

1/Matlab

MATLAB 簡介簡介簡介簡介

 MATLAB (MATrix LABoratory) 是一極為有用的數值計算工具，它除了提供簡單的加

減乘除運算外，亦可繪圖，同時具有強大的程式功能以及內建程式庫，所以 MATLAB 可取

代一般如 Fortran 或 C 之程式語言進行程式設計及數值計算，也可用圖形表示計算結果。本

系四樓電腦教室中電腦皆已安裝 MATLAB ，同學們可前往使用；網路上有相當多有關

MATLAB 的 介紹及使用說明 1，以下為與本課程相關之 MATLAB 簡介
2
 ：

1. 四則計算

MATLAB 可如計算機般的進行加減乘除運算，如：

» (1 + 3) * 4 / 5

ans = 3.2000

» 3.4^12

ans =

 2.3864e+006

四則運算中，+ 及 – 分別為加減、 * 及/為乘除、^ 為次方。 至於取餘數(C語言用%)

在Matlab是用 rem，如

>> a = 9

a =

 9

>> b = 2

b =

 2

>> rem(a,b)

ans =

 1

[Example]

» format long

» sqrt(-1), 1/0

ans =

 0 + 1.00000000000000i

ans =

 Inf (Infinity, ∞)
» 0*log(0)

ans =

1 http://scv.bu.edu/SCV/Tutorials/MATLAB/
 http://www.math.siu.edu/matlab/tutorials.html
2 本講義資料取自 http://www.mit.edu:8001/people/abbe/matlab/main.html 以及黃世宏教授的講

義。

2/Matlab

 NaN (Not-a-Number)

» pi

ans =

 3.14159265358979

在 MATLAB 中 ， 可定義 a 為一變數，如：

» a = 3

a = 3

其中字母的大小寫代表不同的變數，例如 a 及 A 不同。在MATLAB中所有的變數皆

內定為倍精準(就是 C 語言中的 double 型態)。當然，除了倍精準外，Matlab 的變數

型態也可設為單精準、整數、字串等型態。例如：

» a = single(5)

a = 5

是把 a 設為單精準的浮點值。此外，如果安裝 symbolic 模組後，MATLAB 也可把數

字或計算以任何位數之精準度表示之，如：

» a = vpa(sqrt(2),100)

a =

1.4142135623730950488016887242096980785696718753769 480731766797379907324784
62107038850387534327641573

» b = vpa(pi,50)

b =

3.1415926535897932384626433832795028841971693993751

其中 vpa 為 variable precision arithmetic 之簡寫，括號內 100 即為位數。 不過，

MATLAB 必須先安裝 symbolic toolbox (符號運算工具箱) 才能使用 vpa 這個指令。

本校計網中心MATLAB的版權已包含該模組。

前已談及，在 MATLAB 中，任何變數的內定值事實上都是倍精準之矩陣(或稱

陣列； matrix , array)；如果變數看起來像 scalar ，其實為一個 1 × 1 matrix (e.g., a

= 3) ，若變數看起來像 vector ，其實為一個 N × 1 or 1 × N matrix 。以下幾個例子

說明如何在 MATLAB 中建立矩陣變數：

» v = [1 3 6 8 9]

v = 1 3 6 8 9

如上述之例子，矩陣中同列(row)之元素間用空隔(space)區分，不同列則可用分號

『；』或分行輸入，如：

» c = [1 3 6; 2 7 9; 4 3 1]

c =
 1 3 6
 2 7 9
 4 3 1

或

3/Matlab

» c = [1 3 6
 2 7 9
 4 3 1]
c =
 1 3 6
 2 7 9
 4 3 1

» c = [-1.3 sqrt(3) (1+2+3)*4/5]

c =

 -1.3000e+000 1.7321e+000 4.8000e+000

若在輸入行中最後輸入分號『；』，則在輸出螢幕上就不會顯示結果；如

» a = 2;

» b = 3;

» d = a + b; ((((不不不不 顯顯顯顯 示示示示 結結結結 果果果果))))

» d = a + b ((((顯顯顯顯 示示示示 結結結結 果果果果))))

d =

 5

注意在 Matlab 及 C 語言中，『；』的用法不同。若要輸入一組數值為等間距的向量

或矩陣時，可使用

» b = 1 : 2 : 15

b =

 1 3 5 7 9 11 13 15

這時就可得一 b = [1 3 5 7 9 11 13 15] 的向量，其中每相隔的值相差為

2。其中間隔的值為正數或負數皆可。若省略間隔之值，則 MATLAB 內定其間隔值為

1，如 b = 1 : 5 得 b = [1 2 3 4 5] 。一矩陣 v 的轉置矩陣 (transpose

matrix ，行與列互換的矩陣) 可用 v' 得之，如

» v = [1 3 6 8 9]

v =

 1 3 6 8 9

» v'

ans =

 1

 3

 6

 8

 9

Other vector generation functions include linspace, which allows the number of
points rather than the increment, to be specified, e.g.,

» k = linspace(0,1,5)

k =

4/Matlab

 0 2.5000e-001 5.0000e-001 7.5000e-001 1.000 0e+000

and logspace, which generates logarithmically evenly spaced vectors:

» k = logspace(0,2,5)

k =

 1.0000e+000 3.1623e+000 1.0000e+001 3.1623e+00 1 1.0000e+002

or k = [100, 100.5, 101, 101.5, 102].

A collection of functions generates special matrices that arise in linear algebra and
signal processing: company, diag, gallery, hadamard, hankel, hilb, invhilb, magic,

pascal, toeplitz, vander. 例如我們可利用 magic 指令創造一 4 × 4 的魔術方陣：

» magic(4)
ans =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

上述的方陣中，各行與各列以及對角線的和均相同。

[練習] 啟動 Matlab 後在視窗中鍵入 x = -1 : 0.1 : 1 ，然後輸入下列指令：

sin(x) ; sqrt(x) ; x' ; 2*x ; x/5

2. Dealing with Matrices

Once you have a matrix, e.g.,

» c = [1 3 6; 2 7 9; 4 3 1]

c =
 1 3 6
 2 7 9
 4 3 1

you can refer to specific elements in it. MATLAB indexes matrices by row and
column. c(3,1) is the element in the third row, first column, which is 4.
c(2:3,1:2) gives you the elements in rows 2~3, and columns 1~2, so you get

» c(2:3,1:2)

ans =
 2 7
 4 3

as a result. c(1:3,2) gives you the elements in rows 1~3, and the second column,
that is, the entire second column. You can shortcut this to:

» c(:,2)

literally telling Matlab to use all the rows in the second column, i.e., the 2nd column:

ans =
 3

5/Matlab

 7
 3

You can get a whole row of a matrix with

» c(1,:)

ans =

 1 3 6

This literally tells Matlab to take the first row, all columns.

You can also refer to any matrix with only one index. It will use that index to count
down the columns (先往下數，再往右；先行再列), for example,

» c(6)

ans =

 3

Big matrices can be constructed using little matrices as elements. For example, we
could attach another row to our matrix c with

» r = [10 11 12];

» c = [c;r]

c =
 1 3 6
 2 7 9
 4 3 1
 10 11 12

When you have a matrix or vector (anything with more than one element) you need
to do a few things to make sure all of your math does what you want it to. You can
add a constant or multiply by a constant normally (const+c, const*c, etc.) If you have
data in two matrices that correspond (for example, a time vector and an x position
vector that has x values for each point in time), you can add and subtract those
normally (it will map each element properly.)

To multiply, divide, or raise to a power when you have a matrix or vector that is
acting as a set of data points, you need to use

.* ./ .^

so that Matlab will multiply each element in the matrix instead of trying to do matrix
multiplication or division.

[Example]

» c = [1 3 6; 2 7 9; 4 3 1]

c =
 1 3 6
 2 7 9

6/Matlab

 4 3 1

» c^2

ans =
 31 42 39
 52 82 84
 14 36 52

» c.^2

ans =
 1 9 36
 4 49 81
 16 9 1

» 1./c

ans =

 1.0000 0.3333 0.1667
 0.5000 0.1429 0.1111
 0.2500 0.3333 1.0000

» c^-1

ans =
 0.4000 -0.3000 0.3000
 -0.6800 0.4600 -0.0600
 0.4400 -0.1800 -0.0200

Note that the last expression, c^-1 , yields the inversion of the matrix c, which can
also be evaluated by inv(c) . Of course, it can treat matrices as actual matrices, so
you can solve something like [A]x = b where A is a matrix of coefficients, x is a
column vector of the x values you want to find, and b is also a column vector just by
doing

x = A\b

after you define A and b. The \ represents "left division" (since to solve that equation
you would have to divide both sides by A on the *left* side, since order is significant
when dealing with matrices.).

[Example]

» 1/2

ans =

 0.5000

» 1\2

ans =

 2

若要解下列的聯立方程式：

7/Matlab

1 2 1 8

2 4 3 19

1 1 1 0

   
   =
   
   −   

X

可用
» A = [1 2 1
 2 4 3
 1 1 -1]

A =
 1 2 1
 2 4 3
 1 1 -1

» B = [8 ; 19 ; 0]

B =
 8
 19
 0

» X = A\B

X =
 1
 2
 3

8/Matlab

[練習一] 執行下列敘述並觀察結果：

x = [1 3 5 7 9]

y = -1 : 0.5 : 1

x.^y

x.*y

x./y

[練習二] 請建立下述的矩陣：

1 3 9

5 7 10

3 5 8

 
 =
 
  

A

並請檢查 A(1,1), A(2,1), A(4); A(1:2,:), A(:,1) A(:,2:3) 是什麼？

[練習三] 利用 Matlab 解下列聯立方程式：

2 3 4 7 12

3 4 8 2

5 6 3 2 9

6 4 10

x y z w

x y z w

x y z w

x y z w

+ + + =
 − + − =
 + − + =
 + − + =

3. Useful Functions

Matlab has a lot of built-in functions (內建函數). To use a function, just type

functionname(arguments) with the appropriate name and arguments. If you create a
time vector t = 1:.25:6 ; you can get standard functions like

x = sin(t)

which returns a vector the same size as t, with values for the sin of t at all points.

» t=1:.25:6

t =
 Columns 1 through 7
 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500 2.5000
 Columns 8 through 14
 2.7500 3.0000 3.2500 3.5000 3.7500 4.0000 4.2500
 Columns 15 through 21
 4.5000 4.7500 5.0000 5.2500 5.5000 5.7500 6.0000

» x = sin(t)

x =
 Columns 1 through 7
 0.8415 0.9490 0.9975 0.9840 0.9093 0.7781 0.5985
 Columns 8 through 14
 0.3817 0.1411 -0.1082 -0.3508 -0.5716 -0.7568 -0.8950
 Columns 15 through 21
 -0.9775 -0.9993 -0.9589 -0.8589 -0.7055 -0.5083 -0.2794

You can also do things like

9/Matlab

s = sum(c)

which sums all the columns in a matrix c and returns a row vector of the sums.

» sum(c)

ans =

 7 13 16

The function d = det(c) takes a matrix c and returns the determinant of it.

» d = det(c)

d =

 -50

The Matlab booklet has a list of many of these useful functions. Here is a summary
of relevant functions, followed by some examples:

 Function Meaning Example
 === =====
 sin sine sin(pi) = 0.0
 cos cosine cos(pi) = 1.0
 tan tangent tan(pi/4) = 1.0
 asin arcsine asin(pi/2)= 1.0
 acos arccosine acos(pi/2)= 0.0
 atan arctangent atan(pi/4)= 1.0
 exp exponential exp(1.0) = 2.7183
 log natural logarithm log(2.7183) = 1.0
 log10 logarithm base 10 log10(100.0) = 2.0

Note that the arguments to trigonometric functions are given in radians.

Some Special Matrices

Matlab also provides a number of useful built-in matrices:

 Function Meaning Example
 === ============
 ones(m,n) m x n matrix of 1's P = ones(2,3)
 zeros(m,n) m x n matrix of 0's Z = zeros(2,3)
 eye(n) n x n identity matrix I = eye(3)
 diag(d) diagonal matrix with d = [-3 4 2]
 diagonal entries d D = diag (d)
 diag(A) extracts the diagonal A = [0 1 8 7 ; 3 -2 -4 2 ;
 entries from A 4 2 1 1]
 a = diag (A)
 rand(m,n) m x n matrix of random Y = rand(2,3), y = r and
 numbers
 magic(n) an n x n magic square M = magic(4)

10/Matlab

[練習一] 下面的敘述 Matlab 會給什麼結果?

x = 1 : 1 : 3

z = rand(3)

y = [z ; x]

c = rand(2)

e = eye(2)

f = [c e ones(2)]

d = sqrt(c)

a = inv(c)

b = c*c

g = c.*c

[練習二] 下面的敘述 Matlab 會給什麼結果?

A = [1 3 5 7 9];

B = diag(A, -1)

C = diag(A, 1)

[練習三] 下面的敘述 Matlab 會給什麼結果?

A = ones(2,5)*6

B = rand(3,5)

C = [A ; B]

C = [A B] % 有沒有錯誤訊息有沒有錯誤訊息有沒有錯誤訊息有沒有錯誤訊息?

A = eye(3)*6

C = [A B]

4. Help and Other Tools

Places to get help:

• Typing "help " at the Matlab prompt gives you a list of all the possible directories

matlab can find commands in (which also tells you its "search path", or a list of
the directories it is looking in for commands.)

• Typing "help commandname " gives you help on a specific command. For
example,

» help roots

 ROOTS Find polynomial roots.
 ROOTS(C) computes the roots of the polynomial w hose coefficients
 are the elements of the vector C. If C has N+1 components,
 the polynomial is C(1)*X^N + ... + C(N)*X + C(N +1).

 See also POLY, RESIDUE, FZERO.

• Typing "lookfor keyword " gives you a list of commands that use that
keyword. ie, "lookfor integral " lists commands that deal with integrals. It's
pretty slow, choose the word wisely. You can use control-c to stop searching
when you think you've found what you need. For example,

» lookfor integral

11/Matlab

ELLIPKE Complete elliptic integral.
EXPINT Exponential integral function.
DBLQUAD Numerically evaluate double integral.
INNERLP Used with DBLQUAD to evaluate inner loop of integral.
QUAD Numerically evaluate integral, low order met hod.
QUAD8 Numerically evaluate integral, higher order method.
COSINT Cosine integral function.
SININT Sine integral function.
COSINT Cosine integral function.
FOURIER Fourier integral transform.
IFOURIER Inverse Fourier integral transform.
SININT Sine integral function.

» lookfor integration

CUMTRAPZ Cumulative trapezoidal numerical integrati on.
TRAPZ Trapezoidal numerical integration.
LOTKADEMO Demonstrate numerical integration of diff erential equations.
ADAMS Simulink 1.x ADAMS integration algorithm.
EULER Simulink 1.x EULER integration algorithm.
GEAR Simulink 1.x GEAR integration algorithm.
LINSIM Simulink 1.x LINSIM integration algorithm.
RK23 Simulink 1.x rk23 integration algorithm.
RK45 Simulink 1.x RK45 integration algorithm.
SFUNMEM A one integration-step memory block S-funct ion.
INT Alternative entry to the symbolic integratio n function.

• Typing "doc " starts up a web browser with the Matlab home page. This includes
the entire reference manual for Matlab , a whole lot of other information on using
matlab, and a pointer to the Matlab Primer, a good introduction to using Matlab.

Some Useful Tools:

• If you accidentally reassign a function name to a variable (i.e., you try saying sum
= 3 and then you get errors when you try to use the sum function because it
doesn't know it's a function anymore), you can restore it to its normal state using
"clear functionname ". You can also use clear to get rid of all variable values
with "clear " or "clear all ".

• who

will tell you all the variables you have currently defined.

» who

Your variables are:
a b d v
ans c t x

• whos

will tell you the variables, their sizes, and some other info.

» whos

 Name Size Bytes Class
 a 1x1 8 double array
 ans 1x3 24 double array
 b 1x19 152 double array

12/Matlab

 c 3x3 72 double array
 d 1x1 8 double array
 t 1x21 168 double array
 v 1x5 40 double array
 x 1x21 168 double array

• pi

is a function of that returns the value of pi.

» pi

ans =

 3.1416

• eps

is a function that returns the distance from 1.0 to the next largest floating
point number.

» eps

ans =

 2.2204e-016

• Inf

The function Inf, which stands for infinity, is found in very few calculator
systems or computer languages. On some computers, it is made possible by
the IEEE arithmetic implemented in a math coprocessor. On other computers,
floating point software is used to simulate a coprocessor. One way to
generate the value returned Inf is

» s = 1/0

which results in

Warning: Divide by zero.

s =

 Inf

• NaN

On machines with IEEE arithmetic, division by zero does not lead to an error
condition or termination of execution. It does produce a warning message
and a special value that can behave in a sensible manner in subsequent
computation.

The variable NaN is an IEEE number related to Inf but has different
properties. It stands for “Not a Number” and is produced by calculations
such as Inf/Inf or 0/0.

• format long / format short

13/Matlab

switch between the long and short display format of numbers. Either way
Matlab uses the same number of digits for its calculations, but normally
(format short) it will only display the first four digits after the decimal
point.

» format long

» pi

ans =

 3.14159265358979

» format short

» pi

ans =

 3.1416

• Typing

type functionname for any function in Matlab's search path lets you see
how that function is written.

» type bessel
function [w,ierr] = bessel(nu,z)
%BESSEL Bessel functions of various kinds.
% Bessel functions are solutions to Bessel's diff erential
% equation of order NU:
% 2 2 2
% x * y'' + x * y' + (x - nu) * y = 0
%
% There are several functions available to produc e solutions to
% Bessel's equations. These are:
%
% BESSELJ(NU,Z) Bessel function of the fir st kind
% BESSELY(NU,Z) Bessel function of the sec ond kind
% BESSELI(NU,Z) Modified Bessel function o f the first kind
% BESSELK(NU,Z) Modified Bessel function o f the second kind
% BESSELH(NU,K,Z) Hankel function
% AIRY(K,Z) Airy function
%
% See the help for each function for more details .

% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 5.12 $ $Date: 2002/04/09 00:29:44 $

[w,ierr] = besselj(nu,z);

5. Complex Numbers and Matrices

Complex numbers are allowed in all operations and functions in MATLAB. There
are at least two convenient ways to enter complex matrices. They are illustrated by
the statements

» A = [1 2; 3 4] + i*[5 6; 7 8]

A =
 1.0000e+000 +5.0000e+000i 2.0000e+000 +6.0000e+0 00i
 3.0000e+000 +7.0000e+000i 4.0000e+000 +8.0000e+0 00i

14/Matlab

and

» A = [1+5*i 2+6*i; 3+7*i 4+8*i]

which produce the same result. When complex numbers are entered as matrix
elements within brackets, it is important to avoid any blank spaces, because an
expression like 1 + 5*i, with blanks surrounding the + sign, represents two separated
numbers. (The same is true of real numbers; a blank before the exponent part in 1.23
e-4 causes an error.)

15/Matlab

6. 2-D Plotting

The basic syntax to get a plot in Matlab is

plot(x1,y1)

(The x values always come before the y values, x1 and y1 represent variables that
your data is stored in.)

clear all
» x = 0:0.1:10;
» y = sin(x);
» plot(x,y)

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

If you type a second plot command later, it will clear your first plot. If you type
"hold on " it will hold the current plot so you can add plots on top of one another
(until you reset it by typing "hold off ".). For example,

» y1 = cos(x);
» hold on
» plot(x,y1)

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

You can plot multiple values with plot(x1,y1,x2,y2) and you can specify the
color and linetype of a plot as something like plot(x1,y1,'w*') to get white *'s
for each data point.

» clear all

16/Matlab

» clf
» x = 0:0.1:10;
» y1 = sin(x);
» y2 = cos(x);
» plot(x,y1,x,y2)

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

» plot(x,y1,'--',x,y2,'+')

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The available options are listed as follows:

 Line Types Point Types Colors
--- -----
 solid - point . red r
 dashed -- plus + green g
 dotted : star * blue b
 dashed-dot -. oh's o white w
 x's x invisible i

To split your plot into a bunch of smaller plots, you can use the subplot command
to split it up into rows and columns:

subplot(r,c,n)

will split the plot window into r rows and c columns of plots and set the current plot
to plot number n of those rows and columns. For example, subplot(2,1,1) splits
the plot window into two rows in a single column and prepares to plot in the top
plot. Then your plot command will plot in the top plot. Then you could switch to the

17/Matlab

bottom plot with subplot(2,1,2) and use another plot command to plot in the
bottom plot.

» subplot(2,1,1)

» plot(x,y1,'-')

» subplot(2,1,2)

» plot(x,y2,'-.')

0 2 4 6 8 10
-1

-0.5

0

0.5

1

0 2 4 6 8 10
-1

-0.5

0

0.5

1

You can add titles, labels, and legends to plots.

title('This is a Title')
xlabel('My X axis')
ylabel('My Y axis')
legend('First Thing Plotted','Second Thing Plotted')

legend creates a legend box (movable with the mouse) that automatically uses the
right symbols and colors and sticks the descriptions in the legend command after
them.

» plot(x,y1,'--',x,y2,'+')
» title('This is a Title')
» xlabel('My X axis')
» ylabel('My Y axis')
» legend('sin(x)','cos(x)')

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
This is a Title

My X axis

M
y

Y
ax

is

sin(x)
cos(x)

Other useful 2-D plotting facilities are

18/Matlab

» semilogx(x,y)
» semilogy(x,y)
» loglog(x,y)
» polar(x,y)

[Exercise] 請利用 Matlab 在同ㄧ張圖上繪製 y1 = x
2 cos x 和 y2 = x

2 sin x 兩個函

數； x 的範圍在 x = - 2 : 0.1 : 2 ，並請在圖上加入註解。

[Exercise] 同上題，但兩函數分上下兩部份分別繪圖。

7. 3D Graphs and Other Graphics Capabilities

(1) 3D plotting

When you make a 3-dimensional plot, you usually have a z variable that is a
function of both x and y. When you want x and y to vary over some range,
you need a matrix (rather than a vector) for x and y to get a complete domain
that covers all the different combinations of those x and y values over some
range. A function called meshgrid will set up x and y matrices like this for
you. The x matrix varies the x down rows and keeps it constant in columns,
and the y matrix varies the y in columns and keeps it constant across rows, so
you get all combinations of x and y if you use the two matrices.

To get a rectangular domain that goes from x = 1 to x = 10 in steps of .5, and
from y=1 to y=10 in steps of .5 using meshgrid , you can use

» [x, y] = meshgrid([1:.5:10],[1:.5:10]);

Then, you can do a 3d plot by calculating some z values on the x and y
domains, and doing a surface, mesh, or contour plot.

» z = x.^2 – y.^2;
» surf(x,y,z)

» mesh(x,y,z)

19/Matlab

» contour(x,y,z)

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

You could also use surfc or meshc to get surface or mesh plots with a
contour plot drawn on the x-y plane. Surface plots and mesh plots color the
plots according to the z value, by default.

A 3-D curve can be shown by the plot3 command:

[Example]

» t = 0:0.1:3.0*pi;
» plot3(t,sin(t),cos(t))
» xlabel('t'), ylabel('sin t'), zlabel('cos t')

20/Matlab

0
2

4
6

8
10

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

tsin t

co
s

t

(2) Colormaps and Visibility

The default colormap that Matlab uses is called 'hsv '. This colormap cycles all
the way around from red to red, so both lows and highs will look red. This is
often not very useful in engineering applications. You can switch to a
colormap that goes from blue to red with

» colormap('jet')

If you type "help hsv ", the see also list includes the other predefined
colormaps. You can get a colorbar that indicates what colors correspond to
what values with

» colorbar

For example:

» surf(x,y,z)
» colorbar

Sometimes, a 3d surface plot may cover up portions of its plot. You can take
advantage of the fact that Matlab doesn't plot NaN's and Inf's to make
"cutouts" in a plot.

(3) More Examples

[Example] Plot the surface defined by the function

 f(x,y) = (x – 3)2 – (y – 2)2

21/Matlab

for 2 ≤ x ≤ 4 and 1 ≤ y ≤ 3.

» clear all

» [x,y] = meshgrid(2:0.1:4,1:0.1:3);

» z = (x – 3).^2 – (y – 2).^2;

» surfc(x,y,z)

» title('Saddle'),xlabel('x'),ylabel('y')

[Example] Plot the surface defined by the function

2 22(x y)f x ye− += −

on the domain for – 2 ≤ x ≤ 2 and – 2 ≤ y ≤ 2.

» clear all

» [x,y] = meshgrid(-2:0.1:2, -2:0.1:2);

» f = - x.*y.*exp(-2*(x.^2+y.^2));

» mesh(x,y,f), xlabel('x'), ylabel('y'), grid

22/Matlab

surf(x,y,f)

8. Polynomials

Matlab can treat a vector as a polynomial. It will assume that the numbers represent
the coefficients of the polynomial going from highest-order to lowest order. For
example,

» p = [1 2 2 4 1]

p =
 1 2 2 4 1

can represent the polynomial x4 + 2 x3 + 2 x2 + 4 x + 1. There are a number of
functions that use this representation of polynomials:

» roots(p)

gives you the roots of the polynomial represented by the vector p.

ans =

 -1.90696494950524
 0.09333575522422 + 1.36604798694679i
 0.09333575522422 – 1.36604798694679i
 -0.27970656094320

The value of polynomial can be evaluated by the function polyval , for example,

» polyval(p,4)

gives you the value of the polynomial p when x = 4.

ans =

 433

Similarly,

>>polyval(p,[1:10])

23/Matlab

gives you the value of the polynomial evaluated at each of the points in the vector.
(It returns another vector the same size.)

ans =
 Columns 1 through 6
 10 49 166 433 946 1825
 Columns 7 through 10
 3214 5281 8218 12241

9. Symbolic Math (Optional)

裝了符號運算工具箱(Symbolic Toolbox)後，Matlab 可以進行符號相關的運算。

Matlab is capable of doing fairly simple symbolic math analysis (i.e. giving you
symbolic equations as results rather than matrices or vectors.). It is designed for
numerical work, rather than symbolic work, and in order to do symbolic math,
Matlab actually uses the engine for another math software product, Maple. If you
find that what you're trying to do in Matlab 's symbolic math toolkit involves mostly
calling the "maple " command (which simulates Maple), you probably just want to
go ahead and use Maple. For basics, though, the symbolic math toolkit is useful. A
symbolic equation in Matlab is represented as a string, such as 'x + 2 = 5'. The basic
symbolic math operations all take string equations as arguments, and return string
equations. Matlab decides which variable in that string is the symbolic variable (as
opposed to a variable that actually has a numerical value in its workspace) by
assuming that the one-letter variable closest to the end of the alphabet is the
symbolic variable. Basic symbolic functions include

» symadd('x^2 + 2*x + 3','3*x+5')

ans =

x^2+5*x+8

symsub , symdiv , symmul , and sympow all work as you would expect, too. Matlab
also has symbolic functions such as int and diff to integrate and differentiate,
factor to factor, simplify to simplify an expression, and taylor to generate a
Taylor series expansion. For example,

» x = sym('x');

» factor(x^9-1)

ans =

(x-1)*(x^2+x+1)*(x^6+x^3+1)

You can also use solve to solve algebraic equations, and dsolve to solve a
differential equation. For example,

» p = 'a*x^2 + 2*b*x + c'

p =

a*x^2 + 2*b*x + c

» solve(p)

ans =

-(b + (b^2 - a*c)^(1/2))/a

24/Matlab

-(b - (b^2 - a*c)^(1/2))/a

The function numeric('symbolic expression') lets you convert a symbolic
representation to numbers wherever possible, which also helps in simplification.

The function ezplot('symbolic function') takes a symbolic equation and
plots it as a function of x. You can specify a range or let it use the default. To specify
a range, use ezplot('symbolic function',[xmin xmax]') .

» p = '2.0*x^2 + 3.0*x^(1./2.) + 4'

p =

2.0*x^2 + 3.0*x^(1./2.) + 4

» ezplot(p)

0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

80

90

x

2.0*x^2 + 3.0*x^(1./2.) + 4

For more details on the symbolic toolkit, try "help sym ", or try reading the manual.

25/Matlab

10 Function Functions (會呼叫函數的函數)

A class of functions in MATLAB works not with numerical matrices, but with
mathematical functions. These function functions include:

Numerical integration
Nonlinear equations and optimization
Differential equation solution
. . .

Mathematical functions are represented in MATLAB by function m-files (有關 m-file

詳細建立的方法會在後面詳加說明). For example, the function

2 2

1 1
() 6

(0.3) 0.01 (0.9) 0.04
humps x

x x
= + −

− + − +

is made available to MATLAB by creating an M-file called humps.m:

function result = humps (x)
% HUMPS computes a function that has three roots, and some humps.
%
result = 1.0 ./ ((x - 0.3).^2 + 0.01) ...
 + 1.0 ./ ((x - 0.9).^2 + 0.04) - 6.0;

如果敘述句太長無法在ㄧ句結束，則可用在句末加上 ... 表示上、下行是接續的。例

如上式所示。 A graph of the function is:

x = -1 :.01:2;
plot(x,humps(x))

-1 -0.5 0 0.5 1 1.5 2
-20

0

20

40

60

80

100

(1) Numerical Integration

The area beneath humps(x) can be determined by numerically integrating
humps(x), a process referred to as 'quadrature'. To integrate humps from 0 to
1:

» q = quad('humps',0,1)

q =

 2.9858e+001

The two MATLAB functions for quadrature are: quad, quad8. Notice that the
first argument to quad is a quoted string containing the name of a function.

26/Matlab

This is why we call quad a function function – it is a function that operates on
other functions.

(2) Nonlinear Equations and Optimization

The function functions for nonlinear equations and optimization include:
fminbnd, fminsearch, fsolve, fzero. Continuing our example, the location of
the minimum of humps(x) in the region from 0.5 to 1 is computed with
fminbnd:

» xm = fminbnd('humps', 0.5, 1)

xm =

 6.3701e-001

Its value at the minimum, is:

» y = humps(xm)

y =

 1.1253e+001

From looking at the graph, it is apparent that the function humps(x) has two
zeros. The location of the zero near x = 0 is:

» xz1 = fzero('humps', 0)

xz1 =

 -1.3162e-001

The zero near x = 1 is at:

» xz2 = fzero('humps', 1)

xz2 =

 1.2995e+000

(3) 微分方程式 Differential Equation Solution (optional)

MATLAB’s functions for solving ordinary differential equations are: ode23,
ode45. Consider the second order differential equation known as the Van der
Pol equation

0)1(2 =+−+ xxxx ɺɺɺ

We can rewrite this as a system of coupled first order differential equations

12

2
2
211)1(

xx

xxxx

=
−−=

ɺ

ɺ

The first step toward simulating this system is to create a function M-file
containing these differential equations. We can call it vdpol.m:

function xdot = vdpol(t,x)

xdot = zeros(2,1);

27/Matlab

xdot(1) = x(1) .* (1 – x(2).^2) – x(2);

xdot(2) = x(1);

To simulate the differential equation defined in vdpol over the interval
200 ≤≤ t invoke ode23

t0 = 0; tf = 20;

x0 = [0 0.25]'; % Initial conditions

[t,x] = ode23('vdpol',[t0 tf],x0);

plot(t,x)

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

28/Matlab

11. Programming in Matlab

Matlab 是由 C 語言演化來的，許多語法與 C 極為類似。在這裡我們僅介紹 Matlab 最

基本的語法與用法。

(1) Writing Functions and Scripts

MATLAB 程式是以 .m 為副檔名(即所謂 m-files)，而 m-files 依照功能可分為

Script 與 Function 兩類：

Scripts (指令批次檔指令批次檔指令批次檔指令批次檔))))

Script 是一堆指令、函式呼叫、程式敘述的集合，它不需要輸入與輸出

參數。執行 script 的效果等同於在 command window 中逐行執行 script

中的每行敘述。Script 中宣告的變數也是 workspace 的一部份。Script

通常使用在經常使用、固定不變的工作上。Script 無特定的格式。將執

行檔存成 xx.m 檔後，僅需鍵入 xx 就可執行該指令批次檔。

[Example]

將下列敘述利用 Matlab 內建的文書處理器鍵入後，存成

myscript.m 檔：

% A Sample Script File

disp('Calculating the Volume of an Ideal Gas.')

R = 8314; % Gas constant

t = input('Vector of temperatures (K) =');

p = input('Pressure (bar) = ') * 1.0e5;

v = R*t/p ; % Ideal gas law

% Plotting the results

plot(t,v)

xlabel('T (K) ')

ylabel('V (m^3/kmol)')

title('Ideal Gas Volume vs. Temperature')

在指令中若出現 % 符號，那麼該行出現在 % 符號後的部份不會

執行 (就像 C 語言中的 /* comments */ 或 //)。將上述字句存

成 myscript.m 檔後，在Matlab視窗中鍵入：

» myscript

就可以執行剛剛輸入的批次執行檔；輸入所需的資料後(例如溫度

200:5:400 ；壓力 2.0)，看看 matlab 為你做了哪些事！

Functions

Function 就是所謂的副程式 (sub-program)。 Function 中使用輸入及回

傳參數與其他 function 或是 command window 進行溝通；Function

之間也可以互相呼叫。Function 中宣告的變數和 C 語言類似，屬於區域

29/Matlab

變數，有別於 workspace 與其他 function 中同名的變數。將常用的工作

包裝寫成 function 有助於程式的結構化。注意：一個 m-file 只能包含一

個 function ，檔名與 function 名稱必須相同。函式的第一句必定是

function [list of outputs] = functionname(list of inputs)

這樣 Matlab 才知道這個 m-file 檔案是函數。 Each function needs to

have its own file, and the file has to have the same name as the
function. If the first line of the function is

function answer = myfun(arg1,arg2)
answer = (arg1+arg2)./arg1

then the file must be named myfun.m. The function has arg1 and arg2
to work with inside the function (plus anything else you want to define
inside it, and possibly some global variables as well), and by the end of
the function, anything that is supposed to be returned should have a
value assigned to it. This particular function is just one line long, and it
returns answer, which is defined in terms of the two arguments arg1
and arg2.

[Example]

Let us write a function to do the ideal gas volume calculations
that we have already done in a script:

function v = myfunction(t,p)

% Function 'myfunction.m'

% This function calculates the specific volume

% of an ideal gas

R = 8314; % Gas constant

for k = 1:length(p)

 v(k,:) = R*t/p(k); % Ideal gas law

end

This function must be saved as 'myfunction.m'. Now we can
call this function in Matlab:

» p = 1:0.5:10; t = 300:5:400;

» vol = myfunction(t,p);

» surf(t,p,vol)

» colorbar

» view(135,45)

30/Matlab

Some useful tools for functions and scripts

• nargin

This variable used within a function tells you how many arguments the
function was called with. (nargin stands for number of input
arguments)

You can write functions that can accept different numbers of
arguments and decide what to do based on whether it gets one
argument or two arguments. For example, the following function
calculates the surface area and volume of a sphere or a cylinder
depending on the number of input arguments:

 function [area, volume] = AV(radius, height)

%

% AV calculates the surface area and volume of a cylinder

% or a sphere. If height is provided in input argument, AV

% calculates the surface area and volume of a c ylinder.

% Otherwise, AV calculates the surface area and volume of

% a sphere.

%

 if nargin == 1

 volume = 4.0/3.0*pi*radius^3;

 area = 4.0*pi*radius^2;

 else

 volume = pi*radius^2*height;

 area = 2.0*pi*radius*height + 2.0*pi*rad ius^2;

 end

%

%

Now in Matlab,

» [area,volume] = av(4.0)

31/Matlab

area =

 2.010619298297468e+002

volume =

 2.680825731063290e+002

where area and volume are the surface area and volume of a sphere of
radius R = 4, while

» [area,volume] = av(4.0, 1.0)

area =

 1.256637061435917e+002

volume =

 50.26548245743669

yield the surface area and volume of a cylinder of radius R = 4.0 and
height H = 1.0, respectively.

 • feval

The function evaluates a function for a given set of arguments. For
example, feval('sin',[0:pi/4:2*pi]) is the same thing as
saying sin([0:pi/4:2*pi]) . If you're dealing with a situation
where you might want to specify which function to use as an argument
to another function, you might use feval .

(2) Global Variables (全 域 變 數)

When you define a variable at the Matlab prompt, it is defined inside of
Matlab's "workspace." Running a script does not affect this, since a script is
just a collection of commands, and they're actually run from the same
workspace. If you define a variable in a script, it will stay defined in the
workspace.

Functions, on the other hand, do not share the same workspace. A function
won't know what a variable is unless it gets the variable as an argument, or
unless the variable is defined as a variable that is shared by the function and
the Matlab workspace, or a global variable. To use a global variable, every
place (function, script, or at the Matlab prompt) that needs to share that
variable must have a line near the top identifying it as a global variable, i.e.:

global phi;

Then when the variable is assigned a value in one of those places, it will have
a value in all the places that begin with the global statement.

(3) Loops and Control

Sometimes, you do need to use some kind of loop to do what you need, rather
than just operating on an entire matrix or vector at once.

32/Matlab

while ... end

The syntax for a while loop is

while (some logical expression)

 do something;

 do something else;

end

For Example

x = 0;

while x <= 1

 x, y = sin(x)

 x = x + 0.1;

end

注意在Matlab 中需用 end 來代表迴圈的區間。

for ... end

An example for the syntax for a for loop is:

k = 0;

for x = 0:0.2:1

 k = k + 1

 y(k) = exp(-x)

end

You should try to avoid using i and j as counters, since you will wind
up redefining i (which is initially defined as the imaginary i.). The
loops can be nested and are usually indented for readability, e.g.,

m = 5;
n = 5;
for i = 1:m
 for j = 1:n
 A(i,j) = 1/(i+j-1);
 end
end
A

Yields

A =

 1.0000e+000 5.0000e-001 3.3333e-001 2.5000e-00 1 2.0000e-001
 5.0000e-001 3.3333e-001 2.5000e-001 2.0000e-00 1 1.6667e-001
 3.3333e-001 2.5000e-001 2.0000e-001 1.6667e-00 1 1.4286e-001
 2.5000e-001 2.0000e-001 1.6667e-001 1.4286e-00 1 1.2500e-001
 2.0000e-001 1.6667e-001 1.4286e-001 1.2500e-00 1 1.1111e-001

33/Matlab

if ... (else ...) ... end

The syntax for an if statement is

if (logical expression)

 matlab command

elseif (other logical expression)

 another matlab command

else

 a matlab command

end

(You don't need an elseif or an else , but you do need an end .)

switch case ... otherwise end

Syntax of the switch-case construction is

switch expression (scalar or string)

case value1 (executes if expression evaluates to va lue1)

 commands

case value2 (executes if expression evaluates to va lue2)

 commands

.

.

.

otherwise

 statements

end

In the following example a random integer number x from the set {1, 2, … , 10}
is generated. If x = 1 or x = 2, then the message Probability = 20% is displayed
to the screen. If x = 3 or 4 or 5, then the message Probability = 30% is
displayed, otherwise the message Probability = 50% is generated. The script
file fswitch.m utilizes a switch as a tool for handling all cases mentioned
above.

% Script file fswitch.

% Generate a random integer in {1, 2, ... , 10}

x = ceil(10*rand);

switch x

case {1,2}

disp('Probability = 20%');

case {3,4,5}

disp('Probability = 30%');

otherwise

34/Matlab

disp('Probability = 50%');

end

The MATLAB functions that are used in file fswitch are

rand – uniformly distributed random numbers in the interval (0, 1)
ceil – round towards plus infinity (see Section 2.5 for more details)
disp – display string/array to the screen

Let us test this code ten times:

for k = 1:10

fswitch

end

Probability = 50%
Probability = 30%
Probability = 50%
Probability = 30%
Probability = 50%
Probability = 50%
Probability = 30%
Probability = 20%
Probability = 50%
Probability = 30%

break and pause

You can use break command to jump out of a loop before it is
completed. The pause command will cause the program to wait for a
key to be pressed before continuing. For example,

k = 0;

for x = 0:0.2:1

 if k > 3

 break

 end

 k = k + 1

 y(k) = exp(-x)

 pause

end

In the process of a loop, if you define an element of a vector that doesn't exist
yet (the vector is smaller than the element you're trying to assign), Matlab will
increase the size of the vector or matrix to allow for the new element to go
where you've specified. However, if you know that you're going to be
assigning elements until the matrix grows to be some specific size, it's better
to "preallocate" the matrix by defining it to be all zeros initially.

matrix = zeros(rows, columns);

35/Matlab

will do that.

(4) Relational and Logical Constructs

The relational operators in MATLAB are

 Operator Description
 ===================================
 < less than
 > greater than
 <= less than or equal
 >= greater than or equal
 == equal
 ~= not equal.
 ===================================

Note that '=' is used in an assignment statement while '==' is used in a
relation. Relations may be connected or quantified by the logical operators:

 Operator Description
 ===================================
 & and
 | or
 ~ not.
 ===================================

(注意在 C 語言中， and, or 及 not 分別是 &&, || 及 ! 。) When applied to

scalars, a relation is actually the scalar 1 or 0 depending on whether the
relation is true or false (indeed, throughout this section you should think of 1
as true and 0 as false). For example

» 3 < 5

ans =

 1

» a = 3 == 8

a =

 0

注意在上式中， 3==8 先運算(答案是非，也就是 0)，然後 a 再等於此值。

When logical operands are applied to matrices of the same size, a relation is a
matrix of 0's and 1's giving the value of the relation between corresponding
entries. For example:

» A = [1 2; 3 4];

» B = [6 7; 8 9];

» A == B

ans =

 0 0

 0 0

» A < B

ans =

 1 1

 1 1

To see how the other logical operators work, you should also try

36/Matlab

» ~A

» A&B

» A & ~B

» A | B

» A | ~A

(5) [Example: Temperature Conversion Program]

The relationship between temperature measured in Fahrenheit (°F) and
temperature Celsius (°C) is given by the equation:

 T (°F) = 9 * T(°C) / 5 + 32

We can now write an m-file that computes and plots the temperature

conversion relationship over the range − 50 through 100 °C.

% === ================

% Temperature Conversion Program for Celsius to Fah renheit

% covering the range 0 through 100 degrees Celsius.

% Temp_Conv.m

% === ================

Num_Points = 151;

% Initialize Temp_C

% Temp_C = zeros(1,Num_Points);

for i = 1 : Num_Points

 Temp_C(i) = i – 51;

 Temp_F(i) = 9*Temp_C(i)/5 + 32;

end

plot(Temp_C, Temp_F);

grid;

xlabel('Temperature (Celsius)');

ylabel('Temperature (Fahrenheit)');

title('Fahrenheit versus Celsius Temperature Conver sion');

Run the program and we will get the following plot:

-50 0 50 100
-100

-50

0

50

100

150

200

250

Temperature (Celsius)

Te
m

p
er

at
ur

e
 (F

ah
re

nh
e

it)

Fahrenheit versus Celsius Temperature Conversion

37/Matlab

[Exercise] 請將上ㄧ段 Matlab 批次檔改寫為 C 語言；繪圖部份除外，但需

要包含螢幕輸出攝氏與華式溫度部份。

[Exercise] 請將下列 Matlab script 改寫為一個完整的 C 語言程式：

% Calculates exp(x) by Taylor Series Expansion

disp(' This program calculates exp(x) for various x. ')

 x = input(' Please input x: ');

 TrueValue = exp(x) ;
 Sum = 1.0;
 Term = 1.0;
 for i = 1: 30000

 Term = Term*x/i;
 Sum1 = Sum + Term;
 if(Sum1 == Sum)
 break
 end
 Sum = Sum1;

 end

RelativeError = (Sum - TrueValue)/TrueValue;

disp(' i Sum TrueValue Re lativeError')
fprintf('%5i %16.7e %16.7e %16.7e \n',i, Sum, ...
 TrueValue, RelativeError)

[Exercise] 請將下列 Matlab 程式片斷改寫為 C 語言。
%
 for k = 1:n-1
%
%
 ifLag = k;
 amaxi = abs(a(k,k));
 for L = k:n
 if abs(a(L,k)) > amaxi
 amaxi = abs(a(L,k));
 ifLag = L;
 end
 end
%
%
 for i = k+1:n
 xmuLt = a(i,k)/a(k,k);
 for j = k+1:n;
 a(i,j) = a(i,j) - xmuLt*a(k,j);
 end
 b(i) = b(i) - xmuLt*b(k);
 end
 end
%

(6) Recursion vs. Iteration– Example of Fibonacci Numbers

下列兩個 Matlab 函數都是計算 Fibonacci Numbers，第一個 fibonacci(n)
是一般利用迴圈的方式產生，第二 fibnum(n) 則是利用遞迴函數的方法產

生。

function f = fibonacci(n)
% FIBONACCI Fibonacci sequence

38/Matlab

% f = FIBONACCI(n) generates the first n Fi bonacci
numbers.
f = zeros(n,1);
f(1) = 1;
f(2) = 2;
for k = 3 : n
f(k) = f(k-1) + f(k-2);
end

function f = fibnum(n)
% FIBNUM Fibonacci number.
% FIBNUM(n) generates the nth Fibonacci numbe r.
if n <= 1
f = 1;
else
f = fibnum(n-1) + fibnum(n-2);
end

先在 Matlab 中建立這兩個檔案後(分別是 fibonacci.m 及及及及 fibnum.m)，然後鍵

入

>> fibonacci(12)
ans =
 1
 2
 3
 5
 8
 13
 21
 34
 55
 89
 144
 233
>> fibnum(12)
ans =
 233

兩者都得到 233。另外，請鍵入

>> tic, fibonacci(24), toc
ans =
 1
 2
 3
 5
 8
 13
 21
 34
 55
 89
 144
 233
 377
 610
 987
 1597
 2584
 4181
 6765
 10946
 17711
 28657

39/Matlab

 46368
 75025
Elapsed time is 0.000148 seconds.
>> tic, fibnum(24), toc
ans =
 75025
Elapsed time is 1.002141 seconds.

來比較兩者計算的速度，其中 tic, ... toc 就是 Matlab 中用來計算程式運

算速度的時鐘。看看哪種寫法比較有效率 ? (Causion: 切勿鍵入 tic,

fibnum(100), toc)

40/Matlab

