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A simple strategy is developed for the design of model-based fault-monitoring 
systems. Several new features allow this approach suitable for practical applications. 
The core of the suggested monitoring system is a parallel parameter estimation 
method designed to reduce the chance of bias. Two important criteria, diagnostic 
observability and diagnostic resolution, are adopted to evaluate the performances 
of alternative designs. By following a systematic procedure, it is possible to determine 
the best sensor locations in a complex chemical process based only on the structural 
in formations of the system model. After selecting the most appropriate measurement 
variables, diagnostic resolution can be enhanced further by exploiting additional 
insights gained from analysis of the physical meanings of the model parameters and 
by comparing the faultpatterns in diagnosis. Several effective on-line implementation 
techniques are also proposed to minimize computation for the estimation algorithm. 
The correctness and efficiency of the suggested design strategy are demonstrated by 
the simulation results in examples. 

Introduction 
Due to the frequency of serious accidents in chemical in- 

dustries during recent years, the importance of fault moni- 
toring systems in operating complex modern plants has become 
apparent. Although numerous approaches have been suggested 
in the literature, few can be actually implemented in com- 
mercial chemical processing units. Thus, the design of fault 
monitoring systems is not only a challenging research topic, 
but also a matter of practical significance. 

Most recent studies in this area are concerned with the de- 
velopments of computer-aided diagnosis systems for assisting 
operators to respond to emergency situations effectively (Davis 
et al., 1987; Lamb et al., 1987; Petti et al., 1990). Various 
techniques have been suggested, for example, the signed di- 
rected graph (Kramer and Palowitch, 1987; Chang and Yu, 
1990; Yu and Lee, 1991), parameter estimation (Isermann, 
1984), the expert system (Rich and Venkatasubramanian, 1987; 
Petti et al., 1990) and neural networks (Venkatasubramanian 
and Chan, 1989; Watanabe et al., 1989; Venkatasubramanian 
et al., 1990; Hoskins et al., 1991). In the research presented 
here, model-based analysis was adopted for the development 
of fault detection and diagnosis methods. More specifically, 
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detection of changes in states and/or parameters of the math- 
ematical model was achieved by implementing system identi- 
fication techniques. Diagnosis of the fault origins, for example, 
equipment malfunctions and external disturbances, were ac- 
complished on the basis of the physical interpretations of these 
changes and/or structural analysis of the model. As a direct 
result of this approach, the candidate faults were limited in 
this research to those that can be associated with parameter 
variations. In other words, sensor failures and failures that 
can change the structure of system models were not considered 
in our analysis. 

There are a large number of related works published in the 
literature (Willsky, 1976; Isermann, 1984; Ljung, 1987). Among 
various different estimation techniques adopted in the past, 
the extended Kalman filter (EKF) is clearly one of the most 
popular methods, see Park and Himmelblau (1983), Watanabe 
and Himmelblau (1983a,b, 1984), Dalle Molle and Himmelblau 
(1987), and Li and Olson (1991). In essence, EKFs of one form 
or another were employed to estimate both the states and 
parameters of chemical engineering systems. Causes of ab- 
normal system behaviors were then identified accordingly. Al- 
though the effectiveness of EKFs has been adequately 
demonstrated in these published studies, it is a well-known 
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fact that the use of EKF: requires substantial computation 
time, exhibits slow convergent rate and does not always pro- 
duce unbiased estimates (Watanabe and Himmelblau, 1984). 
From the standpoint of fault diagnosis, the most serious draw- 
back of the extended Kalman filter is its inability to guarantee 
unbiased estimates. Obviously, incorrect information about 
the system parameters and/or states can mislead diagnosis. To 
overcome this problem, modifications of the traditional al- 
gorithm were introduced in this research. In particular, several 
smaller EKFs were used in parallel to reduce the chance of 
generating biased estimates. On the basis of this approach, 
simple design procedures were then developed to optimize the 
performance of the fault monitoring system for any given 
process. 

Due to financial limitations, not all of the state variables in 
a chemical plant can be measured on-line. Thus the problem 
of selecting the best sensor locations is a critical issue in the 
design of fault monitoring systems. Two selection criteria were 
adopted in this study: diagnostic observability and diagnostic 
resolution. By observability, we mean that, in at least one of 
the parallel EKFs, the parameter corresponding to the actual 
fault can be estimated correctly. To satisfy the observability 
condition, a systematic procedure has been developed in this 
work for choosing the minimum number of variables to be 
measured on-line. The term diagnostic resolution usually refers 
to a measure of uniqueness in identifying the correct fault 
origin among all possible candidates (Tsuge et al., 1985; Kra- 
mer and Polawitch, 1987). Based on a qualitative analysis of 
the characteristics of EKF, a simple method has been developed 
for synthesizing fault monitoring systems with high resolution. 
Under the condition that the total number of measurement 
points is fixed, it is possible to determine the most appropriate 
distribution of sensor locations based only on the structural 
information of the system model. Since there is no need for 
quantitative calculations, the best set of measurements can be 
chosen quickly even for a large and complex process. Finally, 
several on-line implementation strategies were proposed to re- 
duce the computation load of implementing parallel EKFs in 
large industrial-scale systems. The feasibility and effectiveness 
of all the techniques suggested in this research were confirmed 
by numerical simulation studies and will be elaborated in var- 
ious examples. 

Parallel Parameter Estimation Method 
In developing diagnostic procedures, the single-fault as- 

sumption has often been adopted, for example, Kramer and 
Palowitch (1987). Our work is not an exception. This is mainly 
due to the rationale that the probability of simultaneous oc- 
currence of two or more independent faults is extremely low 
and therefore can be considered negligible. As mentioned be- 
fore, the extended Kalman filter is used in this study as a tool 
for fault detection and diagnosis. Since there are many possible 
events which could cause the observed system symptoms, the 
number of augment states in a conventional EKF is usually 
large. Thus if implemented without modifications, biased es- 
timates may be generated simply because more than one equally 
satisfactory way of fitting the measurement data exist. 

If the parameter associated with the fault origin is known, 
then there is no need for augmenting all the parameters to the 
state vector in the corresponding EKF. In this filter, only the 
parameter associated with the anticipated malfunction is al- 

Figure 1. The simplified process flow diagram of a one- 
tank system. 

lowed to deviate from its normal value and all other parameters 
remain unchanged. Thus, there is no chance for faults other 
than the assumed one to be detected and, since the assumed 
model is capable of describing the actual system behavior, the 
possibility of biased estimation can be almost eliminated. 

However, obtaining this information about the deviant pa- 
rameter is exactly one of the purposes of fault diagnosis. Thus, 
it becomes necessary to implement several smaller EKFs in 
parallel, each of them corresponding to one of the parameters, 
in order to include all the possibilities, for example, Willsky 
(1976). This approach, although simplistic, is quite effective 
and will be referred to as the parallel parameter estimation 
method throughout this article. The following example dem- 
onstrates the advantage of using this modified approach: 

Example 1. Let us consider the tank system in Figure 1. 
Assume that three faults, a leak in tank, partial blockage in 
the outlet pipeline and a change in the inlet flow rate, are the 
most likely to occur in this system. The following is the model 
for a conventional EKF (Denn, 1980): 

dh 
dt A - = qi - q - C/& 

where A represents the cross-sectional area of the tank, h is 
the height of the liquid level, t is the time, q denotes the outlet 
flow rate, d and I represent the diameter and length of the 
outlet pipeline, f is the friction factor for the flow in the outlet 
pipeline, which can be calculated by the correlation equation 
suggested by Churchill (1977), and f ,  is used to account for 
the additional friction caused by the valve on the outlet pipe- 
line, which was assumed to remain constant at 0.02. To detect 
the occurrence of any one of the candidate faults, three ad- 
ditional differential equations must be augmented: 

where qi is the inlet flow rate, c, is a parameter that characterizes 
tank leaks and f p  denotes the additional friction caused by 
partial blockage in the outlet pipeline. In this example, it is 
assumed that the means of the process noises wis ( i=  3, 4, 5 )  
are zero and the corresponding covariance matrix Q used in 
the Kalman filter is of the form: 
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Figure 2a. Estimates generated by a conventional ex- 
tended Kalman filter for the system in Ex- 
ample 1: the height of liquid level h. 

Figure 2c. Estimates generated by a conventional ex. 
tended Kalman filter for the system in Ex- 
ample 1: the volumetric flow rate in the inlet 
pipeline 91. 

where the diagonal elements Q,(i= 1, ..., 5 )  are adjustable 
parameters, 

In this example, it is also assumed that the height of the 
liquid level and the outlet flow rate can be measured directly 
and the means of the corresponding measurement noises are 
both zero. The variances of the measurement noises of h and 
q are assumed to be and 10-'orespectively. The covariance 
matrix R adopted in the Kalman filter is also 

1.05 1 
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Time(sec) 
Figure 2b. Estimates generated by a conventional ex- 

tended Kalman filter for the system in Ex- 
ample 1: the volumetric flow rate in the outlet 
pipeline 9. 

To test the effectiveness of the EKF, transient values of the 
state variables were generated by integrating Eqs. l a  and lb  
with an equation that describes the dynamic behavior of a 
fictitious fault, that is, the outlet pipeline is plugged 10 s after 
the start of operation. This equation can be written as 

dfp=0.002[u(t- dt 10)-u(t-15)] (2) 

where u ( t )  is a unit step function. Before the inception of this 
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Figure 2d. Estimates generated by a conventional ex- 

tended Kalman filter for the system in Ex- 
ample 1: the parameter associated with tank 
leaks c, 

1148 July 1993 Vol. 39, No. 7 AIChE Journal 



-0.005 I I 
0 100 200 300 400 500 600 

Time(sec) 
Figure 26. Estimates generated by a conventional ex. 

tended Kalman filter for the system in Ex- 
ample 1: the friction factor associated with 
partial blockage in the outlet pipeline f,,. 

fault, the system is at steady state. The steady-state values of 
the five state variables in Eqs. la-le can be determined: 

They were used as the initial values in the simulation studies. 
After completing the numerical integration process, white 
Gaussian noises with variances and 10-’owere then added 
to h and g to get the simulated measurement data. 

Assuming the on-line measurements are taken once every 
second, one can obtain the estimates of all five state variables 
in Eqs. la-le by a conventional EKF. Notice that the values 
of the diagonal elements in the covariance matrices Q need to 
be adjusted to optimize the performance of the EKF. The 
results presented in Figures 2a-2e were obtained after consid- 
erable effort in “tuning” the Kalman filter. From these results, 
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Figure 3a. Estimates generated by implementing EKFs 

in parallel for the system in Example 1: the 
height of liquid level in the tank h. 
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Figure 3b. Estimates generated by implementing EKFs 

in parallel for the system in Example 1: the 
volumetric flow rate in the outlet pipeline q. 

one can observe that, although the estimates of h, q and f ,  
follow the simulated “real” values closely, those correspond- 
ing to q, and c, are still biased. This is certainly unacceptable 
for the purpose of fault diagnosis. 

On the other hand, if the method of parallel parameter 
estimation is adopted, such drawbacks can be avoided com- 
pletely. Using the same set of simulated measurement data, 
three smaller EKFs were implemented in parallel. In each EKF, 
only three state variables were included, that is, the height of 
liquid level h, the outlet flow rate q and one of the three 
parameters (qi, c, or f,). Except for the one used as the state 
variable, the other two parameters were set to their initial values 
and assumed to be constants. If the anticipated fault is the 
actual one, the values of the parameters associated with other 
faults must stay unchanged by assumption and thus the esti- 
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Figure 3c. Estimates generated by implementing EKFs 
in parallel for the system in Example 1: the 
volumetric flow rate in the inlet pipeline qi. 
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Figure 4a. Estimates generated by implementing EKFs 
in parallel for the system in Example 1: the 
height of liquid level in the tank h. 

mates of the state and augmented variables should be close to 
their correct values. Also, since the conclusions of diagnosis 
are, in general, relatively insensitive to changes in the mag- 
nitude of the variances used in the EKF, there is almost no 
need for tuning. 

If one assumes that a change in inlet flow rate is the fault 
that causes abnormal system behavior, then the results pre- 
sented in Figures 3a-3c can be obtained by the corresponding 
EKF calculations. Based on the fact that the estimates of q 
differ significantly from the measurement data (Figure 3b), 
one can then exclude the anticipated fault, that is, variation 
in qi, from the list of candidates. Along the same reasoning, 
one can also dismiss the possibility of malfunctions associated 
with parameter c,. However, i f f ,  is selected as the augmented 
state variable in EKF, then the estimates of h and q both trace 
the measurement data closely (Figure 4a and Figure 4b). Ac- 
cording to these observations, one can correctly reach the con- 
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Figure 4b. Estimates generated by implementing EKFs 

in parallel for the system in Example 1: the 
volumetric flow rate in the outlet pipeline 9. 
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Figure 4c. Estimates generated by implementing EKFs 

in parallel tor the system in Example 1: the 
friction factor associated with partial block- 
age in the outlet pipeline f,. 

clusion that a partial blockage in the outlet pipeline is the 
origin of the fault. Furthermore, from the results presented in 
Figure 4c, one can clearly see that a good approximation of 
f ,  was also obtained. 

Diagnostic Performance Table 
If the parallel parameter estimation method is adopted in a 

fault monitoring system, its performance is dependent upon 
the choice of measurement variables. Even under the condition 
that only one fault occurs, inconsistent conclusions may still 
be drawn from different sets of on-line measurement data. 
Generally speaking, numerical simulation is one of the most 
commonly-used tools to assess the effects of varying the dis- 
tribution of sensor locations. In this research, simulation stud- 
ies have been carried out for all possible cases in every example. 
The corresponding results were summarized in a diagnostic 
performance table, which can be used as a basis for evaluating 
alternative monitoring systems. Three simple examples are pre- 
sented in this section for the purpose of illustrating the com- 
pilation of such a table and to demonstrate some of the 
interesting phenomena that can be observed therein. 

Let us again consider the system described in 
Example 1. Assume that three parameters in the system model, 
qi, c,, and f,, are subject to change during operation. Here f r  
is a parameter which characterizes the effects of additional 
friction caused by a change in the valve position and/or partial 
blockage in the pipeline, that is, f,= f,+ f,. Simulation studies 
were first carried out under the condition that only one of the 
two state variables (h  or q )  could be measured on-line. The 
corresponding results are presented in two diagnostic perform- 
ance tables, Table l a  and Table lb. Notice that the chosen 
measurement variables are indicated at the upper-left corner 
of the diagnostic performance table. For each possible fault, 
simulated data were generated by introducing a change in the 
corresponding parameter. The entries in each row of the table 
were obtained from the same set of simulated measurement 
data corresponding to the parameter indicated at the left side 

Example 2. 
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Table la. Diagnostic Performance of a One-Tank System 
with One Measured Variable 

Table lc. Diagnostic Performance of a One-Tank System 
with Two Measured Variables 

f, Cl h Q. 

0 
0 

0 0 J 
7 4, J 

f, 
CI 0 

of the row. Each entry in this table is a conclusion drawn from 
analyzing the results of implementing one EKF to the above 
data. The augmented state variable adopted in this EKF is 
indicated on the top of the corresponding column. The symbols 
used in the diagnostic performance table are defined as follows: 

Diagonal Entries: The malfunction is correctly anticipated, 
that is, the augmented state variable is the parameter that 
actually deviates from the normal level. There are two pos- 
sibilities: 

J: The estimates of the parameter and the state variables 

*: The EKF fails to trace the variation in the assumed 

Off-Diagonal Entries: The anticipated fault does not oc- 
cur, that is, the augmented state variable actually remains at 
the normal level during operation. Three types of observations 
may be obtained from the simulation results: 

: The estimates of all state variables (including meas- 
ured and unmeasured variables) are good approxi- 
mations of the simulated data. Thus, the 
corresponding fault cannot be excluded from the list 
of candidates. 

o : Although the estimates of the unmeasured state vari- 
ables may be significantly different from their actual 
behaviors, those of the measured variables follow the 
measurement values closely. Therefore, such a fault 
cannot be excluded. 

blank: The estimates of some of the measured variables do 
not match the measurement values or the estimate 
of parameter remains unchanged. In this case, the 
corresponding fault can be regarded as nonexistent. 

Obviously, the ideal sensor distribution is the one associated 
with a diagnostic performance table that contains only “J” 
(on the diagonal positions) and blanks (on the off-diagonal 
positions). In other words, to optimize the performance of 
such systems, the number of “ *  ,” “ ” and “ o ” must be 
minimized. To avoid the errors “ * ,” one must ensure that 
the effects of all possible faults can be observed on-line. In 
this study, this criterion is referred to as the diagnostic ob- 
servability condition. A detailed discussion of this condition 
will be presented in the next section. The error “ ” is caused 
by the fact that the effects of the actual fault on all the state 
variables can be reproduced exactly by the anticipated fault. 

match their actual transient behaviors. 

parameter. 

Table lb. Diagnostic Performance of a One-Tank System 
with One Measured Variable 

.f, Cl 4 Q. 

0 
0 0 
0 0 J 

7 48 J 

f, 
CI 

Thus, from a structural standpoint, the parameters corre- 
sponding to these two faults are replaceable in the system 
model. For example, the parameters qi and c, appear only in 
Eq. la and, thus, both of them can only directly affect one 
state variable h which, in turn, can affect the other state vari- 
able q in Eq. lb. As a result, the abnormal transient behaviors 
of either h or q, or both, which are caused by a decrease in 
the inlet flow rate qi may be mistakenly regarded as due to 
tank leaks and, similarly, the opposite situation may also occur. 
This type of mistake clearly cannot be eliminated by measuring 
more state variables. The only way to solve this problem is to 
measure one (or more) of these parameters directly if possible. 

The error “ o ” is due to the fact that the effects of the 
actual fault on the measured state variables can be replaced 
by those of the assumed fault. These errors can be removed 
by redistributing the sensor locations or placing additional 
measurement points. For example, if both state variables in 
the single-tank system are measured, all mistakes associated 
with “ 0’’ can be avoided in the corresponding diagnostic 
performance table (Table lc). 

In this research, the diagnostic observability criterion is con- 
sidered to be a basic condition that all fault monitoring systems 
have to satisfy. Thus, diagnostic performance is essentially 
dependent only upon resolution. As mentioned before, the 
term diagnostic resolution in this article refers to a degree of 
uniqueness achieved in diagnosis. In fact, this quantity can be 
considered to be proportional to the number of blanks in the 
diagnostic performance table. Since the feasibility of meas- 
uring the parameters that produce “ o ” cannot always be 
guaranteed, the emphasis of this work is to develop a strategy 
for selecting measurement variables so that the number of “ o ” 
can be minimized in the resulting table. To demonstrate the 
effects of varying sensor distributions on resolution, two ad- 
ditional examples are provided: 

Example 3. Let us consider the system shown in Figure 5, 
which consists of two tanks in series. The mathematical for- 
mulations of the models corresponding to these two tanks are 
essentially the same as Eq. la. Similarly, flow rates in the exit 
pipelines of these two tanks can be described, in principle, by 
Eq. lb. However, in the model of pipeline 1, the liquid level 
h, should be replaced by the difference between the liquid levels 
in these two tanks, that is, h,  - h2. 

Figure 5. The simplified process flow diagram of a two- 
tank system. 

AICbE Journal July 1993 Vol. 39, No. 7 1151 



I Table 2a. Diagnostic Performance of a Two-Tank System 
(Figure 5) with Two Measured Variables 

hl,4l 4i el I f , l  c12 fr2 

J 
: 41 J 

f,l 

f r 2  0 0 J 

el I 0 

el2 
0 0 

0 0 J 

Table 2b. Diagnostic Performance of a Two-Tank System 
(Figure 5) with Two Measured Variables 

Figure 6. The simplified process flow diagram of a two- 
tank system. 

Table 2c. Diagnostic Performance of a Two-Tank System 
(Figure 5) with Two Measured Variables 

hid2 4, C I  I f,, c12 fr2 

0 
J 

:: 9, J 

f r 1  

fr2 

el I 

el2 J 
0 J 

0 

Table 2d. Diagnostic Performance of a Two-Tank System 
(Figure 5) with Two Measured Variables 

hl42 4i el I f , l  c12 f , 2  

4i J 0 

Table 2e. Diagnostic Performance of a Two-Tank System 
(Figure 5) with Two Measured Variables 

41d2 4i el I fd el2 f r 2  

0 
0 

0 J 
s 4i J 

CI I 0 

f,I 
c12 

f r 2  

0 

0 : J 

Table 2f. Diagnostic Performance of a Two-Tank System 
(Figure 5) with Two Measured Variables 

There are four state variables, h l ,  q l ,  h2, and q2, in this 
problem. If only two state variables are allowed to be meas- 
ured, then six combinations are possible. In this example, 
simulation studies have been carried out for all of them. The 
corresponding results are presented in Tables 2a-2f. As indi- 
cated before, since the error " " can only be eliminated by 
measuring the parameters directly (which may not be feasible), 
the performance of the fault monitoring systems can be easily 
evaluated by counting the number of " o " in the above tables. 
Thus, one can see clearly that the best choice for this example 

Let us next consider a system with two tanks 
connected in a slightly different configuration (Figure 6) .  The 
mathematic formulations of both tanks and both pipelines are 
essentially the same as Eq. la and Eq. l b  respectively. If one 
considers the cases of measuring two state variables, then again 
six combinations need to be studied. However, the selection 
( h , ,  q l )  should be excluded in this analysis due to its obvious 
violation of the diagnostic observability criterion. The results 
corresponding to the rest of the combinations are listed in 
Tables 3a-3e. From these tables, one can conclude that the 
best choices are ( h l ,  h2) and ( h , ,  q2 ) .  However, both of them 
still contain two errors associated with " o ." To remove these 
errors completely, additional measurement variables must be 
introduced into the sets of two state variables. Four possibilities 
need to be considered: ( h l ,  h2, 421, (41, hz. 4 2 1 ,  ( h ~ ,  41, h2) 
and ( h l ,  q l ,  q2) .  By means of simulation studies, the corre- 
sponding diagnostic performance tables can be produced (Ta- 
bles 4a-4d). From these results, one can see that the optimal 
choice is ( h l ,  h2, 42). 

In summary, one can conclude that system performance can 
be improved by varying the number and/or distribution of 
measurement points and, also, can be optimized by measuring 
only a portion of the entire set of state variables. On the other 
hand, it is quite obvious that, although the diagnostic per- 
formance tables are indeed helpful for the design of fault 
monitoring systems, the numerical effort needed to produce 
these tables can be overwhelming. Thus, there is a real incentive 
for developing a set of simple and effective design guidelines 
to replace the tedious simulation studies described in this sec- 
tion. 

is ( h l ,  q2) .  
Example 4. 

Diagnostic Observabili ty 
Let us now consider the standard form of a lumped model, 

which can be formulated as a set of nonlinear ordinary dif- 
ferential equations: 
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Table 3a. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Two Measured Variables 

h242 9, CI I fil c12 f r 2  

4, J 0 0 0 

CI I 0 J 
f r l  

f r 2  

0 
0 0 
0 0 

J 
7 : 

c12 0 

Table 3b. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Two Measured Variables 

Table 3c. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Two Measured Variables 

Table 3d. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Two Measured Variables 

Q l J 2  4i CI 1 f,l c12 f r 2  

0 
0 
0 

J 
7 7 4, \' 

f,l 0 

f r 2  0 J 

CI I 

c12 0 

Table 3e. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Two Measured Variables 

(3) 

Table 4a. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Three Measured Variables 

Table 4b. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Three Measured Variables 

Table 4c. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Three Measured Variables 

hl*41,42 4, CII f , l  c12 f r 2  

0 

J 
7 4, J 

f , l  
c12 J 0 
f r 2  0 J 

CI I 

Table 4d. Diagnostic Performance of a Two-Tank System 
(Figure 6) with Three Measured Variables 

hlh2942 4i C/l f , l  c12 f r 2  

J 
7 4i J 

f , l  
c12 J 
f r 2  J 

CI I 0 

wherexis ( i =  1,2, ..., n) denote the state variables, cis (j= 1, 
2, ..., m) represent the model parameters and fks ( k =  1, 2, 
. . . , n) are some nonlinear continuous functions of x,s and cjs. 
Assume that the system is initially at steady state under normal 
operating conditions. Abnormal transient behaviors are caused 
only by changes in the parameters cjs. These changes can be 
viewed as the inputs to the system and the outputs are the state 
variables measured on-line. If any of the parameters deviates 
from its normal value, the resulting effects must show up first 
in the state variable(s) corresponding to the equation@) in 
which this parameter appears. These effects then propagate to 
other parts of the system, that is, several other state variables 
are also affected later. Thus, to estimate the parameter as- 
sociated with the assumed fault, one simply has to measure 
one of the state variables which are affected directly or indi- 
rectly by this parameter. Due to the single-fault assumption 
made in this study, good estimates can be obtained if the 
assumed fault is the correct one. Therefore, an observable 
system is defined as the one in which the effects of every 
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possible fault can be detected from the chosen set of meas- 
urement variables. 

Naturally, the question to ask is: how to choose these vari- 
ables? To answer this question, one first needs to establish the 
precedence order of influences among state variables. For ex- 
ample, the variable h2 in Example 4 can be affected by a change 
in the variable hl ,  but the variation in h2 may not create any 
effect on hl .  In this case, the change in hl (if it occurs) should 
always precede that of h2. In simple systems, this precedence 
order may be determined directly from the corresponding proc- 
ess flow diagram. However, when complex units (such as a 
reactor) and/or complex configurations (such as multiple re- 
cycle loops) are involved, this approach is no longer feasible. 
Further, the idea of precedence order is also useful in estab- 
lishing design guidelines for enhancing the diagnostic resolu- 
tion of fault monitoring systems. Thus, there are enough 
incentives for developing a systematic procedure to establish 
this order for any model that can be written in the form of 
Eq. 3. 

In this study, a partitioning algorithm (Steward, 1965) used 
for solving nonlinear algebraic equations was modified to 
achieve this purpose. Generally speaking, the best approach 
to promoting the computation efficiency in solving a large set 
of complex algebraic equations is to reorder them according 
to the structure of the system. The result of the reordering is 
called a partition. More specifically, a partition is the division 
of the set of equations into subsets, which we call blocks, so 
that each block in the partition is the smallest set of equations 
that must be solved simultaneously. After such a partition is 
established, the blocks can then be solved one at a time in 
series. In this research, the variable associated with time de- 
rivative in each of the model equations is treated as the output 
of the equation. This output variable is, of course, affected 
by the other variables which are included in the same equation. 
Thus, the functional relationships in Eq. 3 can also be described 
qualitatively in a structural matrix similar to the one used in 
the partitioning algorithm (Steward, 1965). The corresponding 
partition in this situation reflects the precedence order of in- 
fluences among state variables. 

Details of the modified partitioning algorithm are presented 
in the Appendix. To illustrate its implementation procedure, 
two examples are provided here: 

Example 5.  Let us consider the two-tank system described 
in Example 4. The corresponding structural matrix is shown 
in Figure 7a. Since this matrix is already in a block triangular 
form, this system can be directly divided into two blocks. The 
first block contains hl and q l ,  while the other variables (h2  
and q2) are included in the second block. Based on the specific 
form of this structural matrix, a precedence diagram can be 
constructed accordingly (Figure 7b). This diagram provides a 
clear picture of the precedence order of the changes that may 
occur in the state variables, that is, a change in one of the two 
variables in the first block generates deviations in both of the 
variables in the second block, but the variables in the first 
block cannot be affected by a fault that causes variations in 
the second block. In other words, the effects of a fault in tank 
1 can be detected by measuring any one of the four state 
variables. However, the faults that occur in tank 2 are unob- 
servable if one or both of the variables of tank 1 (h, and 4,) 
are selected for measurement. Thus, to ensure the observability 

Variable 

Figure 7a. The structural matrix corresponding to the 
two-tank system shown in Figure 6. 

of the system, at least one of the variables in the second block 
must be included in the fault monitoring system. 

A more complex system is considered in this 
example (Figure 8a). There are 12 state variables (x,, i=  1, 2, 
..., 12) here. xI to x, represent the heights of the liquid levels 
in 5 different tanks and x6 to xI2  denote the volumetric flow 
rates in their respective pipelines. By implementing the mod- 
ified partitioning algorithm described in the Appendix, the 
structural matrix can be reordered in the block triangular form 
(Figure 8b). The corresponding precedence diagram is pre- 
sented in Figure 8c. Notice that there are two branches in this 
diagram. From the most upstream variables, x l ,  x6 and x,, the 
effects of a fault can propagate to x2 and x, via the first branch 
and, through the second branch, to x,, x,, x,, xIo and x , ~  and 
then to x, and xI2 .  This precedence order implies that at least 
two measurement variables, one in the end block of each 
branch, are needed in the fault monitoring system to satisfy 
the diagnostic observability condition. 

One conclusion can be drawn from the above discussions: 
the diagnostic observability of a system is ensured by selecting 
one measurement variable in the end block of each branch of 
the precedence diagram. If a system consists of only one block, 
then this block itself is the “end” block. With such a selection 
strategy, unbiased estimates can be obtained under the con- 
dition that the assumed fault is the one that actually occurs, 
that is, all diagonal entries in the diagnostic performance table 
should be “4.” However, identifying the correct fault origin 
is exactly the purpose of diagnosis and thus all possible faults 
must be considered in parallel. As a result, the diagnostic 
resolution may be unacceptably low, that is, the number of 
“ o ” is large, due to the fact that more than one fault may 
create the same abnormal behaviors observed in the measure- 

Example 6. 

A B 
Figure 7b. The precedence diagram corresponding to 

the structural matrix shown in Figure 7a. 
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Figure 8a. The simplified process flow diagram of a 5- 
tank system. 

ment data. This problem will be analyzed in detail and the 
corresponding remedial measures will be developed in the next 
section. 

Diagnostic Resolution 
Reasoning from the fact that the number of “ o ” can be 

reduced by varying the distribution of sensor locations, one 
can clearly see that diagnostic resolution is related to the struc- 
ture of the system model. The impact of noise is actually 
relatively unimportant. It can be shown that, even if the cor- 
responding variances used in the EKFs are changed consid- 
erably, the resulting diagnostic performance table remains the 
same. Thus, the effects of the noise were neglected and only 
those concerning structural properties of models were analyzed 
in this article. 

As a result of the optimization formulation used in deriving 
the Kalman filters, the estimated parameter obtained by the 
EKF algorithm usually forces the estimated values of the state 
variables to follow the measurement data as closely as possible. 
In an observable system, if the assumed fault in EKF is correctly 
anticipated, the results produced by the corresponding cal- 
culations can be verified by: 

treating the estimates of the parameter and the measure- 
ment variables as inputs to the model equations assumed in 
the EKF and, then, 

Variable 

n 

(J----(&J 10,ll 

Figure 8c. The precedence diagram corresponding to 
the structural matrix shown in Figure 8b. 

integrating the assumed model equations to determine the 
transient behaviors of all state variables. 

The “estimates” of both the measured and unmeasured state 
variables generated in this fashion will, of course, be in close 
agreement with their actual values. 

If the assumed fault in an EKF is different from the actual 
one, then several possible situations may occur after imple- 
menting the same procedure mentioned above. Firstly, the 
resulting estimates of all the state variables may still be good 
approximations of the true values. This fault then cannot be 
excluded. Thus, the corresponding entry in the diagnostic per- 
formance table should be filled with an “ o .” Secondly, the 
estimates of the measured variables may match the measure- 
ment data (their true values) well, but those of the unmeasured 
variables deviate from their actual behaviors. In this case, the 
assumed fault cannot be excluded either and should be class- 
ified as an error denoted by “ o .” Finally, the calculated values 
of the measured variables may be significantly different from 
on-line data. On the basis of this observation, one can delete 
the assumed fault from the list of candidates. This is the sit- 
uation corresponding to a blank in the diagnostic performance 
table. 

From the above analysis, it can be seen that the diagnostic 
performance table can also be produced by the alternative 
procedure mentioned above. Notice that, if this alternative 
procedure is carried out without modifications, one still needs 
to carry out separate simulation studies, one for each entry, 
to construct the entire diagnostic performance table. However, 
these computations can be completely avoided if one takes 
advantage of the fact that, corresponding to the same set of 
chosen measurement variables, the calculation steps in the 
alternative procedure are the same for all entries in the diag- 
nostic performance table. Thus, the key to this problem is 
analyzing the precedence order of the computation process 
described above. Under the condition that the system is ob- 
servable (which can be created by the method outlined in the 
previous section), the off-diagonal entries in a diagnostic per- 
formance table can be determined, without numerical com- 
putation, by the following simple procedure: 

1. Construct the structural matrix corresponding to the sys- 
tem model. 
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Figure 9a. The precedence order of the proposed veri- 
fication procedure corresponding to two 
measured variables (x2 and x5) for the system 
shown in Figure 8a. 

2. Eliminate the off-diagonal entries corresponding to the 
measurement variables in the structural matrix. 

3. Apply the partitioning algorithm described in the Ap- 
pendix to the matrix obtained in the previous step. Draw the 
resulting precedence diagram. 

4. Select an end block in the precedence diagram which 
contains a measurement variable. Trace a path backward from 
this block until a branching block is reached. Remove the 
branching block from the path. Repeat this path-tracing pro- 
cedure until all such paths are exhausted. 

5 .  Repeat Step 4 until all such end blocks are exhausted. 
6. Select one of the paths obtained in the previous step. List 

all the model equations on this path and also all the parameters 
in these equations. If there are more than two parameters in 
the resulting list and these parameters do not appear elsewhere, 
then fill the corresponding positions in the diagnostic per- 
formance table with the symbols " o ." Repeat this process 
until all such paths are exhausted. 

7. If two or more parameters appear only in one equation, 

xl0,xll 

Figure 9c. The precedence order of the proposed veri- 
fication procedure corresponding to two 
measured variables (x5 and xs) for the system 
shown in Figure 8a. 

then place " o " at the corresponding locations in the diag- 
nostic performance table. Repeat this process until all such 
cases are exhausted. 

8. The rest of the entries in the diagnostic performance table 
should be left blank. 

Notice that, as a result of Step 2, unmeasured state variables 
are guaranteed not to appear in the terminal blocks of the 
paths obtained in Step 5 .  Each of these blocks contains one 
and only one measurement variable and no unmeasured vari- 
ables. If two or more faults can affect the variables on the 
same path and the corresponding parameters do not appear 
elsewhere in the system model, then their effects can only be 
detected from the measurement variable in the end block of 
this path. Generally speaking, if one of these faults occurs 
during operation, the abnormal behavior observed in the meas- 
urement data can be interpreted as due to a change in any of 
the above parameters on the path. Thus, if the assumed fault 
is incorrect and, also, corresponding to one of these param- 
eters, an error associated with " o " will be committed in 
diagnosis. 

If  the effects of a fault can be observed from two or more 
independent sources of measurement information, then in gen- 
eral this fault can be uniquely identified. In other words, the 

x 3, x 4, x9 ,  
x 10,x 11 

Figure 9b. The precedence order of the proposed veri- 
fication procedure corresponding to two 
measured variables (x2 and xlz) for the system 
shown in Figure 8a. 

Figure 9d. The precedence order of the proposed veri- 
fication procedure corresponding to two 
measured variables (x5 and x12) for the system 
shown in Figure 8a. 
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Table 5a. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8a) with Two Measured Variables 

X2J5 4, CII (‘12 c13 c14 CIS f r l  f n  f r 3  f r4  f6  f* f i l  

4, J 

CIZ d, 0 

c13 J o o  0 0 0  

c14 O J  0 0 0  

f r l  

f r 2  
fr3 0 J 
f r4  0 0 0  J 

f* 
f r7 

C / l  0 : 
0 0 :  0 0 0 0  

J 
J 

f f i  0 0 0  0 : :  
0 0 0  o o J  

0 J 

corresponding parameter is associated with a branching block, 
one of its upstream blocks or multiple blocks on more than 
one path. Also, although several different faults may affect 
the same set of measurement variables, it is assumed here that 
their effects on these variables are distinguishable in most 
realistic systems. Thus, one of the heuristic guidelines used in 
the above procedure for constructing the diagnostic perform- 
ance tables is that the off-diagonal positions corresponding to 
these parameters should be left blank. There is, however, one 
exception to this rule: these parameters may appear only in 
one equation. In such a case, their effects on all measurement 
variables are interchangeable and the corresponding entries in 
the diagnostic performance table should be “ .” 

To illustrate the implementation procedure of the proposed 
method, the following example is provided: 

Example 7. Let us continue our study on the system de- 
scribed in Example 6. From the conclusions of the previous 
example, two measurement variables, that is, one each in the 
blocks (x2, xs) and (xs, xI2), are needed to ensure diagnostic 
observability. There are four combinations possible: (xz, x,) , 
(x2,  x I 2 ) ,  (xs, x8) and (x,, xI2). Their precedence diagrams 
can be obtained by carrying out Step 1 to Step 3 of the proposed 
procedure (Figure 9a-9d). From these diagrams, the corre- 
sponding diagnostic performance tables can be determined by 
implementing Step 4 to Step 8. We have found that the two 
diagnostic performance tables corresponding to (xz, x5) and 
(xs, x8) are exactly the same (Table 5a). Similarly, either one 

Table 5b. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8a) with Two Measured Variables 

J J  
0 J 

0 0 0  J o o o  
0 0 0  o J  0 
0 0 0  0 0 :  
0 0 0  0 0 0 :  

x2 

Figure 10a. The precedence order of the proposed ver- 
ification procedure corresponding to three 
measured variables (x2, x3 and x5) for the 
system shown in Figure 8a. 

of the two alternatives, (x2, xI2) and (xs, x12) ,  can be selected 
to produce the results shown in Table 5b. From these two 
tables, one can conclude that the resolution of the former two 
cases is higher and thus they represent better choices if only 
two measurement variables are allowed. 

To improve the resolution of the fault monitoring system, 
additional measurement points must be introduced. Let us first 
consider the precedence diagram corresponding to the selection 
(x2, x 5 ) ,  that is, Figure 9a. One can clearly see that the major 
source of “ o ” comes from the block (x3, x,, x,, xlo, xl l ] .  
Thus, the natural choice will be one of these variables. The 
precedence diagrams and diagnostic performance tables cor- 
responding to all five possible combinations are presented in 
Figures 10a-10e and in Tables 6a-6e, respectively. By counting 

1 

x 4  

Figure lob. The precedence order of the proposed ver- 
ification procedure corresponding to three 
measured variables (x2, x4 and xs) for the 
system shown in Figure 8a. 
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xl0,xll 

Figure 1Oc. The precedence order of the proposed ver- 
ification procedure corresponding to three 
measured variables (x2, x5 and xs) for the 
system shown in Figure 8a. 

the number of " o " in these tables, one can see that the best 
choice is (xz, x,, xII). 

Based on Figure lOe, it is obvious that x, and xIz need to be 
measured to completely eliminate the errors associated with 
" 0 ." Thus, to minimize the number of " o "sin the diagnostic 
performance table for this example, five measurement vari- 
ables are needed: x2, x,, x,, xI1 and xI2. Its precedence diagram 
and diagnostic performance table are given in Figure 11 and 
Table 7, respectively. Furthermore, if the measurement of the 
inlet flow rate to the tank located farthest upstream is feasible, 
the errors in diagnosis can be eliminated entirely. Finally, it 
should be pointed out that this set of measurement variables 

Figure 10d. The precedence order of the proposed ver- 
ification procedure corresponding to three 
measured variables (x2, x5 and xlo) for the 
system shown in Figure 8a. 

x9,xlO -4 
Figure 10e. The precedence order of the proposed ver- 

ification procedure corresponding to three 
measured variables (x2, x, and xi,) for the 
system shown in Figure 8a. 

can also be obtained by considering other alternatives which 
also satisfy the diagnostic observability criterion, that is, (x2,  

Notice that a diagnostic performance table can be con- 
structed with the proposed algorithm for any given set of 
measurement variables. If the sensor for measuring a particular 
state variable is unavailable or too expensive, then this variable 

x d ,  (xs, xs) and (x,, x d .  

Table 6a. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8a) with Three Measured Variables 

f r l  

L2 
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Table 6b. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8s) with Three Measured Variables 
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Table 6c. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8a) with Three Measured Variables 

X,,X,,X, q, CII ct2 c13 c/4 CIS A1 fr2 f r 3  fr4 LS f6 f r 1  

q, J 

c13 J o  0 0 0  

c14 o J  0 0 0  

Cl5 J 0 

J 
CII 0 
CI2 0 

f r 5  0 0  o J o  
0 0  o o J  f6 

fr7 0 J 

Table 6d. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8a) with Three Measured Variables 

x2,x5,x10 qt ci2 c13 c14 fA fr2 f r 3  fr4 .f6 f6 frl 
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Table 6e. Diagnostic Performance of a 5-Tank System (Fig- 
ure 8a) with Three Measured Variables 

CIS 

f,l 
fr2 
ft3 

f,4 

frs 
f6 
frl 

J 0 
J 

J 
0 J 

J 
J 

J 
0 J 

can be excluded from consideration. The best fault monitoring 
system is simply the one with the maximum number of blanks 
in the diagnostic performance table. 

It should be pointed out that the suggested procedure for 
selecting the measurement variables has been verified by nu- 
merous simulation studies. The diagnostic performance tables 
predicted by applying this procedure to the models described 
in Examples 2 ,3  and 4 are exactly the same as those produced 
numerically in Tables la-lc, 2a-2f, 3a-3e and 4a-4d. Also, 
the correctness and effectiveness of the proposed approach has 

n 
I x8  I 
U 

n 

Figure 11. The precedence order of the proposed veri- 
fication procedure corresponding to five 
measured variables (xz, x,, x,, xll and xlJ for 
the system shown in Figure 8a. 

been demonstrated without exceptions in many other more 
complex examples, for example, a number of 3-tank systems 
in various different configurations (Mah, 1992) and the 5-tank 
process described in Example 7. In addition, since the devel- 
opment of the proposed approach is general, extensions to 
processes other than the tank systems is straightforward. A 
realistic example is provided as the supplementary material of 
this article. Thus, although the design strategy presented here 
is based only a qualitative analysis, due to its reliability and 
efficiency, this method should be considered as a practical tool 
for the placement of sensor locations in complex chemical 
plants. 

Methods for Enhancing Diagnostic Performance 
Although the number of “ o ” in the diagnostic performance 

table can be minimized by altering the distribution of sensor 
locations, mistakes associated with “ ” or “ o ” are still 
possible in diagnosis. Thus, there is a need to develop addi- 
tional performance-enhancing methods by making use of in- 
formation which is not included in the previous analysis. Two 
types of such informations are useful, that is, the physical 
significances of the model parameters and the fault patterns 
obtained from the parallel estimation calculations. 

Generally speaking, variations in the same parameter may 
be interpreted differently on the basis of their trends. For 
example, there are two possible failure modes associated with 
a valve, that is, the valve fails to open or close, and they can 
be described by changing the value of parameterf, in opposite 
directions. On the other hand, there is no guarantee of one- 
to-one correspondence between the deviations in parameters 
and the actual faults. For example, the parameter associated 
with a tank leak, cl, cannot possibly be negative. Thus, with 
the help of these insights, one should be able to eliminate some 
of the errors represented by “ o ” and “ ” in the diagnostic 
performance table. 

Although the number of blanks cannot be further increased 
after implementing the method suggested above, still higher 
diagnostic resolution can be realized via the analysis of fault 
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Table 7. Diagnostic Performance of a 5-Tank System (Figure Table 8a. Modified Diagnostic Performance of a Two-Tank 
8a) with Five Measured Variables System (Figure 5) with Two Measured Variables 

J 
0 :  

J 
J 

J 
J 

J 
J 

J 
J 

J 
J 

J Table 8b. Fault Patterns for a Two-Tank System (Figure 5) 
with Two Measured Variables 

patterns. As mentioned before, the entries in each row of the 
diagnostic performance table are obtained by applying the 
parallel parameter estimation method to the measurement data 
collected on the same fault. It may be possible for several 
“ o ”s and/or “ ”s to appear in the same row. However, 
their patterns corresponding to different faults may not be the 
same. Thus, by comparing the fault patterns in the diagnostic 
performance table, a fault may be uniquely identified even 
when the errors “ 0 ”  and/or “ o” still exist in the corre- 
sponding row. 

The following example is presented to illustrate the useful- 
ness of these two types of information: 

ExampIe 8. Let us make use of the results obtained in 
Example 3. Consider the case in which hl and qI are selected 
as the measurement variables, that is, Table 2a. Assume that 
there are 10 possible faults in this system, that is, a change in 
the inlet flow rate (qit or qil), a leak in one of the tanks (cI1 t 
or cnt), partial blockage in one of the pipelines Upl t or fp21), 
accidental opening of one of the valves cful I or fu21) or acci- 
dental closure of one of the valves Cf,, t or fu2t). After taking 
into account of their effects on the parameters, Table 2a can 
be changed into Table 8a. In this table, a “ x ”  is used to 
indicate the fact that the corresponding estimate does not have 
any physical meaning and can be removed from the table. 
Furthermore, since the fault origin is not known before di- 
agnosis, the faults associated with “4,” “ ” or “ 0’’ are 
actually indistinguishable, that is, Table 8a should be replaced 
by Table 8b. The entries in each row of Table 8b represent the 
fault pattern corresponding to the fault origin. From row 2 
and row 3 of this table, one can see that a decrease in the inlet 
flow rate may be confused with a leak in the first tank or vice 
versa. Similarly, from the observation that the fault patterns 
in several other groups of rows (4,5), (8,9) and (7,lO) are the 
same, the corresponding faults in each group cannot be dif- 
ferentiated either. Thus, if any of these faults occurs, the results 
of diagnosis must include two candidates. Also, from rows 1 
and 6, one can conclude that there are only two uniquely 
identifiable faults: those represented by qit and ful I .  

Finally, it should be pointed out that, even with these per- 
formance-enhancing methods, the best overall performance of 
the fault monitoring system can only be achieved by placing 
the measurement points according to the procedure suggested 
in the previous sections. For example, if the hl and q2 are 

h,q1 4, C/ l  &I f”1 c i 2  f p 2  f u 2  

Q t f  A 

qil A A 

Cil f A A 

f P l  t A A 

f”1 f A A 

f”l1 A 

c i2  f A A A 
f p 2  f A A A A 

f ” 2 f  A A A A 

f”21 A A A 

measured in Example 8, then the faults corresponding to row 
7 and row 10 of Table 8b can be differentiated without dif- 
ficulties. 

On-Line implementation Strategies 
The computational load of the parallel parameter estimation 

method is quite demanding if it is implemented literally without 
modifications. To satisfy the needs in practical applications, 
several time-saving strategies have been adopted in this work. 

First of all, the differential equations adopted in each of the 
EKFs does not have to be associated with the model of the 
entire system. Only a subset of the model equations is really 
needed. This point can be seen by applying the partitioning 
procedure in the Appendix to decompose the system into sev- 
eral blocks. Since one specific fault is assumed to occur in each 
of the EKFs, it is only necessary to consider those blocks that 
are affected by the assumed fault, that is, the blocks in which 
the corresponding parameter appears and their downstream 
blocks. If some of the upstream variables are included in this 
subset of model equations, their values should be considered 
to be at the normal levels without variations. Notice that, in 
implementing these parallel EKFs, if a parameter is found to 
be significantly different from its normal value, then additional 
tests must be made to determine whether the assumed fault is 
indeed the correct one. More specifically, it is necessary to 
compare: 

the estimates and the measurement data of the downstream 

the assumed (normal) values and the measurement data 
measured variables; and 

of other measured variables. 
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A standard hypothesis testing technique (Himmelblau, 1978) 
can be utilized for this purpose. If any of the above tests fails, 
then the corresponding entry in the diagnostic performance 
table should be a blank. Otherwise, the assumed fault should 
be considered as one of the candidates. 

From the above discussions, one can see that the sizes of 
the EKFs used in the parallel parameter estimation method do 
not have to be the same. Since the EKFs corresponding to the 
parameters in the downstream blocks are smaller, the effort 
in computation can be reduced considerably. But, it is still 
necessary to estimate all the parameters in the system model. 
To cut down the computational load further, a two-step tech- 
nique can be utilized. First, the subsystem in which the actual 
fault occurs can be identified by comparing the measurement 
data with their normal values. Then the on-line estimation 
technique can be applied to a combined system which consists 
of this subsystem and all its downstream blocks. In this case, 
estimation of the parameters that appear outside the subsystem 
becomes unnecessary. Thus, one of the obvious advantages of 
the two-step approach is that the number of activated EKFs 
can be reduced significantly. Furthermore, the calculations 
involved in parameter estimation can be avoided completely 
during normal operation. Following is a simple procedure for 
identifying the subsystem in which the fault occurs: 

1. Apply the partitioning algorithm described in the Ap- 
pendix and draw the corresponding precedence diagram. 

2. Find the blocks in which all the measured variables remain 
normal. Remove these blocks and their upstream blocks from 
the precedence diagram. 

3. Identify the blocks farthest upstream in which one or 
more measured variables are located. These blocks and their 
upstream blocks form the subsystem in which the actual fault 
occurs. 

Naturally, the above strategy is not without drawbacks. For 
example, the criteria for testing hypotheses have not been well 
established and thus there is a chance for misdiagnosis or false 
alarm. Also, not only the model equations associated with the 
subsystem but also those in its downstream blocks must be 
included in the EKF calculations. Therefore, more than one 
block may be included in the combined system (the subsystem 
and its downstream blocks) and the size of the corresponding 
model may still be very large. In implementing the parallel 
estimation method, each EKF is used to determine the value 
of the parameter corresponding to one possible fault in the 
subsystem only. Instead of applying the conventional algo- 
rithm directly, several smaller EKFs, each of them associated 
with one of the blocks, can be used in series to achieve the 
same purpose. EKFs are first applied to the blocks located 
farthest downstream. Upstream variables that appear in these 
blocks should be considered as the “parameter” to be esti- 
mated. The estimates of these variables can then be treated as 
the “measurement data” in their respective blocks. This proc- 
ess can be repeated until the block in which the assumed fault 
exists. 

To illustrate this implementation procedure, a simple ex- 
ample is presented in below: 

Example 9. Let us consider the system described in Ex- 
ample 4. This system can be separated into two blocks, that 
is, an upstream block ( hl,  ql ) and a downstream block { h2, 

q2 ) . If the anticipated malfunction is a leak in the upstream 
tank, then the model equations included in the EKF associated 
with the downstream block is 

Here, the outlet flow rate of the upstream tank ql is treated 
as a parameter to be estimated by the Kalman filter. The 
estimated values of q1 can then be considered as the measure- 
ment data in the EKF associated with the upstream block. The 
corresponding model equations are: 

This approach has been verified by simulation for various 
combinations of measurement variables. We have found that 
all conclusions in the diagnostic performance table remain 
unchanged. 

For this problem, the savings in computation time is not 
obvious. Notice that the number of model equations included 
in a conventional EKF is five. Thus, the number of differential 
equations involved in actual computation should be 20. On 
the other hand, due to the fact that there are three model 
equations in each block and thus nine differential equations 
in each EKF, this number can be reduced to 18 if the proposed 
approach is adopted. However, if one considers a larger and 
more complex system, their difference will become more ap- 
parent. For example, let us consider a 10-tank system in which 
the tanks are connected in the same fashion as that of Figure 
6. In this case, the number of differential equations involved 
in the conventional algorithm should be 252. But, only 90 
equations are needed if the proposed method is adopted. 

Conclusions 
A simple yet practical design strategy has been developed in 

this study to optimize the performance of model-based fault 
monitoring systems. The success of such a strategy is built 
upon several new features which have not been implemented 
before. Firstly, a parallel parameter estimation method has 
been adopted to reduce the chance of producing biased esti- 
mates, which is a phenomenon commonly seen in the imple- 
mentation of the extended Kalman filter. Secondly, to quantify 
the performance of fault monitoring systems, the concepts of 
diagnostic observability and diagnostic resolution have been 
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introduced and represented by diagnostic performance tables. 
Thirdly, Steward’s partitioning algorithm has been modified 
for the purpose of selecting the smallest set of measurement 
variables necessary for ensuring observability. Fourthly, to 
achieve the highest resolution, a simple procedure has been 
worked out for placing the sensor locations only on the basis 
of the structural information of the system model. Fifthly, 
other performance-enhancing measures have also been devel- 
oped on the basis of additional insights gained by analyzing 
the physical significance of the model parameters and com- 
paring the fault patterns in the diagnostic performance table. 
Finally, several on-line implementation strategies have been 
proposed to relieve part of the computation burden in carrying 
out the parallel EKFs. 

It must be emphasized that, although the development of 
this design strategy is not theoretically rigorous, the correctness 
of its results has been supported by numerous simulation stud- 
ies. In addition, since implementation is simple and easy, one 
can conclude that the proposed approach is practical even for 
large and complex chemical processes. 
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Notation 
A = the cross-sectional area of a tank 
c, = the parameter that characterizes tank leaks 
d = the diameter of a pipeline 
f = the friction factor for the flow in a pipeline 
fp = the parameter that represents the additional friction caused by 

partial blockage in a pipeline 

f. = the parameter that represents the additional friction caused by 
the valve in a pipeline 

h = the height of liquid level in a tank 
I = the length of a pipeline 

q = the volumetric flow rate in a pipeline 
Q = covariance matrix corresponding to the system model 
R = covariance matrix corresponding to the measurement noise 

Greek letter 

f ,  = f p  + f ”  

t = time 

p = the density of liquid 

Literature Cited 
Chang, C. C., and C. C. Yu, “On-line Fault Diagnosis Using the 

Signed Directed Graph,” Ind. Eng. Chem. Res., 29, 1290 (1990). 
Churchill, S. W., “Friction-Factor Equation Spans all Fluid-Flow 

Regimes,” Chem. Eng., 84(24), 91 (1977). 
Dalle Molle, D. T., and D. M. Himmelblau, “Fault Detection in a 

Single-Stage Evaporator Via Parameter Estimation using the Kal- 
man Filter,” Ind. Eng. Chem. Res., 26, 2482 (1987). 

Davis, J. F., S. K. Shum, B. Chandrasekaran, and W. F. Punch, 111, 
“A Task-Oriented Approach to Malfunction Diagnosis in Complex 
Processing Plants,” NSF-AAAI Workshop on AI in Process En- 
gineering, Columbia University, New York (Mar. 9-10, 1987). 

Denn, M. M., Process Fluid Mechanics, Prentice-Hall, Englewood 
Cliffs, NJ (1980). 

Himmelblau, D. M., Fault Detection and Diagnosis in Chemical and 
Petrochemical Processes, p. 44, Elsevier, Amsterdam (1978). 

Hoskins, J. C., K. M. Kaliyur, and D. M. Himmelblau, “Fault Di- 
agnosis in Complex Chemical Plants Using Artificial Neural Net- 
works,’’ AIChE J.,  37(12), 137 (1991). 

Isermann, R., “Process Fault Detection Based on Modeling and Es- 
timation Methods-A Survey,” Automatica, 20, 387 (1984). 

Kramer, M. A., and B. L. Palowitch, Jr., “A Rule-Based Approach 
to Fault Diagnosis Using the Signed Directed Graph,” AIChE J., 
33(7), 1067 (1987). 

Lamb, D. E., P. Dhurjati, and D. L. Chester, “Development of an 
Expert System for Fault Identification in a Commercial Scale Chem- 
ical Process,” NSF-AAAI Workshop on AI in Process Engineering, 
Columbia University, New York (Mar. 9-10, 1987). 

Lees, F. P., “Process Computer Alarm and Disturbance Analysis: 
Review of the State of the Art,” Comput. Chem. Eng., 7(6), 669 
(1983). 

Li, R., and J. H. Olson, “Fault Detection and Diagnosis in a Closed- 
Loop Nonlinear Distillation Process: Application of Extended Kal- 
man Filters,” Ind. Eng. Chem. Res., 30, 898 (1991). 

Ljung, L., System Identification: Theory for the User, Prentice-Hall, 
Englewood Cliffs, NJ (1987). 

Mah, K. N., Design ofFault Monitoring Systems in Pipeline Networks, 
MS Thesis, National Cheng Kung University, Tainan, Taiwan (1992). 

Park, S., and D. M. Himmelblau, “Fault Detection and Diagnosis 
via Parameter Estimation in Lumped Dynamic Systems,” Ind. Eng. 
Chem. Process Des. Dev., 22, 482 (1983). 

Petti, T. F., J. Klein, and P. S. Dhurjati, “DiagnosticModel Processor: 
Using Deep Knowledge for Process Fault Diagnosis,” AIChE J. ,  
36(4), 565 (1990). 

Rich, S. H., and V. Venkatasubramanian, “Model-Based Reasoning 
in Diagnostic Expert Systems for Chemical Process Plants,” Com- 
put. Chem. Eng., 11(2), 111 (1987). 

Steward, D. V., “Partitioning and Tearing Systems of Equations,” 
SIAM J., B2(2), 345 (1965). 

Venkatasubramanian, V., and K. Chan, “A Neural Network Meth- 
odologyfor ProcessFault Diagnosis,”AIChEJ., 35(11), 1993 (1989). 

Venkatasubramanian, V., R. Vaidyanathan, and Y. Yamamoto, 
“Process Fault Detection and Diagnosis Using Neural Network- 
I. Steady-State Processes,” Comput. Chem. Eng., 14, 699 (1990). 

Watanabe, K., and D. M. Himmelblau, “Fault Diagnosis in Nonlinear 
Chemical Processes, Part I. Theory,” AIChE J., 29(2), 243 (1983a). 

Watanabe, K., and D. M. Himmelblau, “Fault Diagnosis in Nonlinear 
Chemical Processes, Part 11. Application to a Chemical Reactor,” 
AIChE J . ,  29(2), 250 (1983b). 

Watanabe, K., and D. M. Himmelblau, “Incipient Fault Diagnosis 
of Nonlinear Processes with Multiple Causes of Faults,” Chem. 
Eng. Sci., 39(3), 491 (1984). 

Watanabe, K., Matsuura M. Abe, M. Kubota, and D. M. Himmelblau, 
“Incipient Fault Diagnosis of Chemical Process via Artificial Neural 
Networks,” AlChE J., 35(11), 1803 (1989). 

Willsky, A. S., “A Survey of Design Methods for Failure Detection 
in Dynamic Systems,” Automatica, 12, 601 (1976). 

Yu, C.-C., and C. Lee, “Fault Diagnosis Based on Qualitative/Quan- 
titative Process Knowledge,” AIChE .I., 37(4), 617 (1991). 

Appendix 
For the completeness of this article, a modified version of 

the partitioning algorithm suggested by Steward (1965) is pre- 
sented here. Notice that instead of simultaneous algebraic 
equations, a system of ordinary differential equations is the 
subject of our analysis. Thus, the output variable correspond- 
ing to each equation is automatically determined and there is 
no need for selecting the output set, which is a critical step in 
Steward’s algorithm. After constructing the structural matrix, 
the following procedure can be followed to obtain a partition 
of the system: 

1. We look for a row with no off-diagonal element and 
eliminate that row and the column corresponding to it. We 
repeat this process until there are no further rows without off- 
diagonal elements. 

2. We begin tracing a path through the structural matrix by 
following the off-diagonal elements in search of a loop as 
follows: 
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(a) Select the first row remaining in the matrix as the “row 
to be examined” and enter its row number on a list. 

(b) Locate the first off-diagonal element in the row being 
examined. 

(c) Select the row corresponding to the column in which 
the off-diagonal element was found as the next row to 
be examined and add the row number to the list of 
rows examined. 

(d) If the new row number has not previously been ex- 
amined (that is, is not already on the list), return to 
Step b and continue tracing. 

(e) If the new row number is already on the list, then we 
have found a loop containing all of the rows whose 
numbers appear on the list between the two occurrences 
of the last row number on the list. 

3. When we find a loop, we replace the set of rows in the 
loop by one row which is the union of the rows replaced. The 
union of the two rows is a row which contains an element in 

each column in which either row originally contained an ele- 
ment. This we call collapsing the rows in the loop. Similarly, 
we collapse the columns corresponding to these rows. 

4. We proceed to Step 1 and look for a row with no off- 
diagonal element. When a row is eliminated in Step 1, that 
row and the rows which collapse to form it represent the equa- 
tions in a block. The order in which rows without off-diagonal 
elements are eliminated gives an order in which the changes 
in the variables of these blocks may occur. 
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