Brewster Angle Microscopy

1. Principle of The Technique

I_T: transmitted intensity of light

I₀: intensity of incident light

I_R: reflected intensity of light

 $n_1 \sin \theta i = n_2 \sin \theta r$

 I_R is function of : incidence angle, θ_i; polarization of the light; details of interface.

-

• Reflectivity:
$$R = \frac{I_R}{I_o}$$

■ for p-polarized incident beam (electric field in the plane of incidence)

for S-polarized incident beam (electric field perpendicular to the plane of incidence):

$$R_{s} = \left[\frac{\sin(\theta i - \theta r)}{\sin(\theta i + \theta r)}\right]^{2} \qquad (2)$$

R_s and R_p are functions of incident θ_i .

When the light is incident from air $(n_1=1)$ to water $(n_2=1.33)$

Fig. 1 The reflectivities R_s^F and R_p^F as a function of the incidence angle θ_1 for a Fresnel interface between two media of refractive indices $n_1 = 1$ and $n_2 = 1.33$.

- At an angle of incident $\theta_{\rm B}$ (called Brewster Angle), $R_{\rm p} \rightarrow 0$ from Eq.(1), tan $(\theta_i + \theta_r) = \infty$ $\rightarrow (\theta_i + \theta_r) = \pi /2$, with assistance of $(n_1 \sin \theta_i = n_2 \sin \theta_r)$ $\rightarrow \tan \theta_{\rm B} = \frac{n_2}{n_1}$ for air /water, $\theta_{\rm B} = 53.06^\circ$
- For real interface, R_p decrease to a minimum value at Brewster angle but does not vanish. (Due to the discrepancy between an ideal interface and a real interface)
 - Real interface
 - \rightarrow the refractive index varies smoothly from n_1 to n_2 , thickness ℓ .
 - \rightarrow rough (not exact uniform)
 - → optical anisotropic (due to preferential orientation of molecules in the interface)

For a surfactant monolayer at water surface, *n* ~ 1.4, *ℓ* ~ 20Å,
→R_p(θ_B)≈ 5×10⁻⁵ (see figure below)

→ R_p is very low in a narrow range of θ_i near the Brewster angle (θ_B) , which is different from that of an ideal interface only in the vicinity of θ_B .

Equipments of BAM

■ BAM on trough

BAM images of stearic acid at gas phases ($\pi \approx 0$)

2035, A=19.5, π=40

2040, π = 25

2036, π =44

SA先 打等 溫線

BAM of ODA (octadecylamine, C₁₈-NH₂)

BAM images of pure ODA monolayer on air/ water interface at 25 °C. The images correspond to states of (a): A=24.7 Å²/molecule, π =0 mN/m; (b): A=22.5 Å²/molecule, π =0.3 mN/m; (c): A=20.2 Å²/molecule, π =1.6 mN/m; (d): π =61.5 mN/m; (e): π =63.8 mN/m near collapse point; (f): π =65.0 mN/m after collapse point.

SA 40% BAM images: (1). 012, A=32.9, PI=0.2; (2)040, A=28.1, PI=0.3;

(3). 054, A=26.4, PI=3.9

(4) 065, A=24.5, PI=14

(5). 070, A= ,PI=18.8

(6).074, A= , PI=30.4

(7). 078, A= , PI=41.8

(9) 085, PI= 37.7, after collapse (10) 093, PI=33 (21.3), after collapse, 2 phases

