

– Begin with a pseudocode representation of the top (a single

statement that conveys the program's overall function):

Determine the class average for the quiz

– Divide top into smaller tasks (refinement) and list them in

order:

Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

• Many programs have three phases:

– Initialization: initializes the program variables

– Processing: inputs data values and adjusts program variables

accordingly

– Termination: calculates and prints the final results

© Copyright by Deitel

33

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Refine the initialization phase from Initialize
variables to:

Initialize total to zero
Initialize counter to zero

• Refine Input, sum and count the quiz grades to
Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

• Refine Calculate and print the class average to
If the counter is not equal to zero

Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

© Copyright by Deitel

34

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

Initialize total to zero

Initialize counter to zero

Input the first grade

While the user has not as yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)

If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

else

Print “No grades were entered”

OutlineOutline

© Copyright by Deitel

35

fig03_08.c (Part 1

of 2)

1 /* Fig. 3.8: fig03_08.c

2 Class average program with sentinel-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter; /* number of grades entered */

9 int grade; /* grade value */

10 int total; /* sum of grades */

11

12 float average; /* number with decimal point for average */

13

14 /* initialization phase */

15 total = 0; /* initialize total */

16 counter = 0; /* initialize loop counter */

17

18 /* processing phase */

19 /* get first grade from user */

20 printf("Enter grade, -1 to end: "); /* prompt for input */

21 scanf("%d", &grade); /* read grade from user */

22

OutlineOutline

© Copyright by Deitel

36

fig03_08.c (Part 2 of

2)

23 /* loop while sentinel value not yet read from user */

24 while (grade != -1) {

25 total = total + grade; /* add grade to total */

26 counter = counter + 1; /* increment counter */

27 /* Get the next grade from user */

28 printf("Enter grade, -1 to end: "); /* prompt for input */

29 scanf("%d", &grade); /* read next grade */

30 } /* end while */

31

32 /* termination phase */

33 /* if user entered at least one grade */

34 if (counter != 0) {

35

36 /* calculate average of all grades entered */

37 average = (float) total / counter;

38

39 /* display average with two digits of precision */

40 printf("Class average is %.2f\n", average);

41 } /* end if */

42 else { /* if no grades were entered, output message */

43 printf("No grades were entered\n");

44 } /* end else */

45

46 return 0; /* indicate program ended successfully */

47

48 } /* end function main */

因為分數不會是負分，因此用 -
1 值當成訊號，也就是當分數為
-1 時，輸入分數的迴圈就停止
，程式進入下一個階段。

OutlineOutline

© Copyright by Deitel

37

Program Output

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Enter grade, -1 to end: -1
No grades were entered

© Copyright by Deitel

38

3.10 Nested Control Structures

• Problem

– A college has a list of test results (1 = pass, 2 = fail) for 10

students

– Write a program that analyzes the results

• If more than 8 students pass, print "Raise Tuition"

• Notice that

– The program must process 10 (a known value) test results

• Therefore, counter-controlled loop will be used

– Two additional counters can be used

• One for number of passes, one for number of fails

– Each test result is a number—either a 1 or a 2

• If the number is not a 1, we assume that it is a 2

© Copyright by Deitel

39

3.10 Nested Control Structures

• Top level outline
Analyze exam results and decide if tuition should be raised

• First Refinement
Initialize variables

Input the ten quiz grades and count passes and failures

Print a summary of the exam results and decide if tuition should

be raised

• Refine Initialize variables to
Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

© Copyright by Deitel

40

• Refine Input the ten quiz grades and count passes
and failures to

While student counter is less than or equal to ten
Input the next exam result

If the student passed

Add one to passes
else

Add one to failures

Add one to student counter

• Refine Print a summary of the exam results and
decide if tuition should be raised to

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition”

3.10 Nested Control Structures

© Copyright by Deitel

41

3.10 Nested Control Structures

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else

Add one to failures

Add one to student counter

Print the number of passes

Print the number of failures

If more than eight students passed

Print “Raise tuition”

Nested!

OutlineOutline

© Copyright by Deitel

42

fig03_10.c (Part 1 of

2)

1 /* Fig. 3.10: fig03_10.c

2 Analysis of examination results */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 /* initialize variables in definitions */

9 int passes = 0; /* number of passes */

10 int failures = 0; /* number of failures */

11 int student = 1; /* student counter */

12 int result; /* one exam result */

13

14 /* process 10 students using counter-controlled loop */

15 while (student <= 10) {

16

17 /* prompt user for input and obtain value from user */

18 printf("Enter result (1=pass,2=fail): ");

19 scanf("%d", &result);

20

21 /* if result 1, increment passes */

22 if (result == 1) {

23 passes = passes + 1;

24 } /* end if */

25 else { /* otherwise, increment failures */

26 failures = failures + 1;

27 } /* end else */

28

29 student = student + 1; /* increment student counter */

30 } /* end while */

OutlineOutline

© Copyright by Deitel

43

fig03_10.c (Part 2

of 2)

31

32 /* termination phase; display number of passes and failures */

33 printf("Passed %d\n", passes);

34 printf("Failed %d\n", failures);

35

36 /* if more than eight students passed, print "raise tuition" */

37 if (passes > 8) {

38 printf("Raise tuition\n");

39 } /* end if */

40

41 return 0; /* indicate program ended successfully */

42

43 } /* end function main */

OutlineOutline

© Copyright by Deitel

44

Program Output

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Passed 6
Failed 4

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Passed 9
Failed 1
Raise tuition

© Copyright by Deitel

45

3.11 Assignment Operators

• Assignment operators abbreviate assignment
expressions,

• e.g., assignment expression c = c + 3; can be
abbreviated with the addition assignment operator
c += 3;

• Statements of the form
variable = variable operator expression;

can be rewritten as

variable operator = expression;

• Examples of other assignment operators:
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

© Copyright by Deitel

46

3.11 Assignment Operators

© Copyright by Deitel

47

3.12 Increment and Decrement Operators

• Increment operator (++)

– Can be used instead of c = c + 1 or c += 1

• Decrement operator (--)

– Can be used instead of c = c – 1 or c -= 1

• Pre-increment or pre-decrement

– Operator is used before the variable (++c or –-c)

– ++c or –-c may appear in an expression for additional calculation

– Variable is changed, then the expression it is in is evaluated

• Post-increment or post-decrement

– Operator is used after the variable (c++ or c--)

– c++ or c– may appear in an expression for additional calculation

– Expression executes, then the variable is changed

© Copyright by Deitel

48

3.12 Increment and Decrement Operators

• If c = 5, then
printf("%d", ++c);

– Prints 6

printf("%d", c++);

– Prints 5

– In either case, c now has the value of 6 after printing

• When variable not in an expression

– Preincrementing and postincrementing have the same effect

++c;

printf(“%d”, c);

– Has the same effect as

c++;

printf(“%d”, c);

© Copyright by Deitel

49

3.12 Increment and Decrement Operators

OutlineOutline

© Copyright by Deitel

50

fig03_13.c

1 /* Fig. 3.13: fig03_13.c

2 Preincrementing and postincrementing */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int c; /* define variable */

9

10 /* demonstrate postincrement */

11 c = 5; /* assign 5 to c */

12 printf("%d\n", c); /* print 5 */

13 printf("%d\n", c++); /* print 5 then postincrement */

14 printf("%d\n\n", c); /* print 6 */

15

16 /* demonstrate preincrement */

17 c = 5; /* assign 5 to c */

18 printf("%d\n", c); /* print 5 */

19 printf("%d\n", ++c); /* preincrement then print 6 */

20 printf("%d\n", c); /* print 6 */

21

22 return 0; /* indicate program ended successfully */

23

24 } /* end function main */

OutlineOutline

© Copyright by Deitel

51

Program Output

5
5
6

5
6
6

passes = passes + 1;

failures = failures + 1;

student = student + 1;

passes += 1;

failures += 1;

student += 1;

++passes;

++failures;

++student;

passes++;

failures++;

student++;

© Copyright by Deitel

52

Exercise

請在右方寫出螢幕上顯示的結果：
#include <stdio.h>

int main()

{

int c = 5 ;

printf("c = %d\n", c);

printf("c++ = %d\n", c++);

printf("--c = %d\n", --c);

printf("--c = %d\n", --c);

printf("c++ = %d\n", c++);

printf(" c = %d\n", c);

printf("++c = %d\n", ++c);

printf("--c = %d\n", --c);

printf("c-- = %d\n", c--);

printf(" c = %d\n", c);

return 0;

}

c = 5

c++ = 5

--c = 5

--c = 4

c++ = 4

c = 5

++c = 6

--c = 5

c-- = 5

c = 4

© Copyright by Deitel

53

3.12 Increment and Decrement Operators

© Copyright by Deitel

54

Exercise

#include <stdio.h>

int main()

{

int a, c, d;

a = 9 ; c = 5 ;

d = a---c;

printf("a = %2d, c = %2d, d = %2d\n", a, c, d);

a = 9 ; c = 5 ;

d = a-- - --c;

printf("a = %2d, c = %2d, d = %2d\n", a, c, d);

return 0;

}

a = 8, c = 5, d = 4

a = 8, c = 4, d = 5

© Copyright by Deitel

55

Review

• In this chapter, we have learned:
– To understand basic problem solving techniques.

– To be able to develop algorithms through the process of top-down,

stepwise refinement.

– To be able to use the if selection statement and if…else

selection statement to select actions.

– To be able to use ? : , i.e., condition ? value if true : value if

false

– To be able to use the while repetition statement to execute

statements in a program repeatedly.

– To understand counter-controlled repetition and sentinel-controlled

repetition.

– To understand structured programming.

– To be able to use the increment, decrement and assignment

operators.

© Copyright by Deitel

56

Exercise 3.11

Identify and correct the errors in each of the following [Note:
There may be more than one error in each piece of code]:

if (age >= 65);

printf("Age is greater than or equal to 65\n");

else

printf("Age is less than 65\n");

ANS:

if (age >= 65) /* ; removed */

printf("Age is greater than or equal to 65\n");

else

printf("Age is less than 65\n");

© Copyright by Deitel

57

y = 5;

while (y > 0) {

printf("%d\n", y);

++y;

}

ANS:

y = 5;

while (y > 0) {

printf("%d\n", y);

--y;

}

Exercise 3.11

Identify and correct the errors in each of the following

[Note: There may be more than one error in each piece of code]:

int x = 1, total;

while (x <= 10) {

total += x;

++x;

}

ANS:

int x = 1, total = 0;

while (x <= 10) {

total += x;

++x;

}

While (x <= 100)

total += x;

++x;

ANS:

while (x <= 100) {

total += x;

++x;

}

