MATLAB {3 4

MATLAB (MATrlx LABoratory) # - &% 3 * chficiE 1 2 > v Kf Tk EH e
BFRFER S T EE RRELG R mﬁ_} iz paEfest R o> 0 MATLAB +
& — 4x4e Fortran & C 2 A2 FES Lﬁﬁi K2 Ey T mq/?\’ﬁﬁ FEE oA
Gr T RKEY DR 2K MATLAB SR E PTG R FAnE M
MATLAB & A fz 2 @ # 3 5 0T 4 2 Az to bl 22 MATLAB f§ 4

1. > Pt
MATLAB ¥ 43t & % 55 eig 17 40 50 %f\‘,f FE o o

» (1+3)*4/5

ans = 3.2000
» 3.4712
ans =

2.3864e+006

BREE Y b2 AW G PR ARG N GE e 2NERECHET T %)
é_Matlab % rem > 4v
>>a=9
a=
9
>>p=2
b=
2
>>rem(a,b)
ans =
1

[Example]

» format long
» sqrt(-1), 1/0

ans =
0 + 1.00000000000000i
ans =
Inf (Infinity, o)
» 0*log(0)
ans =
1 http:/ /scv.bu.edu/SCV/Tutorials/MATLAB/
http:/ / www.math.siu.edu/matlab/tutorials.html
2 4 FBAREPRIZVED http://www.mit.edu:8001/people/abbe/matlab/main.html '} ¥ ‘FH H{] AP E

oo

1/Matlab

NaN (Not-a-Number)

» pi
ans =
3.14159265358979

& MATLAB*® » V2% a - %8 4!

» a=3

a=3
He 32] BRA2RO%HEc bldra 2 A2k o &2 MATLAB ¢ #75 chg#icy
NG RHEGEC FF P a9 double A o F R "f TR E > Matlab sk
Ay PR FEMHE S FlF P R e bl

» a = single(5)

a=>5

d aXFEHEFEE o 2 dok & 5 symbolic ¥ (s > MATLAB » ¥ $ #c
PR el R A 2 e

» a = vpa(sqrt(2),100)
a=

1.4142135623730950488016887242096980785696718753769 480731766797379907324784
62107038850387534327641573

» b = vpa(pi,50)
b=
3.1415926535897932384626433832795028841971693993751

H ¥ vpa 5 variable precision arithmetic 2_ #§ B > 325, 100 5 i=#c- % if >
MATLAB & 7 £ % % symbolic toolbox (# 5.8 & 1 2 44) 4 it @ * vpa izBip 4 -
* 3t ? o MATLAB SR e & 5 i -

ez & MATLAB ¥ » Eim fficonp LT F 1 L2 B (R4
A

"L 7] matrix , array) ; 4v% %‘ﬁﬁ:?} 42 k ff.scalar » # 7 % - % 1 x1 matrix (e.g., a
=3) FREpAhijovector » 29 5 - B Nx1orlxNmatrix o 27 % &+
#P o i MATLAB ¥ i & e s i

» v=[13689]

v= 1 3 6 8 9

do b 2 B3 o B B (row) 2 ~F B Y 3[R (space) ® A4 0 A R FIRIF F 4 5L
rs E\iA}f—?ﬁ;FJ)x v el

» c=[136;279;431]
c=

1 3 6

2 7 9

4 3 1
B

2/Matlab

1 3 6
2 7 9
3 1
» ¢ =[-1.3sqrt(3) (1+2+3)*4/5]

c=

-1.3000e+000 1.7321e+000 4.8000e+000

FOB T G AR T ARNEF R R A

»a=2;
»hb=3G;
»d=a+b; (* 87 % %)
»d=a+bhb (B Tt % %)
d=

5

A% Matlab 2 CF5 @ > Ty ehh 23 o FRE»- 25 ¥ FiEDe £
RAEMEPE S VR

1 3 5 7 9 11 13 15

SPERT - b:[13579111315]ﬁﬂéﬂ’f‘v‘iﬁﬁl‘[ﬁiﬁvfﬁ#pié
20 H¢ Fégl‘rf}ﬁﬂ_ﬁ_;ﬁﬁt‘\'éﬁt F R E] MATLAB p =2 FIEiE 5
14 b=1:5 " —[12345] o — s v g B 42 (transpose

matrix ° FE]I FEPEEL) T F Vv F2 0 e

»v=[13689]

Other vector generation functions include linspace, which allows the number of
points rather than the increment, to be specified, e.g.,

» k = linspace(0,1,5)
k =

3/Matlab

0 2.5000e-001 5.0000e-001 7.5000e-001 1.000 0e+000

and logspace, which generates logarithmically evenly spaced vectors:

» k = logspace(0,2,5)
k =
1.0000e+000 3.1623e+000 1.0000e+001 3.1623e+00 1 1.0000e+002

or k=10 10°°, 10", 10*°, 10?].
A collection of functions generates special matrices that arise in linear algebra and

signal processing: company, diag, gallery, hadamard, hankel, hilb, invhilb, magic,
pascal, toeplitz, vander. |42t iF* ¥ 4] * magic 1 £ Al - Ax4 gL

» magic(4)

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

bt Y, & 5 A SR $ A Mol oo

[] #c#> Matlab & & ARE ¢ 42> x=-1:01:1 PRI T 4 7
sin(x) ; sqrt(x) ; X' ; 2*x x/5
Dealing with Matrices

Once you have a matrix, e.g,.,
» c=[136;279;431]

c=
1 3 6
2 7 9
4 3 1

you can refer to specific elements in it. MATLAB indexes matrices by row and
column. ¢(3,1) is the element in the third row, first column, which is 4.
c(2:3,1:2) gives you the elements in rows 2~3, and columns 1~2, so you get

» ¢(2:3,1:2)

as a result. ¢(1:3,2) gives you the elements in rows 1~3, and the second column,
that is, the entire second column. You can shortcut this to:

» c(;,2)
literally telling Matlab to use all the rows in the second column, i.e., the 2nd column:

ans =
3

4/Matlab

7
3

You can get a whole row of a matrix with
» c(1,7)
ans =

1 3 6
This literally tells Matlab to take the first row, all columns.

You can also refer to any matrix with only one index. It will use that index to count
down the columns (£ A7 #ic > £ A+ 5 £ 7 £ 1), for example,

» c(6)
ans =

3

Big matrices can be constructed using little matrices as elements. For example, we
could attach another row to our matrix ¢ with

»r=[101112];

»c =[c;r]

C =
1 3 6
2 7 9
4 3 1
10 11 12

When you have a matrix or vector (anything with more than one element) you need
to do a few things to make sure all of your math does what you want it to. You can
add a constant or multiply by a constant normally (const+c, const*c, etc.) If you have
data in two matrices that correspond (for example, a time vector and an x position
vector that has x values for each point in time), you can add and subtract those
normally (it will map each element properly.)

To multiply, divide, or raise to a power when you have a matrix or vector that is
acting as a set of data points, you need to use

oA

so that Matlab will multiply each element in the matrix instead of trying to do matrix
multiplication or division.

[Example]
»Cc=[136;279;431]
c=

1 3 6

2 7 9

5/Matlab

4 3 1

» cN2
ans =

31 42 39
52 82 84
14 36 52
» Cc.N2
ans =

1 9 36
4 49 81
16 9 1
» 1./c
ans =

1.0000 0.3333 0.1667
0.5000 0.1429 0.1111
0.2500 0.3333 1.0000

» cM-1

ans =
0.4000 -0.3000 0.3000
-0.6800 0.4600 -0.0600
0.4400 -0.1800 -0.0200

Note that the last expression, c’-1 , yields the inversion of the matrix c, which can
also be evaluated by inv(c) . Of course, it can treat matrices as actual matrices, so
you can solve something like [A]x = b where A is a matrix of coefficients, x is a
column vector of the x values you want to find, and b is also a column vector just by
doing

x=A\b

after you define A and b. The \ represents "left division" (since to solve that equation
you would have to divide both sides by A on the *left* side, since order is significant
when dealing with matrices.).

[Example]

» 1/2
ans =
0.5000
» 1\2
ans =
2

FE T A S AT

6/Matlab

=

1 2 1 8
2 4 3 |X=|19
11 -1 0

»A=[121
243
11-1]

A=

1 2 1
2 4 3
1 1 -1
»B=[8;19;0]
B=
8
19
0
» X = A\B
X =
1
2
3

7/Matlab

[7Y -] HET RSk I RS
x=[13579]
y=-1:05:1
XNy
X.*y
x.ly

g1 N W
—
(e}

Tk & ALL, A1), A4); A(L2,), A(,1) A, 2:3)
[¥ =] f1* Matlab f& 7™ 7|8 = = fg;5¢ ¢

2x+3y+4z+7w =12
3x—4y+8z-w=2

S5x+6y—-3z+2w=9
x+y—6z+4w=10

Useful Functions

Matlab has a lot of built-in functions (p # & #c). To use a function, just type

functionname(arguments) with the appropriate name and arguments. If you create a
time vector t = 1:.25:6 ; you can get standard functions like

x = sin(t)

which returns a vector the same size as t, with values for the sin of t at all points.

» t=1:.25:6

t=

Columns 1 through 7

1.0000 1.2500 1.5000 1.7500 2.0000
Columns 8 through 14

2.7500 3.0000 3.2500 3.5000 3.7500
Columns 15 through 21

45000 4.7500 5.0000 5.2500 5.5000

» X = sin(t)

X =

Columns 1 through 7

0.8415 0.9490 0.9975 0.9840 0.9093
Columns 8 through 14

0.3817 0.1411 -0.1082 -0.3508 -0.5716
Columns 15 through 21

-0.9775 -0.9993 -0.9589 -0.8589 -0.7055

You can also do things like

2.2500

4.0000

5.7500

0.7781

-0.7568

-0.5083

2.5000

4.2500

6.0000

0.5985

-0.8950

-0.2794

8/Matlab

s = sum(c)

which sums all the columns in a matrix ¢ and returns a row vector of the sums.

» sum(c)
ans =
7 13 16

The function d = det(c) takes a matrix ¢ and returns the determinant of it.
» d = det(c)
d=

-50

The Matlab booklet has a list of many of these useful functions. Here is a summary
of relevant functions, followed by some examples:

Function Meaning Example
sin sine sin(pi) =0.0
cos cosine cos(pi) =1.0
tan tangent tan(pi/4) = 1.0
asin arcsine asin(pi/2)=1.0
acos arccosine acos(pi/2)=0.0
atan arctangent atan(pi/4)=1.0
exp exponential exp(1.0) =2.7183
log natural logarithm log(2.7183) =1.0
log10 logarithm base 10 10g10(100.0) = 2.0

Note that the arguments to trigonometric functions are given in radians.

Some Special Matrices

Matlab also provides a number of useful built-in matrices:

Function Meaning Example

ones(m,n) m x n matrix of 1's P = ones(2,3)

zeros(m,n) m x n matrix of 0's Z = zeros(2,3)

eye(n) n x n identity matrix | = eye(3)

diag(d) diagonal matrix with d=[-3 4 2]
diagonal entries d D =diag (d)

diag(A) extracts the diagonal A=[0187; 3 -2-42;
entries from A 4 211]

a = diag (A)

rand(m,n) m X n matrix of random Y =rand(2,3), y=r and
numbers

magic(n) an n x n magic square M = magic(4)

9/Matlab

[

[

¥ -1 T 6 szt Matlab € 3% A %2
x=1:1:3
z =rand(3)
y=1[z;x]
c =rand(2)
e = eye(2)
f=[ceones(2)]
d = sqrt(c)
a = inv(c)
b =c*c
g=_c.*c

W= T 6 eyt Matlab § 452 A 5D
A=[13579];
B = diag(A, -1)
C =diag(A, 1)

3
¥

] T o eyt Matlab ¢ 45 P A2
A = ones(2,5)*6

B = rand(3,5)

C=[A;B]

C=[AB] % FRFEFRL?

A = eye(3)*6

C=[AB]

It

Help and Other Tools

Places to get help:

Typing "help " at the Matlab prompt gives you a list of all the possible directories
matlab can find commands in (which also tells you its "search path", or a list of
the directories it is looking in for commands.)

Typing "help commandname " gives you help on a specific command. For
example,

» help roots

ROOTS Find polynomial roots.

ROOTS(C) computes the roots of the polynomial w hose coefficients
are the elements of the vector C. If C has N+1 components,
the polynomial is C(1)*X”N + ... + C(N)*X + C(N +1).

See also POLY, RESIDUE, FZERO.

Typing "lookfor keyword " gives you a list of commands that use that
keyword. ie, "lookfor integral " lists commands that deal with integrals. It's
pretty slow, choose the word wisely. You can use control-c to stop searching
when you think you've found what you need. For example,

» lookfor integral

10/Matlab

ELLIPKE Complete elliptic integral.
EXPINT Exponential integral function.
DBLQUAD Numerically evaluate double integral.

INNERLP Used with DBLQUAD to evaluate inner loop of integral.
QUAD Numerically evaluate integral, low order met hod.
QUADS8 Numerically evaluate integral, higher order method.

COSINT Cosine integral function.

SININT Sine integral function.

COSINT Cosine integral function.

FOURIER Fourier integral transform.
IFOURIER Inverse Fourier integral transform.
SININT Sine integral function.

» lookfor integration

CUMTRAPZ Cumulative trapezoidal numerical integrati on.
TRAPZ Trapezoidal numerical integration.
LOTKADEMO Demonstrate numerical integration of diff erential equations.

ADAMS Simulink 1.x ADAMS integration algorithm.

EULER Simulink 1.x EULER integration algorithm.

GEAR Simulink 1.x GEAR integration algorithm.

LINSIM Simulink 1.x LINSIM integration algorithm.

RK23 Simulink 1.x rk23 integration algorithm.

RK45 Simulink 1.x RK45 integration algorithm.

SFUNMEM A one integration-step memory block S-funct ion.

INT Alternative entry to the symbolic integratio n function.

+ Typing "doc" starts up a web browser with the Matlab home page. This includes
the entire reference manual for Matlab , a whole lot of other information on using
matlab, and a pointer to the Matlab Primer, a good introduction to using Matlab.

Some Useful Tools:

» If you accidentally reassign a function name to a variable (i.e., you try saying sum
= 3 and then you get errors when you try to use the sum function because it
doesn't know it's a function anymore), you can restore it to its normal state using
"clear functionname ". You can also use clear to get rid of all variable values
with "clear "or'clearall "

« who

will tell you all the variables you have currently defined.
» who
Your variables are:

a b d \%
ans c t X

« whos

will tell you the variables, their sizes, and some other info.

» whos
Name Size Bytes Class
a 1x1 8 double array
ans 1x3 24 double array
b 1x19 152 double array

11/Matlab

3x3 72 double array
1x1 8 double array
1x21 168 double array
1x5 40 double array
1x21 168 double array

X< +T0OO0

is a function of that returns the value of pi.
» pi
ans =

3.1416
. eps

is a function that returns the distance from 1.0 to the next largest floating
point number.

» eps
ans =

2.2204e-016
e |nf

The function Inf, which stands for infinity, is found in very few calculator
systems or computer languages. On some computers, it is made possible by
the IEEE arithmetic implemented in a math coprocessor. On other computers,
floating point software is used to simulate a coprocessor. One way to
generate the value returned Inf is

» s=1/0

which results in

Warning: Divide by zero.
S =

Inf
¢ NaN

On machines with IEEE arithmetic, division by zero does not lead to an error
condition or termination of execution. It does produce a warning message
and a special value that can behave in a sensible manner in subsequent
computation.

The variable NaN is an IEEE number related to Inf but has different
properties. It stands for “Not a Number” and is produced by calculations
such as Inf/Inf or 0/0.

» format long / format short

12/Matlab

switch between the long and short display format of numbers. Either way
Matlab uses the same number of digits for its calculations, but normally
(format short) it will only display the first four digits after the decimal
point.

» format long

» pi

ans =
3.14159265358979

» format short

» pi

ans =

3.1416

* Typing

type functionname for any function in Matlab's search path lets you see
how that function is written.

» type bessel
function [w,ierr] = bessel(nu,z)
%BESSEL Bessel functions of various kinds.

% Bessel functions are solutions to Bessel's diff erential

% equation of order NU:

% 2 2 2

% X*y"+ x*y'+(Xx-nu)*y=0

%

% There are several functions available to produc e solutions to

% Bessel's equations. These are:
%

% BESSELJ(NU,Z) Bessel function of the fir st kind

% BESSELY(NU,Z) Bessel function of the sec ond kind

% BESSELI(NU,Z) Modified Bessel function o f the first kind

% BESSELK(NU,Z) Modified Bessel function o f the second kind

% BESSELH(NU,K,Z) Hankel function

% AIRY(K,Z) Airy function

%

% See the help for each function for more details

% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 5.12 $ $Date: 2002/04/09 00:29:44 $

[w,ierr] = besselj(nu,z);
Complex Numbers and Matrices

Complex numbers are allowed in all operations and functions in MATLAB. There
are at least two convenient ways to enter complex matrices. They are illustrated by
the statements

» A=[12;34]+i56;78]

A=
1.0000e+000 +5.0000e+000i 2.0000e+000 +6.0000e+0 00i
3.0000e+000 +7.0000e+000i 4.0000e+000 +8.0000e+0 00i

13/Matlab

and
» A =[1+5% 2+6%i; 3+7* 4+8*]

which produce the same result. When complex numbers are entered as matrix
elements within brackets, it is important to avoid any blank spaces, because an
expression like 1 + 5*i, with blanks surrounding the + sign, represents two separated
numbers. (The same is true of real numbers; a blank before the exponent part in 1.23
e-4 causes an error.)

14/Matlab

2-D Plotting

The basic syntax to get a plot in Matlab is
plot(x1,y1)

(The x values always come before the y values, x1 and y1 represent variables that
your data is stored in.)

clear all

» X =0:0.1:10;
» Yy = sin(x);

» plot(x,y)

08

06

04rf

0.2

-0.21

-04F

06}

-0.81

If you type a second plot command later, it will clear your first plot. If you type
"hold on " it will hold the current plot so you can add plots on top of one another
(until you reset it by typing "hold off ~ ".). For example,

» y1 = cos(X);
» hold on
» plot(x,y1)

You can plot multiple values with plot(x1,y1,x2,y2) and you can specify the
color and linetype of a plot as something like plot(x1,yl,'w*) to get white *'s

for each data point.

» clear all

15/Matlab

» clf

» X =0:0.1:10;
» y1 = sin(x);

» y2 = cos(X);

» plot(x,y1,x,y2)

08

0.6

04

0.2

-0.21

04f

-0.6

-0.81

» plot(x,y1,'--',x,y2,'+")

081

0.6

041

021

021

04t

06

-081

The available options are listed as follows:

Line Types Point Types Colors
solid - point : red r
dashed -- plus + green g
dotted : star * blue b
dashed-dot - oh's o white w

X's X invisible i

To split your plot into a bunch of smaller plots, you can use the subplot command
to split it up into rows and columns:

subplot(r,c,n)

will split the plot window into r rows and c columns of plots and set the current plot
to plot number n of those rows and columns. For example, subplot(2,1,1) splits
the plot window into two rows in a single column and prepares to plot in the top
plot. Then your plot command will plot in the top plot. Then you could switch to the

16/Matlab

bottom plot with subplot(2,1,2) and use another plot command to plot in the
bottom plot.

» subplot(2,1,1)
» plot(x,y1,-")
» subplot(2,1,2)
» plot(x,y2,'-.")

You can add titles, labels, and legends to plots.

title('This is a Title")

xlabel('My X axis")

ylabel('My Y axis’)

legend('First Thing Plotted','Second Thing Plotted’)

legend creates a legend box (movable with the mouse) that automatically uses the
right symbols and colors and sticks the descriptions in the legend command after
them.

» plot(x,y1,--',x,y2,'+")

» title('This is a Title")

» Xlabel('My X axis")

» ylabel('My Y axis")

» legend('sin(x)','cos(x)")

My Y axis

Other useful 2-D plotting facilities are

17 /Matlab

» semilogx(x,y)
» semilogy(x,y)
» loglog(x,y)

» polar(x,y)

[Exercise] ~ #41* Matlab b —3& B+ %4 y1 = x* cos x §r y2 = X’ sin x @ {3
X ’

B xR x=-2:01:2 > X B 4eor 1fR o

[Exercise] b AT (e SifeA b T A A u R

3D Graphs and Other Graphics Capabilities

1)

3D plotting

When you make a 3-dimensional plot, you usually have a z variable that is a
function of both x and y. When you want x and y to vary over some range,
you need a matrix (rather than a vector) for x and y to get a complete domain
that covers all the different combinations of those x and y values over some
range. A function called meshgrid will set up x and y matrices like this for
you. The x matrix varies the x down rows and keeps it constant in columns,
and the y matrix varies the y in columns and keeps it constant across rows, so
you get all combinations of x and y if you use the two matrices.

To get a rectangular domain that goes from x =1 to x = 10 in steps of .5, and
from y=1 to y=10 in steps of .5 using meshgrid , you can use

» [X, Y] = meshgrid([1:.5:10],[1:.5:10]);

Then, you can do a 3d plot by calculating some z values on the x and y
domains, and doing a surface, mesh, or contour plot.

» Z=X"2-y"2;
» surf(x,y,z)

» mesh(x,y,z)

18/Matlab

» contour(X,y,z)

10

You could also use surfc or meshc to get surface or mesh plots with a
contour plot drawn on the x-y plane. Surface plots and mesh plots color the
plots according to the z value, by default.

A 3-D curve can be shown by the plot3 command:

[Example]
» t=0:0.1:3.0*pi;

» plot3(t,sin(t),cos(t))
» Xlabel('t", ylabel('sin t), zlabel('cos t")

19/Matlab

cost

sint 10 ¢

Colormaps and Visibility

The default colormap that Matlab uses is called 'hsv '. This colormap cycles all
the way around from red to red, so both lows and highs will look red. This is
often not very useful in engineering applications. You can switch to a
colormap that goes from blue to red with

» colormap(‘jet’)

If you type "help hsv ", the see also list includes the other predefined
colormaps. You can get a colorbar that indicates what colors correspond to
what values with

» colorbar

For example:

» surf(x,y,z)
» colorbar

Sometimes, a 3d surface plot may cover up portions of its plot. You can take
advantage of the fact that Matlab doesn't plot NaN's and Inf's to make
"cutouts" in a plot.

More Examples

[Example] Plot the surface defined by the function
fxy) = (x=3)"-(y-2)°

20/Matlab

for2<x<4and1<y<3.

» clear all

» [X,y] = meshgrid(2:0.1:4,1:0.1:3);
»Z2=(x=3)"2-(y—-2)"2;

» surfc(x,y,z)

» title('Saddle"), xlabel('x"),ylabel('y")

Saddle

[Example] Plot the surface defined by the function

2(x*+y%)

f=-xye

on the domain for -2<x<2and -2<y<2.

» clear all

» [X,y] = meshgrid(-2:0.1:2, -2:0.1:2);

» = - Xy *exp(-2*(x."2+y."2));

» mesh(x,y,f), xlabel('x’), ylabel('y"), grid

0.1

| e

99}

-005

W \\\\X//mf/

21/Matlab

surf(x,y,f)

i

T

R
i

Polynomials

Matlab can treat a vector as a polynomial. It will assume that the numbers represent
the coefficients of the polynomial going from highest-order to lowest order. For
example,

»p=[12241]

p:
1 2 2 4 1

can represent the polynomial x* + 2 x> + 2 x* + 4 x + 1. There are a number of

functions that use this representation of polynomials:

» roots(p)

gives you the roots of the polynomial represented by the vector p.
ans =

-1.90696494950524

0.09333575522422 + 1.36604798694679i

0.09333575522422 — 1.36604798694679i
-0.27970656094320

The value of polynomial can be evaluated by the function polyval , for example,
» polyval(p,4)
gives you the value of the polynomial p when x = 4.
ans =
433
Similarly,

>>polyval(p,[1:10])

22 /Matlab

gives you the value of the polynomial evaluated at each of the points in the vector.
(It returns another vector the same size.)

ans =
Columns 1 through 6
10 49 166 433 946 1825
Columns 7 through 10
3214 5281 8218 12241

Symbolic Math (Optional)

%0 153 5 1 £ 45 (Symbolic Toolbox) {6 » Matlab # 1438 {7 # 5.4 B 138 & o
Matlab is capable of doing fairly simple symbolic math analysis (i.e. giving you
symbolic equations as results rather than matrices or vectors.). It is designed for
numerical work, rather than symbolic work, and in order to do symbolic math,
Matlab actually uses the engine for another math software product, Maple. If you
find that what you're trying to do in Matlab 's symbolic math toolkit involves mostly
calling the "maple " command (which simulates Maple), you probably just want to
go ahead and use Maple. For basics, though, the symbolic math toolkit is useful. A
symbolic equation in Matlab is represented as a string, such as 'x + 2 = 5'. The basic
symbolic math operations all take string equations as arguments, and return string
equations. Matlab decides which variable in that string is the symbolic variable (as
opposed to a variable that actually has a numerical value in its workspace) by
assuming that the one-letter variable closest to the end of the alphabet is the
symbolic variable. Basic symbolic functions include

» symadd('x"2 + 2*x + 3','3*x+5")
ans =

X"2+5*x+8

symsub, symdiv , symmul, and sympow all work as you would expect, too. Matlab
also has symbolic functions such as int and diff to integrate and differentiate,
factor to factor, simplify ~ to simplify an expression, and taylor to generate a
Taylor series expansion. For example,

» X =sym('x");
» factor(x"9-1)
ans =
(X-1)*(x"2+x+1)*(X 6+x"3+1)

You can also use solve to solve algebraic equations, and dsolve to solve a
differential equation. For example,

» p ='a*x"2 + 2*b*x + C'
p=

a*x"2 + 2*b*x + ¢

» solve(p)

ans =

-(b + (b2 - a*c)\(1/2))/a

23 /Matlab

(b - (b2 - a*c)™(1/2))/a

The function numeric('symbolic expression’) lets you convert a symbolic
representation to numbers wherever possible, which also helps in simplification.

The function ezplot('symbolic function’) takes a symbolic equation and
plots it as a function of x. You can specify a range or let it use the default. To specify
a range, use ezplot('symbolic function',[xmin xmax]')

» P ='2.0'%2 + 3.0%N(1./2.) + 4'

p =

2.0%x"2 + 3.0*x7(1./2.) + 4

» ezplot(p)

2.0%"2 + 3.0%(1./2)) + 4

For more details on the symbolic toolkit, try "help sym ", or try reading the manual.

24 /Matlab

10

Function Functions (€ = " & #ic i k)

A class of functions in MATLAB works not with numerical matrices, but with
mathematical functions. These function functions include:

Numerical integration
Nonlinear equations and optimization
Differential equation solution

Mathematical functions are represented in MATLAB by function m-files (5 B m-file
P 2 aht 2 ¢ B s g 4P). For example, the function

1

h = ¥ -6
) = 037 +0.01 (x=09) +0.04

is made available to MATLAB by creating an M-file called humps.m:

function result = humps (x)
% HUMPS computes a function that has three roots, and some humps.
%
result=1.0./((x-0.3)"2+0.01) ...
+1.0./((x-09)"2+0.04)-6.0;

ek A EERA— B BT Ak L Aa T EEREG . b

4o b 34 #7575 o A graph of the function is:

x=-1:01:2;
plot(x,humps(x))

100

80

60

40

-1 -0.5 0 0.5 1 15 2

(1) Numerical Integration

The area beneath humps(x) can be determined by numerically integrating

humps(x), a process referred to as 'quadrature'. To integrate humps from 0 to
1:

» g = quad(’humps',0,1)
q =
2.9858e+001

The two MATLAB functions for quadrature are: quad, quad8. Notice that the
first argument to quad is a quoted string containing the name of a function.

25/Matlab

This is why we call quad a function function - it is a function that operates on
other functions.

Nonlinear Equations and Optimization

The function functions for nonlinear equations and optimization include:
fminbnd, fminsearch, fsolve, fzero. Continuing our example, the location of
the minimum of humps(x) in the region from 0.5 to 1 is computed with
fminbnd:

» xm = fminbnd(‘humps’, 0.5, 1)

Xm =

6.3701e-001

Its value at the minimum, is:

» y = humps(xm)
y =
1.1253e+001

From looking at the graph, it is apparent that the function humps(x) has two
zeros. The location of the zero near x = 0 is:

» xz1 = fzero('"humps', 0)
xz1 =
-1.3162e-001

The zero near x =1 is at:

» xz2 = fzero('humps', 1)
Xz2 =

1.2995e+000
M s = #23¢ Differential Equation Solution (optional)

MATLAB's functions for solving ordinary differential equations are: ode23,
ode45. Consider the second order differential equation known as the Van der
Pol equation

X+(x*-)x+x=0
We can rewrite this as a system of coupled first order differential equations

% =% (1= X;) = X,
X, =%
The first step toward simulating this system is to create a function M-file

containing these differential equations. We can call it vdpol.m:

function xdot = vdpol(t,x)

xdot = zeros(2,1);

26 /Matlab

xdot(1) = x(1) .* (1 — x(2)."2) — x(2);
xdot(2) = x(2);

To simulate the differential equation defined in vdpol over the interval
0<t <20 invoke ode23

t0 = 0; tf = 20;

x0 =[0 0.25]; % Initial conditions
[t,x] = ode23('vdpol',[tO tf],x0);
plot(t,x)

27 /Matlab

11.

Programming in Matlab

Matlab # ¢ C#EZ it keh 35 53282 CH i - a4 % Matlab
ikﬂkﬁﬂ;%,é_,ﬁ’q*/é °

O

Writing Functions and Scripts

MATLAB #2:¢ £ .m % &8 & (93] m-files) > @ m-files xR # &7 & &
Script £2 Function = #f :

Scripts (g £ #4=H#)

Script - 3tdg & ~ Jstefe gt AiE el & 0 v 3 F R S

S ¥ o 7 script %k £ 2 e command window ¥ i% {73 {7 script

P i {7 4t o Script ¢ 7 4 % iy £ workspace - R8> o Script

EF @Y AgF Ry~ FHILA e (T4 o Script & £ T 8 o B
FAEE > xxm fHis 0 WF 4E XX)IJDF‘*!L{’Y BREFEE b

[Example]

i
R
i
)’
T
T
o

#-T 7| Hcit {7 Matlab o2 eh 2 F i
myscript.m 4% :

% A Sample Script File

disp('Calculating the Volume of an Ideal Gas.")
R =8314; 9% Gas constant

t = input('Vector of temperatures (K) =";

p = input('Pressure (bar) =") * 1.0e5;

\

R*t/p; % Ideal gas law
% Plotting the results
plot(t,v)

xlabel('T (K) ")

ylabel('V (m"3/kmol)")

title('ldeal Gas Volume vs. Temperature')

"‘;}F’ PENIR % REL TRAEZE NI GAE % #FELIE AT ¢
07 (i C 355 ¢ i /% comments */ & //) bt i
% myscript.m #14 » & Matlab L% ¢ 4& » :

» myscript

R HW'JW'J%%J R R %J B mpj”"} 18 (b 4o B
00:5:400 ; &4 2.0) > 55 matlab 7 i L7 vt E |

Functions

Function 3£ &_#73} ch&l425% (sub-program) - Function # & * ﬁi,?J rE W
@ 28, # v function 2 ¥ command window :& {7 /& i ; Function
2 4 w23 4peted o Function ¥ 7 4 th@¥cfc CEZ 8 > B w i

28 /Matlab

%ﬁz 3 %>t workspace & H i function ¥ I % % dic o B * ha (F

¢ X B+ function § 43R chig Rt < AR 1 - B mfile Rt e 7 -

i# function - 4% % £ function L AR o i3t h% - o T E
function [list of outputs] = functionname(list of inputs)

izH Matlab A #rif iz m-file #) % & & #c - Each function needs to
have its own file, and the file has to have the same name as the
function. If the first line of the function is

function answer = myfun(argl,arg2)
answer = (argl+arg2)./argl

then the file must be named myfun.m. The function has argl and arg?2
to work with inside the function (plus anything else you want to define
inside it, and possibly some global variables as well), and by the end of
the function, anything that is supposed to be returned should have a
value assigned to it. This particular function is just one line long, and it
returns answer, which is defined in terms of the two arguments argl
and arg2.

[Example]

Let us write a function to do the ideal gas volume calculations
that we have already done in a script:

function v = myfunction(t,p)
% Function 'myfunction.m’
% This function calculates the specific volume
% of an ideal gas
R = 8314, % Gas constant
for k = 1:length(p)
v(k,:) = R*t/p(k); % ldeal gas law

end

This function must be saved as 'myfunction.m'.

call this function in Matlab:

Now we can

» p =1:0.5:10; t = 300:5:400;

vol = myfunction(t,p);

M

M

surf(t,p,vol)
» colorbar
view(135,45)

M

M

29/Matlab

Some useful tools for functions and scripts

nargin

This variable used within a function tells you how many arguments the
function was called with. (nargin stands for number of input
arguments)

You can write functions that can accept different numbers of
arguments and decide what to do based on whether it gets one
argument or two arguments. For example, the following function
calculates the surface area and volume of a sphere or a cylinder
depending on the number of input arguments:

function [area, volume] = AV(radius, height)
%
% AV calculates the surface area and volume of a cylinder
% or asphere. If height is provided in input argument, AV
% calculates the surface area and volume of a ¢ ylinder.
% Otherwise, AV calculates the surface area and volume of

% asphere.
%
if nargin==1
volume = 4.0/3.0*pi*radius”3;
area = 4.0*pi*radius”2;
else

volume = pi*radius"2*height;

area = 2.0*pi*radius*height + 2.0*pi*rad ius”"2;
end
%
%
Now in Matlab,

» [area,volume] = av(4.0)

30/Matlab

area =
2.010619298297468e+002

volume =
2.680825731063290e+002

where area and volume are the surface area and volume of a sphere of
radius R = 4, while

» [area,volume] = av(4.0, 1.0)
area =

1.256637061435917e+002
volume =

50.26548245743669

yield the surface area and volume of a cylinder of radius R = 4.0 and
height H = 1.0, respectively.

. feval

The function evaluates a function for a given set of arguments. For
example, feval('sin',[0:pi/4:2*pi]) is the same thing as
saying sin([0:pi/4:2*pi]) . If you're dealing with a situation
where you might want to specify which function to use as an argument
to another function, you might use feval

Global Variables (> ¥ % #&c)

When you define a variable at the Matlab prompt, it is defined inside of
Matlab's "workspace." Running a script does not affect this, since a script is
just a collection of commands, and they're actually run from the same
workspace. If you define a variable in a script, it will stay defined in the
workspace.

Functions, on the other hand, do not share the same workspace. A function
won't know what a variable is unless it gets the variable as an argument, or
unless the variable is defined as a variable that is shared by the function and
the Matlab workspace, or a global variable. To use a global variable, every
place (function, script, or at the Matlab prompt) that needs to share that
variable must have a line near the top identifying it as a global variable, i.e.:

global phi;

Then when the variable is assigned a value in one of those places, it will have
a value in all the places that begin with the global statement.

Loops and Control

Sometimes, you do need to use some kind of loop to do what you need, rather
than just operating on an entire matrix or vector at once.

31/Matlab

[while ... end |

The syntax for a while loop is

while (some logical expression)
do something;
do something else;

end

For Example

x=0;

while x <=1
X, Y = sin(x)
x=x+0.1;

end

AR e Matlab ¥ 2 * end ki & BlehE oo

[for ...

end |

An example for the syntax for a for loop is:

k=0;
for x =0:0.2:1
k=k+1
y(k) = exp(-x)
end

You should try to avoid using i and j as counters, since you will wind
up redefining i (which is initially defined as the imaginary i.). The
loops can be nested and are usually indented for readability, e.g.,

m=25;

n=>5;

fori=1:m
forj=1:n

A(i)) = 1/(i+j-1);

end

end

A

Yields
A=

1.0000e+000 5.0000e-001 3.3333e-001 2.5000e-00
5.0000e-001 3.3333e-001 2.5000e-001 2.0000e-00
3.3333e-001 2.5000e-001 2.0000e-001 1.6667e-00
2.5000e-001 2.0000e-001 1.6667e-001 1.4286e-00
2.0000e-001 1.6667e-001 1.4286e-001 1.2500e-00

1 2.0000e-001
1 1.6667e-001
1 1.4286e-001
1 1.2500e-001
1 1.1111e-001

32/Matlab

lif ... (else ...) ... end |

The syntax for an if statement is

if (logical expression)
matlab command
elseif (other logical expression)
another matlab command
else
a matlab command
end

(You don't need an elseif or an else , but you do need an end.)

switch case ... otherwise end \

Syntax of the switch-case construction is

switch expression (scalar or string)
case valuel (executes if expression evaluates to va luel)
commands
case value? (executes if expression evaluates to va lue2)
commands

otherwise
statements
end

In the following example a random integer number x from the set {1, 2, ... , 10}
is generated. If x =1 or x = 2, then the message Probability = 20% is displayed
to the screen. If x = 3 or 4 or 5, then the message Probability = 30% is
displayed, otherwise the message Probability = 50% is generated. The script
file fswitch.m utilizes a switch as a tool for handling all cases mentioned
above.

% Script file fswitch.
% Generate a random integer in {1, 2, ..., 10}
x = ceil(10*rand);
switch x
case {1,2}
disp(‘Probability = 20%";
case {3,4,5}
disp(‘Probability = 30%";
otherwise

33/Matlab

disp(‘Probability = 50%";
end

The MATLAB functions that are used in file fswitch are

rand - uniformly distributed random numbers in the interval (0, 1)
ceil - round towards plus infinity (see Section 2.5 for more details)
disp - display string/array to the screen

Let us test this code ten times:
for k =1:10
fswitch
end

Probability = 50%
Probability = 30%
Probability = 50%
Probability = 30%
Probability = 50%
Probability = 50%
Probability = 30%
Probability = 20%
Probability = 50%
Probability = 30%

break and pause

You can use break command to jump out of a loop before it is
completed. The pause command will cause the program to wait for a
key to be pressed before continuing. For example,

k=0;

for x =0:0.2:1
ifk>3

break

end
k=k+1
y(k) = exp(-X)
pause

end

In the process of a loop, if you define an element of a vector that doesn't exist
yet (the vector is smaller than the element you're trying to assign), Matlab will
increase the size of the vector or matrix to allow for the new element to go
where you've specified. However, if you know that you're going to be
assigning elements until the matrix grows to be some specific size, it's better
to "preallocate" the matrix by defining it to be all zeros initially.

matrix = zeros(rows, columns);

34/Matlab

will do that.
(4) Relational and Logical Constructs

The relational operators in MATLAB are

Operator Description

< lessthan
> greater than

<= less than or equal
>= greater than or equal
== equal
~= notequal.
Note that '=" is used in an assignment statement while '==" is used in a

relation. Relations may be connected or quantified by the logical operators:

Operator Description

(L C#=Z® > and, or 2 not » % 4_&&, || 2 ! °) When applied to
scalars, a relation is actually the scalar 1 or 0 depending on whether the
relation is true or false (indeed, throughout this section you should think of 1
as true and 0 as false). For example

»3<5
ans =
1
»a=3==
a=
0
ARAI RS 5 3==8 AFE(SREA L D 0) Ak oa L ENLE -

When logical operands are applied to matrices of the same size, a relation is a
matrix of 0's and 1's giving the value of the relation between corresponding
entries. For example:

»A=[12;34];
»B=[67;89];
» A==
ans =

0O O

0O O
»A<B
ans =

1 1

1 1

To see how the other logical operators work, you should also try

35/Matlab

» ~A
» A&B
»A&~B
»A|B
»A|~A

[Example: Temperature Conversion Program]

The relationship between temperature measured in Fahrenheit (°F) and
temperature Celsius (°C) is given by the equation:

T(°F) = 9*T(°C) / 5+ 32

We can now write an m-file that computes and plots the temperature
conversion relationship over the range — 50 through 100 °C.

0% ===
% Temperature Conversion Program for Celsius to Fah renheit
% covering the range 0 through 100 degrees Celsius.

% Temp_Conv.m

0% ===

Num_Points = 151;

% Initialize Temp_C
% Temp_C = zeros(1,Num_Points);

fori=1: Num_Points

Temp_C(i) =i—-51;

Temp_F(i) = 9*Temp_C(i)/5 + 32;
end

plot(Temp_C, Temp_F);

grid;

xlabel('Temperature (Celsius)";

ylabel('Temperature (Fahrenheit)");

title("Fahrenheit versus Celsius Temperature Conver sion");

Run the program and we will get the following plot:

Fahrenheit versus Celsius Temperature Conversion
250

200

=
o
o

100

a
o

Temperature (Fahrenheit)

o

-50

-100
-50 0 50 100

Temperature (Celsius)

36/Matlab

[Exercise] ##-+ —F Matlab #+=t#: B 5 C F % 7 BRI “,% ks e Z
e FEFHIEIEENRRNG
[Exercise] ##-T 5| Matlab script :2 % 5 - B2 EFH CHEZ 4258 ¢
% Calculates exp(x) by Taylor Series Expansion
disp(' This program calculates exp(x) for various X. ")
X = input(' Please input x:);
TrueValue = exp(x) ;
Sum = 1.0;
Term = 1.0;
for i =1: 30000
Term = Term*x/i;
Suml = Sum + Term;
if(Sum1 == Sum)
break
end
Sum = Suml;
end
RelativeError = (Sum - TrueValue)/TrueValue;
disp(" i Sum TrueValue Re lativeError")

fprintf('%5i %16.7e %16.7e %16.7e \n',i, Sum, ...
TrueValue, RelativeError)

[Exercise] ##-T 7] Matlab #2;% # ¥7:¢ 8 5 C#E 3 -

%
fork = 1:n-1
%
%
ifLag = k;
amaxi = abs(a(k,k));
for L=k:n
if abs(a(L,k)) > amaxi
amaxi = abs(a(L,k));
ifLag = L;
end
end
%
%
fori=k+1l:n
xmult = a(i,k)/a(k,k);
forj = k+1:n;
a(i,)) = a(i,j) - xmulLt*a(k,j);
end
b(i) = b(i) - xmuLt*b(k);
end
end
%

Recursion vs. Iteration- Example of Fibonacci Numbers

T 7% & Matlab & #8253+ & Fibonacci Numbers - % - i fibonacci(n)
§- Al @ Blen= VA 4 > % = filonum(n) Rl E 1 * e Sdeen A

4 o

function f = fibonacci(n)
% FIBONACCI Fibonacci sequence

37 /Matlab

% f = FIBONACCI(n) generates the first n Fi bonacci

numbers.

f = zeros(n,1);

f1) = 1;

f2) = 2

for k =3:n

f(k) = f(k-1) + f(k-2);
end

function f = fibnum(n)

% FIBNUM Fibonacci number.

% FIBNUM(n) generates the nth Fibonacci numbe
if n<=1

f =1,

else

f = fibonum(n-1) + fibnum(n-2);

end

£ & Matlab ¥ & = &3 B4 % 15 (& %] A fibonacci.m
~

it

2 fionumm) 2R{S

>> fibonacci(12)
ans =

89
144
233
>> fibnum(12)
ans =
233
A K AREE] 233 T b
>> tic, fibonacci(24), toc
ans =

38/Matlab

46368

75025
Elapsed time is 0.000148 seconds.
>> tic, fibnum(24), toc

ans =
75025
Elapsed time is 1.002141 seconds.
Kitged g R R o B Y tic, . toc ﬁh{ Matlab ¢ * &3+ ¥ 425V iF

BHERDPESE - 5 AR E Y R F xF? (Causion: 7 5 4~ tic,
fibnum(100), toc)

39/Matlab

Description |

MATLAB | C |

Equal to == ==
Not equal to Y= 1=
Less than < <
Less or equal <= <=
Greater than > >
Greater or equal >= >=
Logical NOT ~ !
Logical AND & &&
Logical inclusive OR ! ||
Logical exclusive OR xor
Logical equivalent == ==
Logical not equivalent T= 1=
| Loop | MATLAB | C++ \
Indexed loop for index=matrix for (init;test;inc)
statements
end statements

Pre-test loop

while test

while (test) {

statements statements
end
Post-test loop do {
statements
} while (test)
| MATLAB \ C++
if 1_expression if (l_expression)
MATLAB | C++ | true group A
else true group A
if 1_expression if (l_expression) false group B
true group end else
end true group; false group B
C |
switch (expression)

case value 1
group 1
break;

case value 2
group 2
break;

case value n
group n
break;

default:
default group
break;

}

40/Matlab

