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CHAPTER 2 
 

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 
 

1 Homogeneous Linear Equations of the Second Order 

 

1.1 Linear Differential Equation of the Second Order 

 

 y'' + p(x) y' + q(x) y   =   r(x) Linear 

where p(x), q(x):  coefficients of the equation 

if r(x)   =   0  homogeneous 

 r(x)      0  nonhomogeneous 

 p(x), q(x) are constants   constant coefficients 
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[Example] 

(i) ( 1  x2 ) y''  2 x y' + 6 y   =   0 

   

 y''  –  
2 x

  1  x2  
 y' +  

6

  1  x2  
 y   =   0 

homogeneous
variable coefficients
linear

  

(ii) y'' + 4 y' + 3 y   =   ex 

nonhomogeneous
constant coefficients
linear

  

(iii) y'' y + y'   =   0 nonlinear 

(iv)               y'' + (sin x) y' + y = 0     linear,homogeneous,variable coefficients 

 

 



2
nd

-Order ODE - 3 

1.2 SecondOrder Differential Equations Reducible to the First Order  

Case I:  F(x, y', y'')   =   0  y does not appear explicitly 

[Example] y''   =   y' tanh x 

[Solution] Set  y'   =   z  and  
dz

y
dx

   

Thus, the differential equation becomes firstorder  

 z'   =   z tanh x 

which can be solved by the method of separation of variables 

 
 dz 
 z    = tanh x dx   =   

  sinh x  
cosh x    dx 

or ln|z|   =   ln|cosh x| + c' 

 z   =   c1 cosh x 

or y'   =   c1 cosh x 

Again, the above equation can be solved by separation of variables: 

 dy   =   c1 cosh x dx 

 y   =   c1 sinh x + c2  # 
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Case II:  F(y, y', y'')   =   0    x does not appear explicitly 

[Example] y'' + y'3 cos y   =   0 

[Solution] Again, set z   =   y' = dy/dx 

thus, y''   =   
 dz 
dx    =   

 dz 
dy   

 dy 
dx    =   

 dz 
dy  y'    =   

 dz 
dy  z 

Thus, the above equation becomes a firstorder differential equation of 
z (dependent variable) with respect to y (independent variable): 

 
dz
dy   z + z3 cos y   =   0 

which can be solved by separation of variables: 

  
  dz  

 z2 
   =   cos y dy          or     

1
 z    =   sin y + c1 

or z = y'   = dy/dx =   
1

 sin y + c1 
  

which can be solved by separation of variables again 

 (sin y + c1) dy   =   dx         cos y + c1 y + c2   =   x #  
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[Exercise] Solve y'' + ey(y')3   =   0 

[Answer] ey - c1 y   =   x + c2   (Check with your answer!) 

 

[Exercise] Solve y y'' = (y')2 
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2 General Solutions 

 

2.1 Superposition Principle  

 

[Example] Show that (1) y   =   e–5x, (2) y   =   e2x and (3) y   =   c1 e
–5x + 

c2 e
2x are all solutions to the 2nd-order linear equation 

 y'' + 3 y'  10 y   =   0 

[Solution] (e–5x)'' + 3 (e–5x)'  10 e–5x 

  = 25 e–5x  15 e–5x  10 e–5x   =   0 

 (e2x)'' + 3 (e2x)'  10 e2x  

  = 4 e2x + 6 e2x  10 e2x   =   0 

 (c1 e
–5x + c2 e

2x)'' + 3 (c1 e
–5x + c2 e

2x)'  10 (c1 e
–5x + c2 e

2x) 

  = c1 (25 e–5x  15 e–5x  10 e–5x)  

   + c2 (4 e2x + 6 e2x  10 e2x)   =   0 

Thus, we have the following superposition principle: 
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[Theorem]   

Let y1 and y2 be two solutions of the homogeneous linear differential equation 

 y'' + p(x) y' + q(x) y   =   0 

then the linear combination of y1 and y2, i.e., 

 y3   =   c1 y1 + c2 y2 

is also a solution of the differential equation, where c1 and c2 are arbitrary constants. 

[Proof] 

 (c1 y1 + c2 y2)'' + p(x) (c1 y1 + c2 y2)' + q(x) (c1 y1 + c2 y2) 

  = c1 y1'' + c2 y2'' + p(x) c1 y1' + p(x) c2 y2' 
   + q(x) c1 y1 + q(x) c2 y2 

  = c1 (y1'' + p(x) y1' + q(x) y1)  
   + c2 (y2'' + p(x) y2' + q(x) y2) 

  = c1 (0)   (since y1 is a solution) 
       + c2 (0) (since y2 is a solution) 

  = 0 

Remarks: The above theorem applies only to the homogeneous linear differential 
equations 
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2.2 Linear Independence   

 

Two functions, y1(x) and y2(x), are linearly independent on an interval 
[x0, x1] whenever the relation c1 y1(x) + c2 y2(x) = 0 for all x in the interval 
implies that  

c1 = c2 = 0. 

Otherwise, they are linearly dependent. 

 

There is an easier way to see if two functions y1 and y2 are linearly 
independent.  If c1 y1(x) + c2 y2(x) = 0 (where c1 and c2 are not both zero), 

we may suppose that c1  0.  Then 

y1(x) + 
  c2  
c1

  y2(x)    =    0     or y1(x)   =   – 
  c2  
 c1 

 y2(x)   =    C y2(x) 

Therefore: 

Two functions are linearly dependent on the interval if and only if 
one of the functions is a constant multiple of the other. 



2
nd

-Order ODE - 9 

2.3 General Solution 

Consider the secondorder homogeneous linear differential equa-
tion: 

 y'' + p(x) y' + q(x) y   =   0 

where p(x) and q(x) are continuous functions, then 

(1) Two linearly independent solutions of the equation can always be 
found. 

(2) Let y1(x) and y2(x) be any two solutions of the homogeneous equa-
tion, then any linear combination of them (i.e., c1 y1 + c2 y2) is also a 
solution. 

(3) The general solution of the differential equation is given by the lin-
ear combination 

  y(x)   =   c1 y1(x) + c2 y2(x) 

where c1 and c2 are arbitrary constants, and y1(x) and y2(x) are two 
linearly independent solutions. (In other words, y1 and y2 form a 
basis of the solution on the interval  I ) 

(4) A particular solution of the differential equation on I is obtained if 
we assign specific values to c1 and c2 in the general solution. 
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[Example] Verify that y1 = e–5x, and y2 = e2x are linearly 
independent solutions to the equation 

 y'' + 3 y'  10 y   =   0 

[Solution] 

It has already been shown that y = e–5x and y = e2x 
are solutions to the differential equation.  In addition 

 y1   =   e–5x   =   e–7x e2x   =   e–7x y2 

and e–7x is not a constant, we see that e–5x and e2x are 
linearly independent and form the basis of the general 
solution.  The general solution is then 

 y   =   c1 e–5x + c2 e2x 
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2.4  Initial Value Problems and Boundary Value Problems 

 

Initial Value Problems (IVP) 

 Differential Equation y'' + p(x) y' + q(x) y   =   0 
with Initial Conditions y(x0)  =  k0,    y'(x0)  =  k1 

 Particular solutions with c1 and c2 evaluated from the ini-
tial conditions. 

 

Boundary Value Problems (BVP) 

 Differential Equation y'' + p(x) y' + q(x) y  =  0 
with Boundary Conditions y(x0)  =  k0,   y(x1)  =  k1 

where x0 and x1 are boundary 
points. 

 Particular solution with c1 and c2 evaluated from the 
boundary conditions. 
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2.5 Using One Solution to Find Another  (Reduction of Order) 

 

If y1 is a nonzero solution of the equation y'' + p(x) y' + q(x) y   =   0, we want to 
seek another solution y2 such that y1 and y2 are linearly independent.  Since y1 and 
y2 are linearly independent, the ratio 

 
y2

 y1 
  =   u(x) ≠ constant 

must be a non-constant function of x, and y2 = u y1 must satisfy the differential 
equation.  Now 
 (u y1)'   =   u' y1 + u y1' 
 (u y1)''  =   u y1'' + 2 u' y1' + u'' y1 

Put the above equations into the differential equation and collect terms, we have 

 u'' y1 + u' (2 y1' + p y1) + u (y1'' + p y1' + q y1)   =   0 

Since y1 is a solution of the differential equation,    y1'' + p y1' + q y1   =   0 

 u'' y1 + u' (2y1' + p y1)   =   0    or u'' + u' 








 2 
  y1'  
 y1

 + p   =   0 

Note that the above equation is of the form F(u'', u', x) = 0 which can be solved by 

setting   U   =   u'   ∴      U' + 








 2 
y1'
 y1 

 + p   U   =   0 
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which can be solved by separation of variables: 

 U   =   
c

 y1
2 

  e

 

 
 p(x) dx   

where c is an arbitrary constant.  Take simply (by setting c = 1 ) 

 du/dx  = U   =   
1

 y1
2 

  e

 

 
 p(x) dx   

and perform another integration to obtain u, we have 

 y2   =   u y1   =   y1(x) 




 

 

 

e

 

 
 p(x) dx 

y1
2(x) 

 dx  

Note that e


 

 
 p(x) dx

  is never zero, i.e., u is non-constant.  Thus,  y1 and y2 form a 

basis. 
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[Example] y1   =   x   is a solution to  

  x2 y''  x y' + y   =   0    ; x > 0 

 Find a second, linearly independent solution. 

 

[Solution]     Method 1:  Use y2 = u y1 

Let  y2   =   u y1   =   u x 

then y2'   =   u' x + u  and  y2''   =   u'' x + 2 u' 

x2 y2''  x y2' + y2 = x3 u'' + 2 x2 u'  x2 u'  x u + x u = x3 u'' + x2 u'   =   0 

or x u'' + u'   =   0 

Set U   =   u', then   U'   =   – 
 1 
x    U      

dU dx

U x
    

∴ U   =   e
–1/x dx

  =  e
 ln x

   =  
1
x  

Since U   =   u', ∴  u   =    U dx   =  1/x dx   = ln x 

Therefore, y2(x)   =   u y1   =   x ln x (You should verify that y2 is indeed 
a solution.) 
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Method II: Use formula.  

To use the formula, we need to write the differential equation 
in the following standard form: 

 y''  
 1 

  x   y' + 
 1 

  x2 
 y   =   0 

 y2  =   y1(x) 





 

 

 

e

 

 
 p(x) dx 

y1
2(x) 

 dx  

1

2

dx
xe

x dx
x


        

=   x 





 

 

 
x

 x2
 
 dx    =   x ln x 



2
nd

-Order ODE - 16 

[Exercise 1] Given that y1 = x, find the second linearly inde-
pendent solution to  

  ( 1  x2 ) y''   2 x y'  + 2 y   =   0 

    Hint:  

 

 
 

dx

 1 - x2 
   = 

1
 2    ln ( 

1 + x
 1 - x   ) 

[Exercise 2]  Given that y1 = x, find the second linearly inde-
pendent solution to 

   y''  - 
y'

 x2 
  +  

y

 x3 
   =   0 

[Exercise 3] Verify that y = tan x satisfies the equation 

   y'' cos2x = 2y 

and obtain the general solution to the above differential 
equation. 
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3 Homogeneous Equations with Constant Coefficients   

 y'' + a y' + b y   =   0 

where a and b are real constants. 

Try the solution 

 y   =   ex  trial solution 

Put the above equation into the differential equation, we have 

 (2 + a  + b) ex   =   0 

Hence, if y   = ex be the solution of the differential equation,  must be a solution 
of the quadratic equation 

 
2 + a  + b   =   0  characteristic equation 

Since the characteristic equation is quadratic, we have two roots: 

 1   =   
  a + a2  4b 

2   

 2   =   
  a  a2  4b 

2   
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Thus, there are three possible situations for the roots of 1 and 2 
of the characteristic equation: 

Case I a2  4b      0 1 and 2 are distinct real roots 

Case II a2  4b   =   0 1   =   2 , a real double root 

Case III a2  4b      0 1 and 2 are two complex conjugate 
roots 

We now discuss each case in the following: 
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Case I  Two Distinct Real Roots, 1 and 2   

Since y1 = e1x  and y2 = e2x   are linearly independent, we have  the general 

solution  y   =   c1 e
1x   + c2 e

2x   

[Example] y'' + 3 y'  10 y   =   0 ; y(0)   =   1,  y'(0)   =   3 

The characteristic equation is 

 
2 + 3   10   =   (  2) ( + 5)   =   0 

we have two distinct roots 

 1   =   2 ; 2   =   –5 

 y(x)   =   c1 e
2x + c2 e

–5x  general solution 

The initial conditions can be used to evaluate c1 and c2: 

 y(0)   =   c1 + c2   =   1 

 y'(0)   =   2 c1  5 c2   =   3 

 c1   =   8/7 , c2   =   – 1/7 

 y(x)   =   
1

 7   (8 e2x  e–5x)   –– particular solution 
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Case II Real Double Roots  (a2  4b   =   0) 

 

Since 1   =   2   =   – 
a
 2  , y1(x) = e–ax/2  should be the first  

solution of the differential equation.   

 

The second linearly independent solution can be obtained 

by the procedure of reduction of order:  y2   =   x e–ax/2  
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[Derivation] 

Let y2   =   u y1   =   u e–ax/2  

then y2'   =   u' e–ax/2  – 
a
 2   u e–ax/2  and  

 y2''   =   u'' e–ax/2  – a u' e–ax/2  + 
a2

 4   u e–ax/2  

so that the differential equation becomes 

y'' + a y' + b y   = (u''  a u' + 
a2

 4   u ) e–ax/2  + a (u'  
a
 2    u) e–ax/2  + b u e–ax/2   =   0 

or u'' + 










 b  
a2

  4      u   =   0 

But since a2 = 4 b, we have  u'' = 0.  Thus, u' is a constant which can be chosen 
to be 1.∴ u = x.   

Hence   y2   =   x e–ax/2  

Thus, the general solution for this case is 

 y(x)   =   (c1 + c2 x) e–ax/2   general solution 
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[Example]   Solve y''  6 y' + 9 y   =   0 

[Solution]  

The characteristic equation is 

 2  6  + 9   =   0   or   (  3)2   =   0 

and  

1   =   2   =   3 

Thus, the general solution is 

 y   =   (c1 + c2 x) e3x 
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Case III  Complex Conjugate Roots 1 and   (a2  4b  0) 

 1   =   – 
1
 2    a + i  

 2   =   – 
1
 2    a  i 

where    =   b  
a2

4    and i   =   1  

 

Thus, Y1 = e1x  and Y2 = e2x   are solutions (which are 
complex functions) of the differential equation, i.e. 

 

1 1 2 2y CY C Y   
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Note that we have proven that any linear combination of solutions is also a solution. 
This is also valid if the constants are complex numbers.  Thus, we consider the solu-
tions (which are real functions as shown later): 

y1   =   
1
 2   (Y1 + Y2)       and       y2   =   

1
 2 i   (Y1  Y2)  

From the complex variable analysis1, we have Euler Formula 

 ei   =   cos  + i sin  

 e-i   =   cos   i sin  

Thus, Y1   =   e1x  = e–ax/2 (cos x + i sin x)  

 Y2   =   e2x  = e–ax/2 (cos x  i sin x)  

or y1   =   e–ax/2   cos x 

 y2   =   e–ax/2   sin x 

Therefore, 1 2y Ay By  , where    1 2

1 1
 and 

2 2
C A iB C A iB     
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Since y1/y2 = cot x,  0, is not constant, y1 and y2 
are linearly independent.  We therefore have the 
following general solution: 

y   =   e–ax/2 (A cos x + B sin x)  

where A and B are arbitrary constants. 
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[Example] Solve y'' + y' + y   =   0 ; y(0)   =   1,  y'(0)   =   3 

[Solution] 

The characteristic equation is   2 +  + 1   =   0,  which has the solutions 

 1   =   
1 + i 3

 2   2   =   
1  i 3

 2   

Thus, the general solution is  y(x)   =    e–x/2 








 A cos 
3

 2  x + B sin 
3

 2  x   

The constants A and B can be evaluated by considering the initial con-
ditions: 

 y(0)   =   1  A   =   1 

 y'(0)   =   3  
  3  

2  B  
1

  2   A   =   3 

 A   =   1 ; B   =   
7

 3 
  

Thus 

 y(x)   =   e–x/2 










 cos 
3

 2  x + 
7

 3 
 sin 

3
 2  x   
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Complex Exponential Function 

 

     

 

1 2 1 2

2 3 4

2 4 3 5

Let   

Expand  in Maclaurin series:

1
2! 3! 4!

1
2! 4! 3! 5!

cos sin

cos sin

z z z z

z s it s it

it

it

z s

z s it e e e

e e e e

e

it it it
e it

t t t t
i t

t i t

e e t i t





   

  

     

   
          
   

 

  
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Summary 

For the secondorder homogeneous linear differential equation 
 y'' + a y' + b y   =   0 
the characteristic equation is 

 2 + a  + b   =   0 
The general solution of the differential equation can be classified by the 
types of the roots of the characteristic equation: 
 

 Case Roots of  General Solution   

 I Distinct real y   =   c1 e1x   + c2 e2x  

  1,  2 

 II Complex conjugate 

  1   =   – 
 1 
2   a + i y   =   e–ax/2 ( A cos x + B sin x )  

  2   =   – 
 1 
2   a  i  

 III Real double root y   =   ( c1 + c2 x ) e–ax/2  

  1   =   2   =   – 
 1 
2   a 
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Riccati Equation  (Nonlinear 1st-order ODE) 

Linear 2ndorder ODEs may also be used in finding the solution to a special form of Riccati 
Equation: 

Original:                2y g x y h x y k x     

Special Case:    y' + y2 + p(x) y + q(x) = 0 

Let y   =   
z'
 z               then y'   =   

z''
 z    – 









 
z'
 z  

2
  

thus the special Riccati equation becomes 

 
z''
 z    – 









 
z'
 z  

2
   + 









 
z'
 z  

2
   + p(x) 

z'
 z    + q(x)   =   0 

or z'' + p(x) z' + q(x) z   =   0 

If the general solution to the above equation can be found, then 

 y   =   
z'
 z   

is the general solution to the Riccati equation. 

[Exercise 1] Solve  y' + y2 + 2y + 1   =   0 , y(0)   =   0 

[Exercise 2] Solve    x2 y' + x y + x2 y2   =   1 
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Differential Operators   

The symbol of differentiation d/dx can be replaced by D, i.e., 

 Dy   =   
dy
 dx    = y' 

where D is called the differential operator which transforms y into its derivative y'.  
For example: 

 D(x2 )    =   2x 

 D(sin x)   =   cos x 

 D2y D(Dy)   =   D(y')   =   y'' 

 D3y   =   y''' 

In addition,  y'' + a y' + b y (where a, b are constant) can be written as 

D2y +  a Dy + b y       or 2[ ] ( )[ ] ( )[ ]L y P D y D aD b y y ay by         

where P(D) is called a secondorder (linear) differential operator.  The homogene-
ous linear differential equation, y'' + a y' + b y = 0, may be written as 

 (D2 + a D + b)y   =   0 or [ ] ( )[ ] 0L y P D y   

 



2
nd

-Order ODE - 31 

[Example]  

Calculate (3D2  10D  8) x2, (3D+2) (D4)x2, and (D4) (3D+2) x2 

[Solution] 

 (3D2  10D  8) x2    =   3D2x2  10Dx2 – 8x2 

  =   6  20x  8x2 

 (3D + 2)(D  4)x2    =   (3D + 2) (Dx2  4x2) 

  =   (3D + 2) (2x  4x2) 

  =   3D(2x  4x2) + 2(2x  4x2) 

  =   6  24x + 4x  8x2 

  =   6  20x  8x2 

 (D  4)(3D + 2)x2    =   (D  4) (3Dx2 + 2x2) 

  =   (D  4) (6x + 2x2) 

  =   D(6x + 2x2)  4(6x + 2x2) 

  =   6 + 4x  24x  8x2 

  =   6  20x  8x2 

Note that (3D2  10D  8)   =   (3D + 2) (D  4)   =   (D4) (3D + 2) 
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The above example seems to imply that the operator D can be handled as 
though it were a simple algebraic quantity.   

But... 

[Example] Is (D + 1) (D + x)ex   =   (D + x) (D + 1)ex ? 

[Solution] 

 (D + 1) (D + x)ex  =   (D + 1) (Dex + x ex) 

  =   (D + 1) (ex + x ex) 

  =   D(ex + x ex) + (ex + x ex) 

  =   ex  + ex + x ex + ex + x ex 

  =   3 ex  +  2 x ex 

 (D + x) (D + 1)ex  =   (D + x) (Dex + ex) 

  =   (D + x) (ex + ex) 

  =   (D + x) (2ex) 

  =   D(2ex)  +  2 x ex 

  =   2ex  +  2 x ex 

Thus, (D + 1) (D + x) ex   (D + x) (D + 1) ex 
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This example illustrates that interchange of the order of factors containing variable co-

efficients are not allowed. e.g., xDy  Dxy, or in general,  P1(D) P2(D)  P2(D) P1(D) 

[Question] Is ( x2 D ) ( x D ) y   =   ( x D ) ( x2 D ) y  ? 

 

[Example] Factor L(D)   =   D2 + D  6 and solve L(D)y   =   0 

[Solution] 

 L(D)   =   D2 + D  6   =   (D + 3) (D  2) 

 L(D)y   =   y'' + y'  6 y   =   0 

has the linearly independent solutions 

 y1   =   e–3x and y2   =   e2x 

Note that 

 (D + 3) (D  2) y   =   0 

can be factored as 

 (D + 3) y   =   0  y   =   e–3x 

 (D  2) y   =   0  y   =   e2x 

which also form the basis of L(D)y   =   0. 
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4 Euler Equations  (Linear 2nd-order ODE with variable coefficients) 

For most linear secondorder equations with variable coefficients, it is neces-
sary to use techniques such as the power series method to obtain information 
about solutions.  However, there is one class of such equations for which 

closedform solutions can be obtained  the Euler equation: 

 x2 y'' + a x y' + b y   =   0, x  0 

We now guess that the form of the solutions of the above equation be 

 y   =   xm 

and put the derivatives of y into the Euler equation, we have 

 x2 m (m  1) xm2 + a x m xm1 + b xm   =   0 

If x  0, we can divide the above equation by xm to obtain the characteristic 
equation for Euler equation: 

m (m  1) + a m + b   =   0      or 

m2 + (a  1) m + b   =   0   (Characteristic Equation) 

As with the constantcoefficient equations, there are three cases to consider: 
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Case I Two Distinct Real Roots   m1 and m2 

In this case,  xm1  and xm2  constitute a basis of the Euler equation.  
Thus, the general solution is 

 y   =   c1 xm1  + c2 xm2   

 

Case II The Roots are Real and Equal m1=m2 =m =(1-a)/2 

In this case, xm is a solution of the Euler equation.   To find a second 
solution,  we can use the method of reduction of order and obtain 
( Exercise! ): 

 y2   =   xm ln |x| 

Thus, the general solution is 

 y   =   xm (c1 + c2 ln |x| ) 
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Case III The Roots are Complex Conjugates    i  

This case is of no great practical importance. The two 
linearly independent solutions of the Euler equation 
are 

 

     

   

   

1

2

ln ln cos ln sin ln

cos ln sin ln

cos ln sin ln

i
i x i x

m i

m i

x e e x i x

x x x x i x

x x x x i x


 

  

  

 

 

 





   

    

    

 

By adding and subtracting these two equations 

 x  cos ( ln |x|)   and  x  sin ( ln |x|) 

Thus, the general solution is 

 y   =   x  [ A cos ( ln |x|) + B sin ( ln |x|) ] 
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 [Example] x2 y'' + 2 x y'  12 y   =   0 

[Solution] The characteristic equation is 

 m ( m  1 ) + 2 m  12   =   0 

with roots m   =   – 4  and  3 

Thus, the general solution is 

 y   =   c1 x
-4 + c2 x

3  

 

[Example] x2 y''  3 x y' + 4 y   =   0 

[Solution] The characteristic equation is 

 m (m  1)  3 m + 4   =   0 

 m   =   2,  2   (double roots) 

Thus, the general solution is 

 y   =   x2 ( c1 + c2 ln |x|) 
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[Example] x2 y'' + 5 x y' + 13 y   =   0 

[Solution] The characteristic equation is 

 m ( m  1 ) + 5 m + 13   =   0 

or m   =   – 2 + 3 i    and      2  3 i 

Thus, the general solution is 

 y   =   x–2 [ c1 cos (3 ln|x|) + c2 sin (3 ln|x|) ] 

 

[Exercise 1]  The Euler equation of the third order is  

 x3 y''' + a x2 y'' + b x y' + c y   =   0 

Show that y = xm is a solution of the equation if and only if m is a 
root of the characteristic equation 

 m3 + ( a  3 ) m2 + ( b  a + 2 ) m + c   =   0 

What is the characteristic equation for the nth order Euler equation? 
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[Exercise 2] An alternative method to solve the Euler equation is by 
making the substitution 

 x   =   ez or z   =   ln x 

Show that he homogeneous secondorder Euler equation 

 x2 y'' + a x y' + b y   =   0, x  0 

can be transformed into the constantcoefficient equation 

 
2

2
1 0

d y dy
a by

dz dz
     

 

 

[Exercise 3] ( x2 + 2 x +1 ) y''  - 2 ( x + 1 ) y'  + 2 y   =   0 

[Exercise 4] ( 3 x + 4 )2 y''  -  6 ( 3 x + 4 ) y'  + 18 y   =   0 

[Exercise 5] y'' + ( 2 ex - 1 ) y'  +  e2x y   =   0 ( Hint: Let z   =   ex ) 



2
nd

-Order ODE - 40 

5 Existence and Uniqueness of Solutions  
    

5.1 SecondOrder Differential Equations 

 

Consider the initial value problem (IVP): 

 y'' + p(x) y' + q(x) y   =   0 (1a) 

with y(x0)   =   k0   ,   y'(x0)   =   k1 (1b) 

Note that (1a) is a 2nd-order, linear homogeneous differential 
equation. 

 

TheoremExistence and Uniqueness Theorem 

If p(x) and q(x) are continuous functions on an open interval I 
and x0 is in I, then the initial value problem, (1a) and (1b), has 
a unique solution y(x) on the interval. 
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WronskianDefinition 

The Wronskian of two solutions y1 and y2 of (1a) is defined as 

 W(y1, y2)   =   






y1 y2

y1' y2'
  = y1y2'  y2y1' 

 

TheoremLinear Dependence and Independence of Solutions 

If p(x) and q(x) of the equation 
 y'' + p(x) y' + q(x) y   =   o 
are continuous on an open interval I, then the two solutions 
y1(x) and y2(x) on I are linearly dependent,  iff (if and only if ) 
W(y1, y2)   =   0 for some x   =   x0 in I. 

Furthermore, if  W=0  for 0x x , then 0W   on  I;  hence if 

there is an 1x  in I at which W is not zero, then 1y and 2y are lin-
early independent on I. 
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[Proof]: 

 

(1) If solutions y1 and y2 are linearly dependent on I   W(y1, y2) = 0 

 If y1 and y2 are linearly dependent on I, then 

 y1   =   c y2   or   y2   =   k y1 

This is true for any two linearly-dependent functions! 

If we take y1   =   c y2, then 

 W(y1, y2)   =   W(cy2, y2)   =   






cy2 y2

cy2' y2'
  = 0 

Similarly, when y2   =   k y1, W(y1, y2)   =   0. 
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(2)  1 2 0 1 2, 0 at     ,  linearly dependentW y y x x y y    

 We need to prove that if W(y1, y2) = 0 for some x = x0 on I, then 
y1 and y2 are linearly dependent.   

 

 1 1 0Determine nontrivial constants  and  at :c c x x  

 We consider the system of linear equations: 

 

1 1 0 2 2 0

1 1 0 2 2 0

( ) ( ) 0

( ) ( ) 0

c y x c y x

c y x c y x

 

  
 

where c1 and c2 are constants to be determined.  Since the de-
terminant of the above set of equations is 

 y1(x0) y2'(x0)  y1'(x0) y2(x0)   =   W(y1(x0), y2(x0) )  =   0 

we have a nontrivial solution for c1 and c2; that is, 1c  and 2c  are 

not both zero.   
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 1 1 2 2Show that 0 on y c y c y I    

Using these numbers 1c  and 
2c , we define 

 y   =   1c  y1(x) + 2c  y2(x)                                (*) 

Since y1(x) and y2(x) are solutions to the differential equation, 
y is also a solution.  Note that 

 y(x0)   =   1c  y1(x0) +  2c y2(x0)   =   0 

 y'(x0)   =   1c  y1'(x0) + 2c y2'(x0)   =   0 

Thus,  y(x) in equation (*) solves the initial value problem 

 y'' + p(x) y' + q(x) y   =   0,   

IC:   y(x0)   =   y'(x0)   =   0 

But this initial value problem also has the solution y*(x) = 0 for 
all values on I.  From the existence and uniqueness theorem, 
the solution of this initial value problem is unique so that 

 y(x)   =   y*(x)    =   1c  y1(x) + 2c  y2(x)   =   0 

for all values on I.   
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 1 2Establish linear dependence between  and y y  

Now since 1c  and 2c  are not both zero, this proves that y1 and 

y2 are linearly dependent. 

  

 

 

 Implication: 

 

 

   

1 2 1

1 2

If  , 0 at  in ,  then

 and  are linearly independent!

W y y x x I

y x y x

 
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Alternative Proof by Abel's Formula 

 W   =   y1 y2'  y2 y1' 

 W'   =   (y1 y2'  y2 y1')'   =   y1'y2' + y1'y2''  y2'y1'  y2y1'' 

  = y1 y2''  y2 y1'' 

Since y1 and y2 are solutions to y'' + p(x) y' + q(x) y   =   0, we have 

 y1'' + p(x) y1' + q(x) y1   =   0 
and y2'' + p(x) y2' + q(x) y2   =   0 

Multiplying the first of these equations by y2 and the second by y1 and sub-
tracting, we obtain 

 y1y2''  y2y1'' + p(x)(y1y2'  y2y1')   =   0 

or W' + p(x) W   =   0 

Thus, 

 W(y1, y2)   =   C e
 p(x) dx

  Abel's Formula 

where C is an arbitrary constant.   

Since an exponential is never zero, we see that W(y1, y2) is either always zero 

(when C = 0) or never zero (when C  0).   
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Thus, if W = 0 for some x = x0 in I, then W = 0 on the entire I.  

In addition, if there is an x1 on I at which W  0, then y1 and 
y2 are linearly independent on I. 

 

[Example]     y1 = cos x,    y2 = sin x      0 

 W(y1, y2)   =   








cos x sin x

 sin x  cos x
  =       0 

thus, y1 and y2 are linearly independent. 
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TheoremExistence of a General Solution  

   

   

If  and  are continuous on an open interval ,

then 0 has a general solution.

p x q x I

y p x y q x y     

 

TheoremGeneral Solution 

       

 

   1 1

Suppose that  0 has continuous coefficients  and 

on an open interval . Then  every solution  of this equation on  is of the form

                                          

y p x y q x y p x q x

I Y x I

Y x C y x

   

   2 2

1 2 1 2where ,  form a basis of solution on  and ,   are suitable constants.  Hence, the

above equation does not have singular solution.

C y x

y y I C C
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6 Nonhomogeneous Linear Differential equations 

 

6.1 General Concepts   

 

A general solution of the nonhomogeneous linear differential equation 

 y(n) + pn1(x) y(n1) + ... + p1(x) y' + p0(x) y   =   r(x) 

on some interval I is a solution of the form 

 y(x)   =   yh(x)  +  yp(x) 

where yh(x) = c1 y1(x) + ... + cn yn(x) is a solution of the homogeneous 
equation 

 y(n) + pn1(x) y(n1) + ... + p1(x) y' + p0(x) y   =   0 

and yp(x) is a particular solution of the nonhomogeneous equation. 
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( ) ( ) ( ) ----------------(1)

( ) ( ) 0 --------------------(2)

y p x y q x y r x

y p x y q x y

   

     

 

Relations between solutions of (1) and (2):   

 The difference of two solutions of (1) on some open interval I is a 
solution of (2) on I. 

 The sum of a solution of (1) on I and a solution of (2) on I is a solu-
tion of (1) on I. 
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 [Example] 

 y(x)   =   c1 e
x + c2 e

3x + 
2
3  e–2x  

is the solution of 

 y''  4 y' + 3 y   =   10 e–2x 

where yh(x)   =   c1 e
x + c2 e

3x is the general solution of  

 y''  4 y' + 3 y   =   0 

and yp(x) =  
2

  3   e
–2x satisfies the nonhomogeneous equation, i.e., 

yp(x) is a particular solution of the nonhomogeneous equation. 

 

There are two methods to obtain the particular solution yp(x): (1) Method of 
Undetermined Coefficients and (2) Method of Variation of Parameters.  Our main 
task in the following is to discuss these two methods for finding yp(x). 
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6.2 Method of Undetermined Coefficients   

 

 [Example 1]          y'' + 4 y   =   12 

The general solution of y'' + 4 y   =   0 is 

 yh(x)   =   c1 cos 2x + c2 sin 2x 

If we assume the particular solution 

 yp(x)   =   k 

then we have yp''  =  0, and 

 4 k   =   12 or k   =   3         ok! 

Thus the general solution of the nonhomogeneous 
equation is 

 y(x)   =   c1 cos 2x + c2 sin 2x + 3 
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[Example 2] y'' + 4 y   =   8 x2 

 

If we now assume the particular solution is of the 
form 

 yp(x)   =   m x2 

then yp''(x)   =   2m 

and 2 m + 4 m x2   =   8 x2 

However, since the above equation is valid for any 
value of x, we need 

 m   =   0    and m   =   2            

which is not possible.   
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If we now assume the particular solution is of the 
form 

 yp(x)   =   m x2 + n x + q 

then yp'   =   2 m x + n 

 yp''   =   2 m 

thus 2 m + 4 (m x2 + n x + q)   =   8 x2 

or 4 m x2 + 4 n x + (2 m + 4 q)   =   8 x2 

or 




  

4 m = 8
4 n = 0
2 m + 4 q = 0

  

or m   =   2 n   =   0 q   =   –1 

 yp(x)   =   2 x2  1 

and y(x)    =   c1 cos 2x + c2 sin 2x + 2 x2  1 
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[Example 3] y''  4 y' + 3 y   =   10 e–2x 

The general solution of the homogeneous equation 

 y''  4 y' + 3 y   =   0 

is yh(x)   =   c1 e
x + c2 e

3x 

If we assume a particular solution of the nonhomogeneous 
equation is of the form 

 yp(x)   =   k e–2x 

then yp'   =   – 2 k e–2x yp''   =   4 k e–2x 

and 4 k e–2x  4 (2 k e–2x) + 3 (k e–2x)   =   10 e–2x 

or 15 k e–2x   =   10 e–2x 

or k   =   2/3 

Thus y(x)   =   c1 e
x + c2 e

3x + 
2
3   e–2x 
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[Example 4] y'' + y   =   x e2x 

The general solution to the homogeneous equation is  

 yh   =   c1 sin x + c2 cos x 

 

Since the nonhomogeneous term is of the form 

 x e2x 

If we assume the particular solution be 

 yp   =   k x e2x 

we will have 

 k (4e2x +  4 x e2x) + k x e2x   =   x e2x 

or k   =   0 and 5 k   =   1 

which is not possible.  
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 So we try a solution of the form 

 yp   =   e2x (m + n x) 

we will have 

 yp   =   
e2x

  25    ( 5 x  4 )  

Therefore, the general solution of this example is  

y(x)   =   c1 sin x + c2 cos x +  
e2x

  25    ( 5 x  4 )  
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[Example 5]  y'' + 4 y' + 3 y   =   5 sin 2x 

The general solution of the homogeneous equation is 

 yh   =   c1 e–x + c2 e–3x 

If we assume the particular solution be of the form 

 yp   =   k sin 2x 

then yp'   =   2 k cos 2x yp''   =   – 4 k sin 2x 

 4 k sin 2x + 4 (2 k cos 2x) + 3 k sin 2x   =   5 sin 2x 

or  k sin 2x + 8 k cos 2x   =   5 sin 2x 

since the above equation is valid for any values of x, 
we need 

  k   =   5 and         8 k   =   0 

which is not possible.   
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We now assume 

 yp   =   m sin 2x + n cos 2x 

and substitute yp, yp' and yp'' into the nonhomogene-
ous equation, we have 

 m   =   – 
1

  13   and       n   =   – 
8

  13    

Thus y   =   c1 e–x + c2 e–3x  
1

  13    ( sin 2x + 8 cos 2x )  
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[Example 6]  y''  3 y' + 2 y   =   ex sin x 

The general solution to the homogeneous equation is 

 yh   =   c1 ex + c2 e2x 

Since the r(x)   =   ex sin x, we assume the particular 
solution of the form 

 yp   =   m ex sin x + n ex cos x 

Substituting the above equation into the differential 

equation and equating the coefficients of ex sin x and 

ex cos x, we have 

 yp   =   
ex

2  (cos x  sin x)  

and y(x)   =   c1 ex + c2 e2x +  
ex

2  (cos x  sin x)  
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[Example 7] y'' + 2 y' + 5 y   =   16 ex + sin 2x 

The general solution of the homogeneous equation is 

 yh   =   e–x (c1 sin 2x + c2 cos 2x) 

Since the nonhomogeneous term r(x) contains terms of ex 
and sin 2x, we can assume the particular solution of the 
form 

 yp   =   c ex + m sin 2x + n cos 2x 

After substitution the above yp into the nonhomogeneous 
equation, we arrive 

 yp   =   2 ex  
4
17  cos 2x + 

1
17  sin 2x 

Thus  

y(x)   =   e–x (c1 sin 2x + c2 cos 2x) + 2 ex  
4
17  cos 2x + 

1
17  sin 2x 
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[Example 8] y''  3 y' + 2 y   =   ex 

The general solution of the homogeneous equation is 

 yh(x)   =   c1 e
x + c2 e

2x 

 

If we assume the particular solution be of the form 

 yp   =   k ex 

we would have 

 k  3 k + 2k   =   1 

or 0   =   1 

which is not possible (Recall that k ex satisfies the homoge-
neous equation).  We need to try a different form for yp. 
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Assume 

yp   =   k x ex 

 

then yp'   =   k (ex + x ex) yp''   =   k (2 ex + x ex) 

and k (2 ex + x ex)  3 k (ex + x ex) + 2 k x ex   =   ex 

or  k   =   1  or         k   =   –1 

 

Thus, y   =   c1 e
x + c2 e

2x  x ex 
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[Example 9] y ''  2 y' + y   =   ex 

The general solution of the homogeneous equation is  

 yh   =   (c1 + c2 x) ex =   c1 e
x + c2 x ex 

 

If we assume the particular solution of the nonhomogene-
ous equation be 

 yp   =   k ex or       yp   =   k x ex 

we would arrive some conflict equations for k.   

 

If we assume  yp   =   k x2 ex 

then we have k   =   
1
2  

thus y(x)   =   (c1 + c2 x) ex + 
1
2   x2 ex 
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In summary, for a constant coefficient nonhomogeneous linear differen-
tial equation of the form 

 y(n) + a y(n1) + ... + f y' + g y   =   r(x) 

we have the following rules for the method of undetermined coefficients: 

(A) Basic Rule:  If r(x) in the nonhomogeneous differential equation 
is one of the functions in the first column in the following table, 
choose the corresponding function yp in the second column and de-
termine its undetermined coefficients by substituting yp and its 
derivatives into the nonhomogeneous equation. 

(B) Modification Rule:  If any term of the suggested solution yp(x) 
is the solution of the corresponding homogeneous equation, multi-

ply yp by x repeatedly until no term of the product xkyp is a solu-

tion of the homogeneous equation.  Then use the product xkyp to 
solve the nonhomogeneous equation. 

(C) Sum Rule:  If r(x) is sum of functions listed in several lines of the 
first column of the following table, then choose for yp  the sum of 
the functions in the corresponding lines of the second column. 
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Table for Choosing the Particular Solution 

 

 r(x) yp(x)      

 Pn(x) a0 + a1 x + ... + an xn 

 Pn(x) eax (a0 + a1 x + ... + an xn) eax 

 





Pn(x) eax sin bx 

 
+
 

Qn(x) eax cos bx

 and/or 

(a0 + a1 x + ... + an xn) eax sin bx 
 
              +
 

(c0 + c1 x + ... + cn xn) eax cos bx

 and 

where Pn(x) and Qn(x) are polynomials in x of degree n (n  0). 
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[Example 10]  y'' - 4 y'  +  4 y   =   6 x e2x 

[Solution] yh   =   c1 e
2x  +  c2 x e2x 

 yp       first guess:  yp   =   ( a + b x ) e2x No! 

  yp   =   x ( a + b x ) e2x No! 

  yp   =   x2 ( a + b x ) e2x O.K. 

 

[Example 11]  y'' - 2 y' + y   =   ex + x 

[Solution] yh   =   ( c1 + c2 x ) ex 

  Guess of yp: yp   =   a + b x + c ex No! 

  yp   =   a + b x + c x ex No! 

  yp   =   a + b x + c x2 ex O.K. 

 ....    yp   =   2 + x + 
1
 2   x

2 ex 
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[Example 12]  x2 y'' - 5 x y' + 8 y   =   2 lnx,     x  0 

[Solution] Note that the above equation is not of constant coefficient 
type!   

Let z   =   ln x,   or x   =   ez,  then 

 x2 y'' + a x y' + b y   =   0    
d2y

 dz2 
   +  (a - 1) 

dy
 dz    +  by   =   0 

thus,   x2 y'' - 5 x y' + 8 y   =   2 ln x 

  
d2y

 dz2 
   + (a - 1) 

dy
 dz    +  by   =   2z  ∴ 

d2y

 dz2 
   -6 

dy
 dz    +  8y   =   2z 

yh   =   c1 e
4z  +  c2 e

2z    and yp   =   c z + d   =   
1
 4   z + 

3
 16    

 y(z)   =   c1 e
4z  + c2 e

2z  +   
1
 4   z + 

3
 16    

 y(x)   =   c1 x
4 + c2 x

2 + 
1
 4   ln x  + 

3
 16    
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[Exercise 1] (a) x2 y''   4 x y'  + 6 y   =   x2  x 

[Answer] y   =   c1 x
2 + c2 x

3  
x
 2    x2 ln x 

(b) y''  -  y   =   x sin x 

(c) y''  -  y   =   x ex sin x 
(d) y''  +  y   =   - 2 sin x  + 4 x cos x  

(e)  ( D2 + 1 ) ( D - 1 ) y  =  x e2x + cos x 
(f) y'' - 4y' + 4y  =  x e2x, with y(0)   =   y'(0)   =   0 

 

[Exercise 2] Transform the following Euler differential equation 
into a constant coefficient linear differential equation by 
the substitution z = ln(x) and find the particular solu-
tion yp(z) of the transformed equation by the method of 
undetermined coefficients: 

  x2 y'' - x y' - 8 y  =  x4 - 3 ln (x)     ; x    0  
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6.2 Method of Variation of Parameters   

 

In this section, we shall consider a procedure for finding a par-

ticular solution of any nonhomogeneous secondorder linear dif-
ferential equation 

 y'' + p(x) y' + q(x) y   =   r(x) 

where p(x), q(x) and r(x) are continuous on an open interval I.   

 

Assume that the general solution of the corresponding homoge-
neous equation 

 y'' + p(x) y' + q(x) y   =   0 

is given yh   =   c1 y1 + c2 y2 

where, y1 and y2 are linearly independent known functions, c1 and 
c2 are arbitrary constants.   
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Suppose that the particular solution of the nonhomogeneous 
equation is of the form 

 yp   =   u(x) y1(x) + v(x) y2(x) 

This replacement of constants or parameters by variables gives 
the method name "Variation of Parameters".   

Notice that the assumed particular solution py  contains two un-

known functions u and v. The requirement that the particular so-
lution satisfies the non-homogeneous differential equation im-
poses only one condition on u and v.  

It seems plausible we can impose a second arbitrary condition.  
By differentiating yp, we have 

 yp'   =   u' y1 + u y1' + v' y2 + v y2' 

To simplify this expression, it is convenient to set  

 u' y1 + v' y2   =   0 

(Condition 1) 
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This reduces the expression for yp'  to 

 yp'   =   u y1' + v y2' 

Differentiating once again, we have 

 yp''   =   u' y1' + u y1'' + v' y2' + v y2'' 

Putting yp'', yp' and yp into the nonhomogeneous equation 
and collecting terms, we have 

u (y1'' + p y1' + q y1) + v (y2'' + p y2' + q y2) + u' y1' + v' y2'   
=   r 

Since y1 and y2 are the solutions of the homogeneous 
equation, we have 

 u' y1' + v' y2'   =   r 

 (Condition 2) 
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This gives a second equation relating u' and v', and we 
have the simultaneous equations 

 y1 u' + y2 v'   =   0 
 y1' u' + y2' v'   =   r 

which has the solution 

 u'  
2

2

1 2

1 2

0 y

r y

y y

y y




 

 =   – 
y2 r
W   v'   

1

1

1 2

1 2

0y

y r

y y

y y




 

=   
y1 r
W   

where W   =   y1 y2'  y1' y2  0  

is the Wronskian of y1 and y2.  Notice that y1 and y2 are 
linearly independent! 
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After integration, we have 

 u   =   – 




 

 

 
y2 r
W  dx    v   =   





 

 

 
y1 r
W  dx  

Thus, the particular solution yp is 

 yp(x)   =   – y1 




 

 

 
y2 r
W  dx   +  y2 





 

 

 
y1 r
W  dx  
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[Example 1] y''  y   =   e2x 

The general solution to the homogeneous equation is 

 yh   =   c1 e
–x + c2 e

x 

i.e., y1   =   e–x y2   =   ex 

The Wronskian of y1 and y2 is 

 W   =   








e–x ex

e–x ex
  = 2 

thus,  u'   =   – 
y2 r
W    =  

ex e2x

2    = 
 e3x

 2   

 v'   =   
y1 r
W   = 

e–x e2x

2    = 
ex

 2   
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Integrating these functions, we obtain 

 u   =   – 
e3x

6    v   =   
ex

2   

A particular solution is therefore 

 yp   =   u y1 + v y2   
3

6 2

x x
x xe e

e e    =   
e2x

 3   

and the general solution is 

 y(x)   h py y   =   c1 e
–x + c2 e

x + 
e2x

 3   
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[Example 2] y'' + y   =   tan x 

 

The general solution to the homogeneous equation is 

 yh   =   c1 cos x + c2 sin x 

thus, y1   =   cos x y2   =   sin x 

Also W   cos sin

sin cos

x x

x x



 =   1 

so that u'   =   – 
y2 r
W    =  sin x tan x 

 v'   =   
y1 r
W   = cos x tan x   =   sin x 
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Hence 

2 2sin cos 1
cos sec

cos cos

x x
u dx dx xdx xdx

x x


         

Since by looking up table  

 
1 1 sin

sec ln sec tan ln
2 1 sin

x
dx x x

x


  

   

Thus, 

u = sin x  ln| sec x + tan x | 

 v   =   – cos x 

Thus, the particular solution is 

 yp   =   u y1 + v y2   =   – cos x  ln| sec x + tan x | 

and the general solution is 

 y(x)   =   c1 cos x + c2 sin x  cos x  ln| sec x + tan x 
| 
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[Example 3] x2 y'' + 2 x y'  12 y   =   x  

The homogeneous part is a variable-coefficient Euler equation.  The 
general solution is 

 yh   =   c1 x
–4 + c2 x

3 

or y1   =   x–4 y2   =   x3 

and  W   =   






x–4 x3

4x–5 3x2
  = 7 x–2 

or 
1
W   = 

x2

 7   

In order to use the method of variation of parameters, we must 
write the differential equation in the standard form in order to 
obtain the correct r(x), i.e., 

 y'' + 
2

 x   y'  
12

 x2 
   y   =   x–3/2      or r(x)   =   x–3/2 
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Thus, u'   =   – 
y2 r
W    =  x3 x–3/2 

x2

 7    =  
x7/2

 7   

and v'   =   
y1 r
W    = x–4 x–3/2 

x2

 7    = 
x–7/2

 7   

Hence u   =   – 
1
 7  

2
 9   x

9/2 v   =   – 
1
 7  

2
 5   x

–5/2 

so that yp   =   u y1 + v y2    

9/ 2 4 5/ 2 32 2
 

63 35
x x x x     

=   – 
4
45   x1/2 

Thus, the general solution is given by 

 y(x)   =   c1 x
–4 + c2 x

3   
4

 45  x
1/2 

 



2
nd

-Order ODE - 81 

[Example 4] (D2 + 2D + 1) y   =   e-x ln x 

[Solution] y   =   yh + yp 

where  yh  is the solution of (D2 + 2D + 1) y   =   0 

or yh   =   c1 e
-x + c2 x e-x    ∴ y1   =   e-x,   y2   =   x e-x 

 W   =   








e-x xe-x

-e-x -xe-x+e-x
   = e-2x 

 yp(x)   =   – y1 





 

 

 
y2 r
W  dx   +  y2 






 

 

 
y1 r
W  dx  

= - e-x 

 

 
  (x e-x )(e-x ln x )(e2x )dx  +  x e-x 

 

 
  (e-x )(e-x ln x) (e2x )dx 

ln lnx xe x xdx xe xdx      
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From Table: 

2 2

ln ln

ln ln
2 4

xdx x x x

x x
x xdx x

 

 



  

 
 

 
 

2 2

( ) ln ln
2 4

x x

p

x x
y x e x xe x x x  

     
   

= e-x (
x2

 2   ln x - 
3
 4   x

2) 

 y   =   c1 e
-x + c2 x e-x + e-x (

x2

 2   ln x - 
3
 4   x

2) 
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[Exercise 1]  

(a) Solve   x2 y'' - 2 x y' + 2 y   =   x2 + 2 

(b) x2 y'' - x y' - 8 y  =  x4 - 3 ln (x)     ; x    0 

(c) Solve x y'' + y' - 
y
 x    =  x ex 

(d) Solve  y'' - 3y' + 2y  =  cos(e-x) 
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[Exercise 2]2  Consider the thirdorder equation 

 y'''  +  a(x) y''  +  b(x) y'  +  c(x) y   =   f(x)(1) 

Let y1(x), y2(x) and y3(x) be three linearly independent solu-
tions of the associated homogeneous equation.  Assume that 
there is a solution of equation (1) of the form 

 yp(x)   =   u(x) y1(x)  +  v(x) y2(x)  +  w(x) y3(x) 

(a) Following the steps used in deriving the variation of 

parameters procedure for secondorder equations, derive 

a method for solving thirdorder equations. 

1 2 3

1 2 3

1 2 3

0

0

y u y v y w

y u y v y w

y u y v y w f

    

       

       
 

(b) Find a particular solution of the equation 

 y'''  –  2 y'    4 y   =   e–x tan x 
                                                 

2  Grossman, S. I. and Derrick, W. R., Advanced Engineering Mathematics, p. 123, 1988. 
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