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In this paper, a number of modifications are instituted in implementing the quadrature method for
solving chemical engineering problems with semi-infinite domains and/or steep gradients. This
improvement in the curve-fitting ability of differential quadratures is achieved by adopting trial
functions of forms other than the polynomials. Formal criteria are first developed (and proved) for the
selection of proper function forms. If the trial functions are restricted to the products of polynomials
and some auxiliary functions, explicit formulae are derived to facilitate the calculation of the
corresponding modified quadrature coefficients. If, in addition, the grid points are chosen to be the
zeros of an orthogonal polynomial, e.g. Jacobi, Laguerre and Hermite, further simplifications can be
realized to promote the efficiency and accuracy of the computation procedure. The modified
differential quadratures have been applied to various example problems. From the data we have
collected so far, it can be concluded that the proposed approach yields more accurate results in
regions whcre most of the variations in the dependent variables occur and tends to lose its edge at
locations where negligible changes can be detected in the numerical solutions.
KEYWORDS Differential quadrature Orthogonal collocation Semi-infinite domain Steep
gradient.

INTRODUCTION

Nonlinear ordinary and partial differential equations are the most commonly used
formulations in chemical engineering models. The quadrature method (Bellman et
al., 1972), or, equivalently, the method of collocation (Finlayson and Scriven,
1966) is one of the most popular numerical methods for solving these problems.
In earlier papers, some new insights concerning the characteristics of differential
quadratures and the corresponding modifications of their implementation proce
dure have been presented (Ouan and Chang, 1989i;1989ii). Although it has been
shown that the proposed techniques are extremely accurate and efficient
(Chang, 1992), there are still several interesting problems which require further
attention.

The most celebrated drawback of the present approach, which includes both
the method of differential quadrature and the method of orthogonal collocation,

t Author to whom all correspondence is to be addressed.
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136 C.-T. CHANG, c.s. TSAI AND T.-T. LIN

is probably its inability to produce accurate solutions when applied to problems
with steep gradients and/or semi-infinite domains, e.g. see Finlayson (1980) and
Bellman and Adomian (1985). Although modifications of the collocation method
has been proposed in a number of studies to handle certain special chemical
engineering models of this type, e.g, Birnbaum and Lapidus (1978) and Caban
and Chapman (1981), it is still necessary to develop reliable and efficient
numerical techniques for solving the above problems in general.

This paper addresses this need for additional improvements of the quadrature
method. In our study, the trial functions used in determining the quadrature
coefficients were no longer restricted to polynomials. Formal constraints were
developed to identify proper trial funtions, i.e. they belong to afamity and, also, a
complete set. More specifically, trial functions formed by the products of
polynomials and various auxiliary functions were adopted to enhance the
performance of differential quadratures. Further, based on a strategy of placing
the grid points on the zeros of an orthogonal polynomial, e.g. the Jacobi,
Laguerre and Hermite polynomials, simplified formulae were derived to expedi
ate the calculation of the modified quadrature coefficients. Finally, the concept of
boundary layer was introduced to facilitate the implementation of differential
quadratures. For comparison purpose, four different schemes, including that of
the orthogonal collocation method, were used to map the zeros of the orthogonal
polynomials into the computation fields for solving example problems. A number
of typical cases, i.e. steady-state and transient problems with steep gradients
and/or semi-infinite domains, were studied using the techniques developed in this
work. It can be observed that, on the average, the proposed approach yields
better results and, in particular, more accurate solutions can be obtained in the
region where most of the variation in the dependent variable takes place.

CHOICE OF TRIAL FUNCTIONS

Generally speaking, the independent variables in a chemical engineering model
are spatial distances (y) and/or time (t). The spatial derivatives in the governing
partial differential equations can usually be approximated by the differential
quadratures, i.e. linear combinations of the values of the dependent variable at all
grid points. More specifically,

a"u(t, yJ
ay"

i = 1, 2, ... , N

N

L y~r)u(t, yj)
j=1

n = 1, 2, 3, ...

(1)

where u represents the dependent variable, y,'s represent the locations of the grid
points, N is the number of grid points and the constants y~r)'s will be referred to
as the nth-order differential-quadrature coefficients. The values of these
coefficients can be determined by assuming that, at a given value of t and over an
interval in y,.a set of trial functions,{;(y) and i = 1, 2, ... , N, can be chosen such
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MODIFIED DIFFERENTIAL QUADRATURES 137

N

u(t, y) 2= L -lJj(t)fi(y)

i = 1, 2, ... , N (2)

where -lJj, i =1, 2, ... ,N, are constants to be determined and a1 and a2 are the
lower and upper bounds of the interval in which the model is defined. From Eqs.
(1) and (2), it was shown (Finlayson, 1980; Bellman and Adomian, 1985) that

(3)
where,

c, = (yhn»NxNFo= (f(Yj»NxNFn = (ddnnf(Yj»)
Y NxN

From Eq. (3), it is clear that inversion of the matrix Fo is needed to determine
the quadrature coefficients yIP). Bellman and Adomian (1985) pointed out that
the following equation can be used to determine the higher-order coefficients
from the first-order coefficients without matrix inversion:

(4)

Although Eq, (4) is intuitively correct and, in fact, valid in a large number of
situations, it does not hold for all types of functions. The following counter
example delineates the need for further clarification.

Example 1 Using two arbitrarily chosen grid points, one can verify that
coefficients obtained from the set of trial functions (e", ye") satisfy Eq. (4). On the
other hand, Eq. (4) is not valid based on the set of trial functions (e", ye", y) with
three grid points. Finally, the relation in Eq. (4) is satisfied if one more trial
function, [.(y) = 1, is added to the set (e", yeY , y).

Since none of the published studies offer specific explanations, we have thus
developed in this work a sufficient condition of Eq. (4), i.e. the trial functions
used in differential quadratures have to form a family. A proof of this statement is
provided in Appendix A. Also, in a previous study (Quan and Chang, 1989i), we
have shown that the quadrature method is actually equivalent to the general
collocation method, which is a special case of the method of weighted residual
(MWR). Therefore, the basic requirement of the trial functions used in MWR,
i.e. they are the leading members of a complete set of functions (Finlayson, 1972),
should also be imposed to ensure the approximation in Eq. (2) converges as
N --> co.

Notice that the trial functions used in most of the previous studies, e.g. Quan
and Chang (1989i; 1989ii), are restricted to polynomials that satisfy the above
conditions. Although well-behaved problems can be solved satisfactorily by this
approach, the use of such functions fails to mimic the system behaviors governed
by more difficult models over the entire problem domains, e.g. those defined in
semi-infinite intervals and/or those with steep gradients on their solution surfaces.
In this work, an auxiliary function r(y) is introduced to enhance the performance
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138 C.-T. CHANG, C.-S. TSA1 AND T.-T. LIN

of the quadrature method. A different type of trial functions are created by
multiplying the polynomials by this auxiliary function, i.e.

Let

N

/;(Y) = r(Y)L Cijyi-I
j=l

i = 1, 2, ... , N (5)

Notice that

where,

(6)

and the entries, Vp,ij' of the matrix Vp can be determined by

{
o if P >i-1

- ;-p-I

Vp,ij - ~ IT (i - m) otherwise
l m""O

From Eq. (3), one can obtain an equation for calculating the quadrature
coefficients based on the trial functions defined in Eq. (5):

(7)

(8)

where,
GT = ('Y(P»T = V-IV

P 'I NxN 0 P

It can be shown that, if only polynomials are used as trial functions, the pth-order
(p ~ 1) quadrature coefficients are exactly the same as the entries in the matrix
Gp (Quan and Chang, 1989i). Thus, in order to calculate the coefficients .:y~n),s,

one can make use of the following simple equation:

i n () d
n

-
p

-(n) '" n (p) __ ( )
'Yij - ( ) L" 'Yij d n_pr v.

r Yj p=O P Y

where, the zeroth-order coefficients 'Y~?)'s are the entries of an identity matrix and
the higher-order coefficients 'Yi/)'s (p ~ 1) can be determined by the explicit
formulae proposed by Quan and Chang (1989i) or the recursive algorithm
developed by Villadsen and Michelsen (1978).

From Eq. (2) and (5), it is quite obvious that the value of the auxiliary function
r(y) at any point in the problem domain must be finite and non-zero. Notice that
the trial functions /;(y)'s may fail to satisfy the two conditions mentioned before,
i.e. they form a family and belong to a complete set. However, if one considers
v(y) = lI(y)/r(y) as a new dependent variable, the trial functions of the
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MODIFIED DIFFERENTIAL QUADRATURES 139

(9a)

(9b)

v(1) = e-~(YI-Yj)[- t:l) ..+ ",(I)]
II) ~ I) II)

v(2) = e-~(y,-Yj)[t:2l) ..- 2t:"P) + ",(2)]
/IJ ~ IJ ~/I} II}

transformed problem are still polynomials. Thus, introducing an auxiliary function
simply modifies the behavior of the dependent variable in the problem domain.
This function has to be chosen in such a way that v(y) becomes significantly more
suitable for approximation by polynomials. The following are some of the
potential auxiliary functions and the corresponding formulae of the first- and
second-order quadrature coefficients:

1. r(y)=e-~Y

2. r(y) = 1/(1 + M
(lOa)

(lOb)

_(])_l+ gyj ( __g_l) + (I»)
Yij -1 + gYi 1 + gYi ij Yij

- (2) _ 1 + gYj( 2e 8 _ --.3:L (I) + (2»)
Yij -1 + gYi (1 + gYi)2 ij 1 + gYiYij Yij

3. r(y) = e-~Y'

:yl/) = e-~(Yh'P(-un:' 8ij + y~/» (Lla)

:yIT = e-~(yf-Yf)( -ayf-2[l" -1 - gl"yf]8ij - 2ayf- 1yl] )+ ylj» (Llb)

From a practical view point, the function form should be simple enough so that
the increase in computational effort is acceptable. Since differentiation of the
exponential functions does not create extra terms, a general formula of the
nth-order coefficients can be derived from Eq. (8). Thus, the coefficients
corresponding to the function e-~Y are the most convenient ones for
implementation.

Notice also that solving problems with the new set of quadrature coefficients
:yIP) is actually equivalent to transforming the original models into differential
equations with v(y) as the dependent variable and solving them with the original
coefficients y~n). However, the process of deriving these equations is often tedious
and prone to error. Further, after replacing the derivatives by the differential
quadratures, the resulting algebraic equations tend to be very complex and
nonlinear and, thus, the corresponding iteration computation is more difficult to
converge.

Finally, it should be pointed out that the concept of an auxiliary function is not
new. Birnbaum and Lapidus (1978) used the function e-t to enhance the
performance of a double orthogonal collocation technique for solving a PDE with
time as one of the independent variables. Caban and Chapman (1981) adopted
the weight function e-~Y' to improve the performance of orthogonal collocation
method in solving problems concerning mass transfer with reaction in a boundary
layer. The specific values of parameters, g and l", can be extracted from the
analytical solution of a limiting case of the mass transfer model. Our study
generalized these ideas in the context of the quadrature method, and improved
computational techniques have been developed for a wide variety of problems,
i.e. steady-state and transient problems with semi-infinite domains and/or steep
gradients.
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140 C.-T. CHANG, C.-S. TSAI AND T.-T. LIN

SIMPLIFIED FORMULAE FOR QUADRATURE COEFFICIENTS

Although both the explicit formulae and the recursive algorithm mentioned in the
previous section can be utilized to calculate the quadrature coefficients, yip>, with
equal accuracy and efficiency, it has been established that simpler formulae can be
derived if all the grid points are located at the zeros of a Jacobi polynomial (Quan
and Chang, 1989i). In addition to the fact that the accuracy of the numerical
solutions is near "optimal," the principal incentive for using this approach is due
to the simplicity of these formulae. The computation effort of determining the
coefficients can be reduced to a minimum of 1/6 of that of the previous
procedures (Chang, 1992). Since the magnitude of error in applying the quadra
ture method is difficult to estimate, a common practice to ensure the accuracy of
the solutions is to gradually increase the number of grid points until the numerical
answers do not change appreciably. In such cases, the use of the simplified
formulae is especially convenient and time-saving.

It has been shown (e.g. Villadsen and Michelsen, 1978) that

where,

Y(" )= !!::"'f,-.(y.)
'J dy" J '

- <l>N(Y)
hey) = (y - Yj)[d<l>N(Yj)/dy]

N

<l>N(Y) = 11 (Y-Ym)
m=l

(12)

and y;'s are the locations of the grid points. Notice that this equation is valid as
long as linearly independent polynomials are used as the trial functions and, thus,
the values of the coefficients are affected only by the distribution of the grid
points. If the zeros of a Jacobi polynomial, Pj:,f3l(y), are chosen as the grid point
locations, then the function <l>N(Y) in Eq. (12) should be replaced by it and the
simplified formulae can then be derived accordingly. These formulae have already
been published in an earlier paper (Quan and Chang, 1989i). In this work, the
same derivation has been extended to the other two families of classical
orthogonal polynomials, i.e. the Laguerre and Hermite polynomials. A summary
of these newly-developed simplified formulae are presented in Appendix B of this
paper.

COMPUTATIONAL FIELD

Notice that the simplified formulae presented Appendix B are based on the zeros
of orthogonal polynomials defined in their respective standard intervals. The
positions of these zeros x;'s need to be mapped onto the desired locations where
the corresponding values of the dependent variabJe(s) can be computed. Since the
solution approach of differential quadrature method can be viewed as a form of
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MODIFIED DIFFERENTIAL QUADRATURES 141

Lagrange interpolation for approximating the dependent variable, reliable nume
rical answers should lie only within the interval between the first and the last grid
points. In this study, this interval is called the computational field of the problem.

Let x/s (i = 1, 2, ... , N) be the zeros of an orthogonal polynomial defined in a
standard interval with lower bound 51 and upper bound 5z. Thus,

Let y/s (i = 1, 2, ... ,N) be the projected locations of the zeros Xi'S in a
computational field with lower bound b, and upper bound bz. Notice that, in
solving boundary-value problems, it is important to include the end points of the
problem domain as grid points so that boundary conditions can be accurately
imposed. Depending on which two points (say c, and cz) in the standard interval
are mapped onto b. and bz, different grid point placement schemes can be
devised, i.e, (I) CI =XI and Cz =XN, (II) CI = 51 and Cz = 5z, (III) c. = 51 and
Cz = XN and (IV) c. = XI and Cz = 5z (see Figure 1).

'IZ1 '" Zn-) "08.
• • • •

1 1
I I

bl =II. II. IIn-l b. =lin

(a)

'1 "I '" 2:n - l "n "I I

1 1• I

bl III II' lIn-l lin b.

(b)

'. z. '" Zn-l 2:n "2
I I I I

1 1
I I I

bl III II. IIn-l b. =lin

(c)

'1 2:, '" 2:n - l :En .82
I • I I

1 1
I I

bl =III II. lIn-l lin b.

(d)
FIGURE I Grid Placement Schemes: (a) Scheme I, (b) Scheme(II), (c) Scheme(III), (d)
Scheme(IV).
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142 C.-T. CHANG, c.s. TSAI AND T.-T. LIN

(13)

Notice that, in general, the intervals (CI> cz) and (bl> bz) are not equal. But
identical intervals and grid point distributions are shown in Figure 1 just for the
convenience of illustration. The simplified formulae presented in Appendix Bare
applicable only with Scheme 1. Thus, the corresponding solution procedure is by
far the easiest and most convenient to implement. In the cases of Scheme II, III
or IV, one or both of the bounds of the standard interval, s, and/or sz, are
mapped onto b, and/or bz. Since both end points of the computational field must
be included, extra grid point(s) should be placed at the corresponding boundary
location(s). Thus, if grid points are placed according to any of these three
schemes, the quadrature coefficients should be computed by the general formulae
(Ouan and Chang, 1989i) or the recursive algorithm (Villadsen and Michelsen,
1978). Actually, Scheme II is the same as that used in a traditional orthogonal
collocation method, and Scheme III and Scheme IV are hybrids of the first two.
In certain cases, there may be incentive for using grid point placement strategies
other than Scheme I due to the fact that slightly more accurate results can be
obtained (e.g. Michelsen and Villadsen, 1991).

Although there are various approaches that can be used to define the mapping
relation between (CI' cz) and (b" bz), the simplest linear transformation is
adopted here. Thus, the projected locations of the zeros can be determined by

bz -b l
Yi =---(Xi -CI) +b l

Cz - C,

The corresponding nth-order quadrature coefficients based on grid points in the
computational field can be calculated by multiplying the standard coefficients by a
factor [(cz - cI)/(bz- biW. This fact is particularly useful when the bounds of the
computation field, b, and/or bz, themselves are variables to be determined.

APPLICATIONS OF THE GENERALIZED DIFFERENTIAL
QUADRATURES

The method of differential quadrature has been applied to a wide range of
problems with good results, e.g. Quan and Chang (1989ii). However, it has also
been recognized that difficulties may arise when most of the variation in the
dependent variable occurs in a small portion of the problem domain. This
particular characteristic appears in boundary-value problems defined in semi
infinite intervals and in problems with steep gradients on the solution surfaces. In
almost all of the previous studies, polynomials were adopted as the trial functions,
and zeros of the Jacobi polynomials were mapped onto the grid points in the
computational field. It is not surprising that inaccurate answers were obtained
using this approach, since a large number of grid points were not placed in the
region where significant change in the dependent variable takes place. In this
work, tools such as auxiliary functions and various grid point placement schemes
have been utilized to develop improved solution techniques for the problems
mentioned above.
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MODIFIED DIFFERENTIAL QUADRATURES 143

BVPs with Semi-Infinite Domains

A large number of chemical engineering models can be written in this form. For
example, using similarity transformation, steady-state models of laminar flow in
the boundary layer along a flat plate or wedge and dynamic models of heat
conduction or mass diffusion in semi-infinite medium can usually be formulated as
BVPs with semi-infinite domains. There are several alternatives to solve these
problems (Finlayson, 1980), e.g.

1. Transforming the BVP into an integral equation, the approximate solution
can be obtained by initially assuming an arbitrary function as the candidate
and then substituting it back into the equation. The process is carried out
iteratively until termination criteria are satisfied.

2. Recognizing the fact that solution approaches an asymptote as the indepen
dent variable approaches infinity, a shooting method can be started at the
left end of the domain. Using an implicit method with adjustable step size,
one can integrate the equation until the solution does not change sig
nificantly. The boundary conditions at the right end can be fitted by varying
the conditions at the left end.

3. Approximating the derivatives by linear combinations of the values of
dependent variable at grid points, one can transform the BVP into a set of
algebraic equations. These equations can then be solved by standard
techniques such as the Newton-Raphson method. Notice that various
approaches are available for the approximation of derivatives, e.g. the
differential quadrature, the orthogonal collocation and the finite difference,
etc ..

In general, the accuracy of the integral method is unknown and dependent
upon the postulated function, and the computational effort involved in im
plementing the shooting method may be overwhelming if the corresponding
ODEs are stiff and it takes a long distance for some of the dependent variables to
stabilize. In the present study, the third alternative is adopted using differential
quadratures. There is, however, one problem in carrying out this approach, i.e.
the upper bound of the problem domain, upon which a boundary condition is
imposed, approaches infinity. Since most of the previous developments are
concerned with finite computational fields, additional adjustments are needed to
overcome this difficulty.

One possible method is to transform the domain, 0::; y < 00, into finite
intervals, e.g. let

As a result, the new independent variable T/ varies between 0 and 1. The
disadvantage of this technique is that too many of the grid points may be placed
outside the region of interest. This is due to the facts that the zeros of an
orthogonal polynomial are usually densely populated near T/ = 0 and the variation
of dependent variable is insignificant when y~ 00.

Another approach is to identify appropriate parameters in the auxiliary
function e-tY' by reference to the limiting case of the particular system model for
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144 C.-T. CHANG, C.-S. TSAI AND T.-T. LIN

which an analytic solution is available (Caban and Chapman, 1981). This
technique has been proven useful in solving problems concerning mass transfer
with reaction in a boundary layer. However, the success in deriving an
appropriate asymptotic model is not guaranteed for other types of BVPs defined
in semi-infinite domains, e.g. those describing the phenomena of laminar flow in
thin boundary layers with the stream function as the dependent variable. Even if
the parameters in the function e-€Y{ can be identified, one may still face the
laborious tasks of generating the corresponding orthogonal polynomials and
locating their zeros. Further, since infinity is considered as the location of the last
grid point in this approach (Caban and Chapman, 1981), Eqs, (11) cannot be used
and, thus, matrix inversion is unavoidable in determining the quadrature
coefficients. As a result, the numerical solutions become unreliable as the
dimension of the matrix increases.

Although the use of other auxiliary functions is also feasible, the form e-€Y is
selected to solve BVPs with semi-infinite domains in general. This is due to the
fact that the corresponding formulae, Eqs. (9), are the simplest ones among all
possible candidates and, thus, accurate values of the modified quadrature
coefficients can be determined most efficiently. Further, the parameter ~ in this
function can be adjusted in a systematic fashion according to the solution profile
of each individual problem. Also, the concept of boundary layer has been adopted
for the purpose of defining a finite interval [0, <5] in the semi-infinite domain and
using it as the computational field of the problem. The basic idea here is the same
as the phenomenological distance <5 assumed in the integral method for the
approximate analysis of momentum, heat and mass transfer in fluids near solid
boundaries. The boundary layer is regarded as the region next to the fluid- solid
interface, and no transport via the mechanism of molecular diffusion take place
beyond the boundary of this region. In other words, the gradients in velocity,
temperature or concentration can be assumed to be negligible outside the
boundary layer. Similarly, for BVPs with semi-infinite domains in general, one
can postulate such a distance <5 from the left end of the interval exists and the
boundary conditions originally imposed as y ..... 00, i.e.

(14)k =0,1, ...dkUI = c
dy" Y-~

can be assumed to be approximately correct at y = <5. Here, C represents an
arbitrary constant. Further, additional conditions can be introduced in a way
similar to that of the Pohlausen method (Churchill, 1988) in integral analysis, i.e.

(15)k =0, 1, ...
dk+IUI
dyk+1 y=8 =°

These extra constraints are necessary for determining the value of <5 in
implementing the quadrature method. Notice that the computational field [0, <5] is
now finite and, thus, Eqs, (9) and the formulae presented in Appendix B can be
used to compute iiip)'s accurately and efficiently even with a large number of grid
points. Notice that the accuracy in the numerical solutions may tend to
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MODIFIED DIFFERENTIAL QUADRATURES 145

deteriorate near y = 5 due to the approximations made in Eqs, (14) and (15).
However, this drawback is outweighed by the improvements in the overall
performance. The implementation procedure of the proposed techniques is
illustrated in the following example:

Example 2 Consider the problem involving the mass transfer from a rotating
disk with bimolecular, irreversible chemical reaction, where a species R diffusing
from the surface of the disk reacts with a species S present in the solution
according to

R + vS!4P

where v is a stoichiometric coefficient and k is a rate constant. By assuming that
the diffusivities of Rand S are equal, one can formulate the governing equations
of the system (Caban and Chapman, 1981):

subject to

fF, + 3x2f'" - 'Pf~f~ = 0

IS + 3X2f~ - v'Pf~f~ =0

f~=O x=O

fs=1 x-'>oo

(16a)

(16b)

(16c)

(16d)

where fR and fs denote the dimensionless concentration of species Rand S
respectively, 'P is the dimensionless rate constant, rand s are the orders of
irreversible homogeneous reactions of species Rand S, and x represents the
radial distance from the surface of the rotating disk. The values of the parameters
in this model are:

r = 1 s=1 v=1 'P = 5

Conceptually, the concentrations of the two species Rand S may approach the
free stream values (i.e. fR = 0 and Is = 1) at different speeds. Thus, two boundary
layers of different thicknesses should be assumed for fR and fs respectively. This is
not feasible, since two sets of grid points will be generated accordingly. In this
example, the same boundary layer is adopted for both variables, and their
variations outside are assumed to be negligible. Based on Eq. (14) and Eq. (15),
the following conditions can be imposed on the edge of the layer:

fR(5) = 0 fs(5) = 1

f"'(5) = f~(5) = 0

(17a)

(17b)

Note that the two conditions given in Eq. (17b) are extra constraints not included
in the original model. Incorporation of one or both of these conditions into the
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146 C.-T. CHANG, c-s. TSAI AND T.-T. LIN

problem formulation facilitates the estimation of 8 and, also, may enhance the
accuracy of the numerical solution near the edge of the boundary layer.

Let us next introduce the following transformations:

x
y=

8
fr=l-fs (18)

Thus, the governing equations, Eq. (16), can be approximated by

d 21' .u.
d;: + 3y283

;; - q;82f~(1 - fT)' = 0

d
2f;

+ 3y 283 dfT+ vq;82f';,(1 - fT)' = 0
dy dy

fR(0) = 1 f;.(O) = 0

fR(1) = 0 fr(l) = 0 f~(I) = 0

(19a)

(19b)

(19c)

(19d)

The purpose of introducing the new dependent variable fr is to convert the
corresponding solution profile into a shape that matches the general trend of the
auxiliary function e-(v for this example.

The method of differential quadrature can then be applied to Eq. (19), i.e.

N N

"y(2)1' + 3y 203'' y\.'lf . _ mo 2f ' .(1 - I' .)$ = 0LJ 1/ JRj ,LJ I) IRJ T' R, JT,
i- 1 j= I

N N

"y(2l'f + 3y 283
" y(ll,! + vm82f' (1-[ )$ = 0L.J IJ T; I LJ 'I 7j -r s, r,

j-l i-I

i = 2, 3, ... , N - 1

fR, = 1
N

L Y\?fTj =0
1'=1

N

L y~/fRj = 0
1'=1

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

There are 2N + 1 equations and 2N + I unknowns (i.e. 8, fR
i
, hand

i =I, 2, ... ,N) in the above formulation and, thus, Eq. (20) can be solved
simultaneously by a standard technique such as the Newton-Raphson method.

In order to assess the performance of various approaches in applying the
quadrature method, the exact solution of the governing equations needs to be
used as the basis for comparison. Since the given problem is nonlinear, only
numerical answers can be obtained. As a result, one must first produce numerical
solutions with extremely high accuracy to be used as substitutes. These solutions
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MODIFIED DIFFERENTIAL QUADRATURES 147

were generated by implementing the conventional differential quadratures with a
large number of grid points. In this example, zeros of the Legendre polynomials
were projected to the interval [0, 1] according to Scheme I.

As mentioned before, the number of grid points N necessary to guarantee a
good numerical solution is not known. Thus, the near exact solution was obtained
by gradually increasing the grids points until the difference between the solutions
corresponding to two successive values of N is insignificant. Since the value of (j

and the locations of zeros vary as N increases, one faces the problem of
comparing numerical solutions at different sets of grid points. In this example, the
relative deviations of the interpolated values of two set of numerical solutions
were computed and compared at equal intervals. This approach is theoretically
sound, since it has been established that the quadrature method can be viewed as
the approximation of the dependent variable(s) by Lagrange interpolation (Quan
and Chang, 1989i).

For the present problem, it was found that the solutions corresponding to 26
grid points can be used as the basis for comparison (see Figure 2 and Table I).
From Table I, it can be observed that the magnitude of deviation in JR' /),.R, starts
to increase as x goes beyond 1.2 and finally reaches a level of 2.7%. Thus,
solutions outside the interval O:s x :s 1.2 may be unreliable. On the other hand,
deviations /),.R and /),.S at locations inside this region are all very small. Notice also
that most of the variations in the dependent variables occur before x = 1.2, i.e.

00000 f
R

ceoDO fs

1.0

0.8

0.8

~

o
0.4

.s

0.2

0.0

0.0 0.4

,,,,,,,,
I , I I_______ ~ ~ ~ l.

I I I t
I I r I
I I I I
I I , I
r I , I
I I , I
I , I I
, I 1 I
I , I I_____ ~ L ~ ~ J.

I 1 • I I
I 1 I I I
I I I I I
I I I I I
I r I , r
, I I , I
, I I I ,
I , I I I
I I I I I______ ~ L ~ ~ •.

I , 1 I I
I 1 I t I
I 1 I I I
I I I I I
I I I I I
I I t I ,
I I I , ,
, I , • ,

I , I I I__ ~ L ~ ~ I.

It' I 1
I I , I I
t I I I I

I I I I
I I , I
I I I I
I I I ,
, I I ,, , ,= .......-..--e--................-,.

1.2

X

FIGURE 2 Near Exact Solution.
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148 C.-T. CHANG, c.s. TSAI AND T.-T. LIN

TABLE 1

Near exact solution

x IR Is d R ds

0.OOOOOOOO 1.OOOOOOOO 0.40302187 O.OOOOOOE-oo 2.064404E-07
0.100000oo 0.83073248 0.41254670 6.379912E-09 1.662842E-07
0.200000oo 0.67920932 0.43919156 1.074779E-08 1.268239E-07
0.30000000 0.54438808 0.48032739 1,432801 E-08 9,410248E-OB
0,400000oo 0,42608216 0.53321283 1.642876E-08 6.695363E-OB
0.500000oo 0.32440398 0.59463732 1.849546E-08 4.641485E-OB
0.600000OO 0.23933419 0.66083804 1.838434E-08 3.011328E-OB
0.700000oo 0.17042464 0.72768950 1.877663E-08 1.855187E-08
0.800000oo 0.11665160 0.79112011 1.714507E-08 9.733035E-09
0.900000OO 0.07642054 0.84764414 1.439404E-08 3.303273E-09
1.OOOOOOOO 0.04769825 0.89484923 8.386052E-09 7.822546E·1O
1.100000oo 0.02822550 0.93168108 .O.00000o E-oo 3.756650E-09
1.200000oo 0.01575272 0.95843151 3.174055E-08 5.842880E-09
1.300000oo 0.00824579 0.97644173 7.276439E-08 6.759236E-09
1.40000000 0.00402474 0.98763239 1.987706E-07 7.593919E-09
1.500000oo 0.00182071 0.99491933 5,492369E-07 8.048133E-09
1.600000OO 0.000075864 0.99735121 1.449955E-06 8.021247E-09
1.700000oo 0.00028932 0.99893179 3.801974E-06 7.908448E-09
1.800000OO 0.00010035 0.99961005 1.295511 E-05 8.203199E-09
1.900000OO 0.00003145 0.99987191 4,451694E-05 7.901012E-09
2.OOOOOOOO 0.00000885 0.99996237 1.808237E-04 7.500282E-09
2.100000oo 0.00000222 0.99999018 4.953393E-04 6.400063E-09
2.200000oo 0.00000049 0.99999774 3.035208E-03 4.200009E-09
2.300000oo 0.00000010 0.99999956 2.683179E-02 8.000004E-1O

99% for fR and 93% for fs. Thus, if one is mainly interested in the general system
behavior adjacent to the surface of disk, then the near exact solutions of fR and Is
in [0; 1.2] should be considered adequate for use as the basis to compare the
performances of various different approaches.

In addition, the correctness of the data presented in Table I was also confirmed
independently by using the multiple shooting methods implemented in the IMSL
subroutines. With a tolerance of 10-8

, almost identical solutions wer obtained.
When comparing the numerical values of fR and Is with those presented in Table
I, it can be observed that they differ only by the 8th digit below the decimal point.

After establishing the reference values of fR and fs, they were then compared
with those obtained by implementing the conventional differential quadratures
with 9 grid points. Zeros of four different orthogonal polynomials were projected
into the interval 0 < y < 1 according to the four different grid point placement
schemes described in the previous section. Three of them are special cases of the
Jacobi polynomials, i.e. Pj,J·I)(x), PjS,O)(x) (the Legendre polynomial) and
p~-(II2).-(1/2»(X) (the Chebyshev polynomial of the first kind). The last one is the
Laguerre polynomial LjS)(x). Corresponding to each case, the interpolated values
of the dependent variables at equal intervals were again determined by Lagrange
interpolation, and the arithmetic average of the absolute values of "errors" was
computed as a measure of the overall accuracy. These results are summarized in
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MODIFIED DIFFERENTIAL QUADRATURES

TABLE IIa

149

Average absolute errors in solutions obtained by using the conventional differential Quadratures, UR)'

Scheme(l) Scheme(I1) Scheme(IlI) Scheme(IV)

p~I.I)(X) 0.000349 0.000096 0.001822 0.000282
Pn(x) 0.000230 0.000120 0.001557 0.000716
Tn(X) 0.000165 0.000180 0.001218 0.004473
Ln(x) 0.010367 • 0.014518 •

Table IIa and Table IIb. Notice that the upper bound 52 of the domain of the
Laguerre polynomials approaches infinity and, according to Eq. (13), all the grid
points in the computational field are required to be placed upon the origin if
Scheme II or IV is implemented. Therefore, numerical solutions corresponding to
these two cases are not reported. From Table IIa and IIb, it can be observed that
Scheme II is by far the best grid point placement strategy. If one is concerned
with the accuracy in fR, then zeros of the Jacobi polynomial p~I·I)(X) are probably
the most suitable choice. If zeros of a Legendre polynomials are selected,
implementation of the conventional differential quadrature using Scheme II yields
the most accurate fs. Also, notice that the worst results among all the cases
considered here are those obtained by adopting the zeros of Laguerre polyno
mials as the grid points.

In this example, two auxiliary functions of the form e-~Y were introduced
simultaneously to enhance the curve-fitting ability of the quadrature method. Two
individual parameters, i.e, gR for fR and gr for fr, were assigned to these two
functions respectively. Thus, two sets of modified quadrature coefficients, (-ji~?»R

for d"fR/dy" and ('ji~?»r for d"fr/dy", should be adopted to replace the original
ffi . (I) d (2) • E (20)coe cients, Yij an Yij, to q. .

Naturally, the appropriate values of gR and gr are unknown to us before the
start of the solution process. In this study, these parameters were set to zero as
the initial guess and, thus, the first pass of calculations are the same as those
performed in the conventional quadrature method. Next, the parameters, gR and
gr, need to be estimated in such a way that the general trends of the two auxiliary
functions follow those of fR and fr. Since these functions are only required to

TABLE lIb

Average absolute errors in solutions obtained by using the conventional differential Quadratures, (Is).

Scheme (I) Scheme (II) Scheme (III) Scheme (IV)

p~I,I)(X) 0.004530 0.000689 0.020039 0.000428
p"(x) 0.002632 0.000340 0.017436 0.004315
T,,(x) 0.001641 0.000417 0.013518 0.036883
Ln(x) 0.025041 • 0.031977 •

• not applicable
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150 C.-T. CHANG, C.-S. TSAI AND T.-T. LIN

mimic the approximate behaviors of the dependent variables, a simple procedure
for determining gR and gT has been developed by assuming that

f(y) - f(oo)

f(O) - f(oo)
(21)

where, f represents the dependent variable, fR or fn and g is the corresponding
parameter to be estimated. Thus, as long as the values of the dependent
variable(s) are available, the following equation can be used for our purpose:

(22)

Notice that, since the solutions near the right end of the computational field are
sometimes unreliable, grid points outside the domain of interest (i.e. y/j > 1.2 and
i =N -[ + 1, N -[ + 2, ... , N) are not included in Eq. (22). Usually, if appropri
ate combination of grid point placement scheme and the corresponding auxiliary
function is selected, the accuracy of the results obtained by using the first
estimates of the parameters can be increased significantly. Equation (22) can also
be applied repeatedly to improve the estimation until a predetermined limit is
reached. However, since this improvement is often marginal, the convergence
criterion need not be very strict, say

<:(k+l)_ dk)

"-~---;-;"....:~'---"" 10-2
- g(k) ~

where, g(k) represents the kth estimates of f In most cases, three to four
iterations are more than enough.

Average absolute errors in the numerical solutions obtained by various
approaches are again computed and presented in Table IlIa and Table IlIb.
Several interesting phenomena can be observed. First, the introduction of
auxiliary functions of the form e -fy is not helpful in enhancing the performance of
the quadrature method if the zeros of a Jacobi polynomial are used as the grid
points. Results corresponding to the three special cases of the Jacobi polynomials,
i.e. PjJ·I)(X), the Legendre polynomials and the Chebyshev polynomials of the
first kind, are less accurate than those obtained without auxiliary functions.

On the other hand, the accuracy in the solutions corresponding to the Laguerre
polynomials is dramatically increased. This improvement is also demonstrated in

TABLE lIla

Average absolute errors in solutions obtained by using the modified differential quadratures, (fR)'

Scheme (I) Scheme (II) Scheme (II I) Scheme (IV)

p~l.I)(x) 0.013466 0.005705 0.001476 t
p.(x) 0.011115 0.009673 0.000309 0.039777
T.(x) 0.009093 0.008077 0.000446 0.029618
L.(x) 0.000079 • 0.000231 •
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MODIFIED DIFFERENTIAL QUADRATURES

TABLE I1Ib

151

Average absolute errors in solutions obtained by using the modified differential quadratures, (f,).

Scheme (I) Scheme (II) Scheme (III) Scheme (IV)

P~I.I)(X)

Pn(x)
T,,(x)
Ln(x)

• not applicable
t fails to converge

0.055354
0.51359

0.047276
0.000317

0.039424
0.004137
0.024881

0.011088
0.000450
0.001640
0.000991

t
0.107576
0.089990
•

(23a)

Figure 3a and Figure 3b. If compared with those presented in Table lIa and Table
lIb, the present results are better than all the solutions without the aid of
auxiliary functions. To get a deeper insight, two sets of data are plotted in Figure
4a and Figure 4b. They are the local errors of the best numerical solutions in
Tables 1II, i.e. those corresponding to the Laguerre polynomials using Scheme I
with auxiliary functions, and the optimal solutions in Tables II, i.e. those obtained
by the conventional quadrature method using Scheme II and the zeros of the
Jacobi polynomials, Pj.J·l)(x), for placement of grid points. It can be seen clearly
that the errors of the solutions obtained by the former approach are smaller in the
left region of the domain and tend to lose its edge near the right end. This is not
surprising, since the grid points of the former are sparsely distributed in the
region close to x = l) and the absolute error at x = l) is found to be of the same
magnitude of the exact solution itself. This characteristic of the method, however,
is desirable, since most of the changes in the dependent variables occur in the left
part of the domain.

Problems with Steep Gradients

Some prior knowledge about the system behavior must be obtained before
solving this type of problem. The region of rapid change in the dependent
variable can be identified with the help of physical insights of the system and/or
mathematical techniques such as those used in the singular perturbation method
for locating the boundary layer (Nayfeh, 1972). The modified differential quadra
tures can then be implemented in such intervals with satisfactory performance.
This approach was applied to various problems and following is an example:

Example 3 Consider the problem of diffusion and reaction of a component A in
a spherical porous catalyst pellet. The first-order reaction in the catalyst is

A-'>B

The corresponding system model can be found in Finlayson (1980):

d
2c

2dc ( U)_+ __ =.p2c exp u-----
dr' r dr 1 + w - we
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(a) 0.020

0,015

'-
~

0.010
'-o
'
'
OJ

o
u

S!. 0.005

<H>-a-<H> Case ( 1)
.............., Case (2)

1.2

.............., Case (1)
~ Case (2)

(b) 0.040

o.osc

'"-
'o-0.020
'-o
'-
'-
OJ

o
u

..Q 0.010

0.000

FIGURE 3a Effects of the Auxiliary Function on 11, Case (1): Laguerre Polynomials, L&°l(y);
,(Y) = 1.0; Scheme I Case (2): Laguerre Polynomials, L.")(y); ,ftr,) = e-EY; Scheme 1. 3b Effects of
thc Auxiliary Function on ft Case (1): Laguerre Polynomials, L& )(Y); ,(Y) = 1.0; Scheme I Case (2):
Laguerre Polynomials, L&O (y); ,(Y) = .-Ey; Scheme 1.
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..2 0.0001

(b) 0.0020
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L
o
L
L
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o
o

..2 0.0005

e-e-e-e-e Case (1)
............... Case (2)

............... Case (1)

............... Case (2)

153

FIGURE 4a Comparison between Two Sets of Optimal Solutions for IR' Case (1): Jacobi
Polynomials, p~I.I)(y); r(y) = 1.0; Scheme 11 Case (2): Laguerre Polynomials, L~O)(y); r(y) =e-(Y;
Scheme I. 4b Comparison between Two Sets of Optimal Solutions for Is. Case (1): Jacobi
Polynomials, p~I,I)(y); r(y) =1.0; Scheme 11 Case (2): Laguerre Polynomials, L~O)(y); r(y) =e-ty;
Scheme 1.
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154 C.-T. CHANG, c.s. TSAI AND T.-T. LIN

subject to the boundary conditions

~~ (0) = 0

c(l) = 1

(23b)

(23c)

where c denotes the dimensionless concentration of A, r denotes the dimension
less radial distance from the center of the sphere, t/J is the Thiele modulus, a
represents the dimensionless activation energy and w represents the dimension
less heat of reaction. The parameter values used for this example are

t/J = 15 w =0.02 u=20

Since the value of Thiele modulus is quite large, the reaction rate inside the
catalyst must be very high and, thus, the concentration decreases rapidly to zero
within a short distance from the solid surface.

The near exact solution was obtained by a "backward" shooting method from
r = 1 (Finlayson,1980) using IMSL subroutines. Note that, as the system
equations being integrated from r = 1 to r = 0, both the concentration and its
gradient are supposed to approach zero at a distance not far from the right end of
the domain and remain so until the origin is reached. This requirement makes it
extremely difficult for the shooting procedure to converge. After numerous
attempts, the near exact solution was obtained by setting a tolerance of 10-8 with
initial guesses close to the actual values of c(l) and c'(l) (Figure 5). In this
example, the near exact solution in the interval 0.7 s; r s; 1.0 was selected

1.0

0.8

0.6

u

0.4

0.2

0.0

FIG URE 5 Near Exact Solution.
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MODIFIED DIFFERENTIAL QUADRATURES 155

(somewhat arbitrarily) as the basis for comparison. This is due to the fact that
most of the variation in C (99.3%) occurs in this region. As a result of the
approximations made in Eqs. (14) and (15), one would expect the accuracy in the
numerical solutions obtained by the quadrature method to deteriorate sig
nificantly at locations close to the edge of the boundary layer, i.e. r < 0.7.
However, if one is interested mainly in the general system behavior, less emphasis
can be placed upon the accuracy of solutions in this part of the problem domain.

Next, the existence of a boundary layer adjacent the right end of the problem
domain is assumed. At the left edge of the layer, the boundary condition
originally imposed at the origin, i.e. c' = 0, is considered to be valid. To facilitate
the implementation of the quadrature method, let us introduce the following
transformation:

1-,
y=

8

where, 8 is the thickness of the boundary layer. Then, Eqs. (23) can be
approximated by

with

:;(8)=0
c(O) = 1

Again, an extra boundary condition is needed

c(8) = 0

(24a)

(24b)

(24c)

(24d)

By replacing the spatial derivatives with differential quadratures, Eqs, (24) can be
changed into a set of algebraic equations:

-!.-:f:. (2) _ _ 2_!.:f:. (1) _ 2 (_ (T )
02 LJ '1ij Cj 1 _0 0 LJ '1ij Cj - <p c, exp (T 1 + _ .
u 1=1 y,v 0 j e I W we,

i = 2, 3, ... , N - 1

N

L '1~JCj = 0
j=l

(25a)

(25b)

(25c)

(25d)

Equations (25) have been solved using nine grid points. Two different
approaches were adopted for placing these grid points. First, Scheme II was used
to determine the grid point locations according to the zeros of a Jacobi
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156 C.-T. CHANG, c.s. TSAI AND T.-T. LIN

............... Case
~ Case

0.008

0.006

u
....
a
~

o0.004
........
III

"u
~

0.002

0.000

FIGURE 6 Comparison between Two Sets of Optimal Solutions. Case (I): Jacobi Polynomials,
p~'.O)(y); r(y) =1.0; Scheme II Case (2): Laguerre Polynomials, L~O)(y); r(y) =e- ty; Scheme I.

polynomial P~',O)(x). Only the conventional differential quadratures were adopted
for this case. Then, Scheme I was applied to map the zeros of a Laguerre
polynomial L&O)(x) into the interval [0, 1]. An auxiliary function of the form e-EY
was used to enhance the performance of the curve-fitting ability of the differential
quadrature method.

Implementation of either method produces satisfactory results. The average
absolute error of the former is 0.001269 and that of the latter is 0.000251. Again,
the performance the modified differential quadratures is better and, further,
considerably more accurate solutions can be obtained in a region where most of
the reaction occurs (see Figure 6). Finally, it should be pointed out that the
proposed approach has also been applied successfully to other types of BVPs with
steep gradients, e.g. the boundary layer problem presented in Nayfeh (1972), and,
thus, can be considered as a useful alternative for solving these problems in
general. Following is a simple example:

Example 4
d2f df

e-2 + (1 + (;2) - + (1 - (;2)f = 0
dy dy

with the boundary conditions

(26a)

f(O) = a f(l) = f3 (26b)
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MODIFIED DIFFERENTIAL QUADRATURES

In this example, the following values are assigned to the parameters:

157

E = 0.01 a =0.0 f3 = 1.0

The corresponding boundary layer can be easily identified by the method of
matched asymptotic expansions to be next to the origin. From the analytic
solution of the problem, one can determine that the value of f increases from 0 at
the left end of the interval to a maximum of 2.592 at y = 0.047.

In applying the quadrature method to solving the present problem, the interval
O:s y :s 1 is divided into two elements [0,8] and [8, 1]. The thickness of boundary
layer 8 is still a variable to be determined. In this example, five grid points were
placed in each interval and, thus, a total of nine points were used. In the interval
8 :s y :s 1, the grid points were selected according to Scheme II and the zeros of
the Jacobi polynomial p~l.l)(x). The two approaches adopted here to determine
the grid point distribution within the boundary layer are the same as those used in
Example 3. Again, the results corresponding to the zeros of Laguerre polynomial
L~O)(x) with the aid of auxiliary function e -~y are superior. The thickness of the
boundary layer was determined to be 0.048 and the average absolute error in the
layer is approximately 0.16347. The results corresponding to the first grid point
placement strategy used in the previous example are less satisfactory, i.e, the
average absolute error was found to be 0.20462 and 8 = 0.036.

Transient Problems with Steep Gradients and/or Semi-Infinite Domains

The approach taken in solving the transient problems is essentially the same as
that for the steady-state problems. The thickness of the assumed boundary layer,
however, may vary with time. This is illustrated in the following example:

Example 5 Let us consider the one-dimensional heat transfer problem in a
packed column. Initially, the entire packed bed and the gas stream in the column
are all maintained at a constant temperature. Starting from t = 0, the inlet gas is
suddenly raised to a higher temperature and stay that way until the operation is
terminated. The mathematical model of this problem was formulated in Ramach
andran and Dudukovic (1984)

au
(27a)-= -St(u - v)

ax

av
(27b)-=u-v

at
Subject to

u(O, t) = 1 t>O (27c)

v(x, 0) = 0 x>O (27d)

where, u and v represent the dimensionless gas and solid temperature respec
tively. The analytic solution of this problem is available in Jacob (1957). Using a
Stanton number of 20, the numerical values of u and v at any location and time
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158 C.-T. CHANG, c.s. TSAI AND T.-T. LIN

x

FIGURE 7 Dimensionless gas temperature profile at r = I.

can be determined accordingly. These temperature profiles at t = 1.0 in the
packed column are plotted in Figure 7.

In this example problem, the penetration depth for the gas temperature, lJ is a
function of time. Thus, care must be taken in introducing the transformations

x
y = lJ(t)

(2&)

(28d)

(28b)

i = 2, 3, ... , N - 1 (28a)

Following the techniques suggested by Ramachandran and Dudukovic (1984) and
replacing the spatial derivatives by differential quadratures, Eqs. (27) can be
approximated by

~ (I) du, (dUi dVi) dlJL..,(Yij )u-=-St --- lJ-St(Ui- V;)-,
j= 1 dt dt dt dt

dVi_~ (dlJ)~ (I) _ _

d
~ d L.., (Yij )vVj - u, Vi, i =1, 2, ... , N - 1

-r u -r J=I

U 1 = 1

f (yW)u duj=O
j_1 dt

UN =0 (28e)

VN = 0 (28t)

It is assumed in this formulation, with Eq. (28d), that there is no heat flow in the
gas phase beyond the penetration depth. Since Eqs. (27) imply that the values of
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MODIFIED DIFFERENTIAL QUADRATURES 159

TABLE IV

Average absolute errors in solutions obtained by using the modified differential Quadratures

1=1.0
1=1.5
1~2.0

0.001249
0.001283
0.000812

0.000956
0.000637
0.000507

u and v approaches zero at locations far away from the origin, the penetration
depth 8 is thus assumed to be the distance at which both u and v also equal zero.
These requirements are specified in Eq. (28e) and Eq. (28f).

Two different approaches were adopted to place seven grid points in the
interval O::s y ::s 1. They are the same as those applied in Example 3. An implicit
Euler method with a time step of 0.01 was used to integrate Eqs, (28) from t = 0
to t =2.5. The average absolute error of u in intervals where 99% of the change
takes place at time 1, 1.5 and 2.0 are presented in Table IV.

It can be seen clearly from these data that both approaches are adequate for
obtaining resonable solutions. The local errors of both cases at t = 1 are also
compared in Figure 8. Again, the accuracy in the results generated by the
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FIGURE 8 Effects of the Auxiliary Function at 1=1. Case (1): Jacobi Polynomials, p~"O)(y);

r(y) = 1.0; Scheme II Case (2): Laguerre Polynomials, L~O)(y); r(y) = e- fY; Scheme I.
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160 C.-T. CHANG, C.-S. TSAI AND T.-T. LIN

suggested approach is higher for almost the entire interval. The same observa
tions can be made at any other instance.

CONCLUSIONS

Modified differential quadratures have been developed in this study to overcome
the difficulties encountered in solving problems with semi-infinite domains and/or
steep gradients by the conventional approach. Specifical.ly, different forms of trial
functions and various grid point placement schemes were adopted to enhance the
curve-fitting ability of the quadrature method. Proper trial functions can be
selected by the formal constraints proposed in this paper. Simplified formulae,
corresponding to the Jacobi, Laguerre and Hermite polynomials, were derived to
calculate the modified quadrature coefficients. Due to the simplicity of their
forms, accurate results can be obtained efficiently even when the number of grid
points is large. To improve the overall quality of the numerical solutions, the
concept of "boundary layer" was introduced in solving the above problems.
Reduction of the problem domain to such a finite interval forces the grid points to
be distributed over the region of interest and, thus, more accurate solutions can
be obtained accordingly. Note, however, that this improvement is achieved at the
price of sacrificing the performance of the solutions at locations near the edge of
the boundary layer. The assumptions made to determine the thickness of
boundary layer makes them to be inherently less accurate than those in the rest of
the interval.

The modified differential quadratures were tested with a number of example
problems. Based on the data we have col.lected so far, it can be concluded that, on
the average, the proposed approach yields better results and, in particular, more
accurate solutions can be obtained in the region where most of the change in
dependent variable occurs.
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NOMENCLATURE

English Leiters

b ,• b2 the lower and upper bound of a computational field

c the dimensionless concentration

F, the nth-derivatives matrix of the trial functions

Fn the modified nth-derivatives matrix of the trial functions
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MODIFIED DIFFERENTIAL QUADRATURES 161

j;

1.
1.
fR,fS

Gn

Gn

LVJ>(x)

N

P'f;f3(x)

Rn

r(y)

St

x

y

the i-th trial function

the ith modified trial function

the ith Lagrange interpolation function

the dimensionless concentrations of R, S

the nth-order quadrature coefficient matrix

the modified nth-order quadrature coefficient matrix

the Nth-degree Laguerre polynomial with a = 0

total number of grid points

the Nth-degree Jacobi polynomial

the nth-derivative matrix of the auxiliary functions

auxiliary function

the lower and upper bound of the standard interval in which an
orthogonal polynomial is defined

the Stanton number

independent variable, 0 :s t < 00

dependent variable

the nth-derivative Vandermonde matrix

independent variable in a standard interval

independent variable in the interval u\ :s Y -s U2

Greek Letters

6 local relative deviations between two numerical solutions

$n a polynomial with N real roots

8 the thickness of boundary layer

8 ij the Kronecker delta

'Y~r) the nth-order differential-quadrature coefficients

'YIP> the modified nth-order differential-quadrature coefficients

cp a dimensionless rate constant

1'Ji coefficient of the i-th trial function

~, g the parameters of an auxiliary function
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APPENDIX A

To facilitate later discussions, the concept of a family must be defined first, i.e.

Definition A family of trial functions is a set of linearly independent functions,
[;(y), i = 1, 2, ... ,N, of which any of the functions, [;(y)'s, and its derivatives
with respect to yare linear combinations.

Note that a set of functions, [;(y)'s, is said to be linearly independent over an
interval, a,::5y ::5az, if the Wronskian of ft(y), fz(y), ... ,fN(Y) is not identically
zero in a, ::5y ::5 az. Based on the above definition, the following theorem can be
utilized to characterize the relationship between the first- and higher-order
quadrature coefficients:

[Theorem1 If a set of trial functions satisfies the requirements of a family, then

Proof If the trial functions, [;(y), i = 1, 2, ... , N, form a family, then

df(y) = Dr(y)
dy

where,

(4)

(AI)

and 0 is a matrix with constant entries. Differentiate both sides of Eq, (A1) with
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MODIFIED DIFFERENTIAL QUADRATURES 163

Thus,

respect to y:
d

2f(y)
= D df(y) = D2f(y)

dy2 dy

d"f(y) = D"f( )
dy" Y

From Eq. (A3), one can conclude that

[
d" f( y,) d"f(Y2) d"f(YN)] " n

F" = ~,~, ... , dy" = D [f(y,), f(Y2), ... , f(YN)] = D Fo

Substitute Eq. (A4) into Eq. (3) in this paper,

G~= Fo'F" = Fo'D"Fo= (Fo'DFot = (Git

(A2)

(A3)

(A4)

(AS)

APPENDIX B

(85)

(82)

(83)

(88)

(81)

(86)

(87)(1) _ Xi
'Yii - 2(1 - xn

(2) _ (N2 + 2)x7 + (I - N 2
)

'Yii - 3(1 - x7)2

(I - 2)pla./l)( )
(1) Xj N-l Xi

'Y
'J (x. - x.)(1 - x 2)p la./l 1(x.)

I } I N-l /

[(Xi - Xj)(f3 - a - (a + f3 + 2)Xi)+ 2(1 - x7)](1 - xJ)pj,;'.!,l(x;}

(x . - x)2(1 - x 2)2p<a./ll(x.)
I J I N-l }

For i =j,

For i =j,
(1)- (a + f3 +2)Xi + a - f3

'Y,i - 2(1 - xn

'Y~t) = 3(1 ~ x7)2 {[f3 - a - (a + f3 + 2)Xif

+ (I-xnla + f3 +2-N(N+ a + f3 + 1)]-2xi[f3 - a - (a + f3 +2)x;]} (84)

Although these simplified formulae have already been presented in an earlier
paper (Quan and Chang, 1989i), further simplifications were achieved in this
study for several special cases of the Jacobi polynomials, e.g. the Chebyshev
polynomials of the first kind and the second kind. Their respective quadrature
coefficients can be determined by the following equations:

• The Chebyshev Polynomials of the First Kind (a = f3 = -!)
For i r i.

1. The Jacobi Polynomials (Pj,;'·/l)(x), -I <x < I)
For i ¥ j,
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• The Chebyshev Polynomials of the Second Kind (a = f3 = D
For i ;;6i.

(I) _ (-I)i- j (I - xJ)
I'ij - 2

(Xi - Xj)(1 - Xi)

(2) ( ) _. (5xf - 3XiXj - 2)(1 - xl)
I' .. = - I ' 1 -'-----'::---'--:";;-:---'-'-,,:-:;,--1-"-

'I (Xi - Xj)2(1 - xf?

For i = j,
(I) _ 3Xi

I'ii - 2(I- Xi)

(2) _ (N 2+ 2N + 12)Xi - (N 2+ 2N - 3)
I'ii - 3(1 - Xf)2

2. The Laguerre Polynomials (Ll.;)(x), 0 <x < 00)
For i ;;6i.

For i =i.
(I) __ a + 1 - Xi

I'ii - 2x.,
(a + I-x,)(a +2-Xi) - (N -1)Xi

3xf

3. The Hermite Polynomials (HN(x), -00 <X < 00)
For i ;;6i.

(B9)

(BIO)

(Bll)

(BI2)

(B13)

(BI4)

(BI5)

(BI6)

For i =i.

",(2)
"I

(I) H N - 1(Xi)
I'ij

(Xi - Xj)HN_I(Xj)

2[Xi(Xi -Xj) -ljHN-I(Xi)

(Xi - xYHN_I(Xj)

I'll) = Xi

(2) _ 4xf - 2(N - I)
I'ii - 3

(BI7)

(BI8)

(BI9)

(B20)

Note that the symbols Xi (or Xj) in the above equations represent the ith (or jth)
zeros of the corresponding orthogonal polynomial defined in its standard interval.
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