
© Copyright by Deitel

1

Chapter 1 – Introduction

Outline
1.1 Introduction
1.2 What Is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal Computing, Distributed Computing and Client/Server

Computing
1.6 Machine Languages, Assembly Languages and High-level

Languages
1.7 The History of C
1.8 The C Standard Library
1.9 The Key Software Trend: Object Technology
1.10 C++ and C++ How to Program
1.11 Java and Java How to Program
1.12 Other High-level Languages
1.13 Structured Programming
1.14 The Basics of a typical C Program Development Environment

© Copyright by Deitel

2

Chapter 1 – Introduction

Outline
1.15 Hardware Trends
1.16 History of the Internet
1.17 History of the World Wide Web
1.18 General Notes About C and this Book

© Copyright by Deitel

3

Objectives

• In this chapter, you will learn:
– To understand basic computer concepts.

– To become familiar with different types of programming
languages.

– To become familiar with the history of the C programming
language.

– To become aware of the C standard library.

– To understand the elements of a typical C program
development environment.

– To appreciate why it is important to learn C in a first
programming course.

– To appreciate why C provides a foundation for further study
of programming languages in general and of C++ and Java
in particular.

© Copyright by Deitel

4

1.1 Introduction

• We will learn

– C programming language

– Structured programming techniques

• This book also covers (but not covered in this class)

– C++

• Chapter 15 – 23 introduce the C++ programming language

– Java

• Chapters 24 – 30 introduce the Java programming language

• This course is appropriate for

Technically oriented people with little or no programming

experience

© Copyright by Deitel

5

1.2 What is a Computer?

• Computer
– Device capable of performing computations and making

logical decisions

– Computers process data under the control of sets of
instructions called computer programs

• Hardware
– Various devices comprising a computer

– Keyboard, screen, mouse, disks, memory, CD-ROM, and
processing units

• Software
– Programs that run on a computer (operation systems,

application programs)

– Structured programming, top-down stepwise refinement,
functionalization, and object-oriented programming

© Copyright by Deitel

6

Terminology

• Binary Digits (bit): 1 and 0

– The computer can combine the two digital states to represent letters, numbers, colors, sounds,
images, shapes, and even odors.

– An “on” or “off” electronic state is represented by a bit, short for binary digit

• Encoding Systems: Bits (位元) and Bytes (位元組)

– Bits are combined according to an encoding system to represent letters, numbers, and special
characters, collectively referred to as alphanumeric characters

– The combination of bits used to represent a character is called a byte (Binary Term, 8 bits/byte)

– 8 bits = byte

• Representation of a Character

– ASCII (American Standard Code for Information Interchange) is the most popular encoding
system for PCs and data communication

• ASCII – 7 bits

• ANSI – 8 bits/byte

• UNICODE – 16 bits

• Big5 – 16 bits

• Storage Capacities

– KB (kilobyte) = 210 Bytes = 1,024 Bytes 103 Bytes

– MB (megabyte) = 220 Bytes = 1,024 KB = 1,048,576 Bytes 106 Bytes

– GB (gigabyte) = 230 Bytes = 1,024 MB 109 Bytes

– TB (terabyte) = 240 Bytes = 1,024 GB 1012 Bytes

© Copyright by Deitel

7

1.3 Computer Organization

• Five logical units in every computer:
1. Input Unit

• Obtains information from input devices (keyboard, mouse, scanner)

2. Output Unit
• Outputs information (to screen, to printer, to speakers, to projector,

to control other devices)

3. Memory Unit
• Rapid access, low capacity, stores input information

4. CPU (Central Processing Unit)
– Arithmetic and Logic Unit (ALU)

– Performs arithmetic calculations and logic decisions

– Control Unit (CU)

– Execute programs/instructions

– Supervises and coordinates the other sections of the computer

– Move data from one memory location to another

5. Secondary Storage Unit
• Cheap, long-term, high-capacity storage (e.g., Hard Disks, Memory

Sticks)

• Stores inactive programs

© Copyright by Deitel

8

1.6 Machine Languages, Assembly

Languages, and High-level Languages

1. Machine languages (機器語言)

– Strings of numbers giving machine specific instructions

– Example:

+1300042774

+1400593419

+1200274027

2. Assembly languages (組合語言)

– English-like abbreviations representing elementary

computer operations (translated via assemblers)

– Example:

LOAD BASEPAY

ADD OVERPAY

STORE GROSSPAY

© Copyright by Deitel

9

1.6 Machine Languages, Assembly

Languages, and High-level Languages

3 High-level languages (高階語言)

– Codes similar to everyday English

– Use mathematical notations (translated via compilers)

– Example:

grossPay = basePay + overTimePay

© Copyright by Deitel

10

1.7 History of C

• C

– C was created by Dennis Ritchie at the Bell Telephone
Laboratories in 1972

– Evolved from two previous programming languages, BCPL (Basic
Computer Programming language, 1967) and B (developed by Ken
Thompson of Bell Labs)

– Used to develop UNIX

– Used to write modern operating systems

– Hardware independent (portable)

– By late 1970's C had evolved to "Traditional C"

• Standardization

– Many slight variations of C existed, and were incompatible

– Committee (ANSI, the American National Standards Institute)
formed to create a "unambiguous, machine-independent" definition
- ANSI Standard C

– Standard created in 1989, updated in 1999

© Copyright by Deitel

11

1.7 History of C

• Why Use C?

– C is a powerful and flexible language

– C is a popular language preferred by professional programmers

– C is a portable language

– C is a language of few words, containing only a handful of terms,

called keywords, which serve as the base on which the language's

functionality is built

– C is modular. C code can (and should) be written in routines called

functions.

© Copyright by Deitel

12

1.8 The C Standard Library

• C programs consist of pieces/modules called

functions

– A programmer can create his own functions

• Advantage: the programmer knows exactly how it works

• Disadvantage: time consuming

– Programmers will often use the C library functions

• Use these as building blocks

– Avoid re-inventing the wheel

• If a premade function exists, generally best to use it rather than

write your own

• Library functions carefully written, efficient, and portable

© Copyright by Deitel

13

1.12 Other High-level Languages

• Other high-level languages

– FORTRAN (FORmula TRANslator)

• Used for scientific and engineering applications

• Developed by IBM in 1950s

– COBOL (COmmon Business Oriented Language)

• Used to manipulate large amounts of data, e.g., for commercial

applications

• Developed in 1959

– Pascal

• Designed for teaching structured programming and rapidly

became the preferred programming language in most colleges

• Developed in 1971

– Ada

• Multitasking

© Copyright by Deitel

14

1.13 Structured Programming

• Structured programming

– Disciplined approach to writing programs

– Clear, easy to test and debug and easy to modify

• Multitasking

– Specifying that many activities run in parallel

© Copyright by Deitel

15

1.14 Basics of a Typical C Program

Development Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

© Copyright by Deitel

16

1.14 Basics of a Typical C Program

Development Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

