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ABSTRACT 

A generic scheme of integrated artificial neural networks has been studied in this work for 
the purpose of fault detection and diagnosis in dynamic systems with varying inputs. Two 
general types of neural models, i.e. the feedforward networks (FFNs) and the recurrent 
networks, were integrated in the proposed fault monitoring system. To demonstrate the 
utility of the proposed methodologies, extensive experimental studies have been carried out 
on a. pilot plant which simulates the operation of a semi-batch storage system. It can be 
o&erved IhIt the predictions of the normal system behavior are very accurate and, also, 
tbc: diagnostic conclusions obtained with the integrated networks are highly reliable. 
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THE FRAMEWORK OF INTEGRATED NEURAL NETWORK 

Initial studies on artificial neural networks (ANNs) for fault detection and diagnosis suggest- 
ed that the FFNs could monitor the continuous chemical processes adequately (Hoskins and 
Himmelblau, 1988). Later, application studies were carried out using steady-state data from 
practical systems (Venkatasubramanian and Chan, 1989; Himmelblau, 1992). Although the 
results reported in these studies are in general quite satisfactory, their methods are applica- 
ble only to a limited number of realistic situations. This is due to the facts that, after the 
inception of faults, the system may go through a long period of continuous change before 
reaching a new steady state and, furthermore, steady-state data may not even be available 
if the system inputs are varying with time. Thus, an on-line fault monitoring system for 
dynamic processes should consist of two distinct functions, i.e. fault detection and diagnosis. 
A framework of the integrated neural network (see Fig. 1) has been developed in this work 
to perform these two tasks separately. A brief description of its components is presented in 
the sequel. 

In this work, the “plant” refers to a chemical process operated in an unsteady or batch 
mode. The outputs y(t) f rom the plant are obviously corresponding to the sensor mea: 
surements and the inputs u(t) can be regarded as signals sent to the actuators or as other 
external parameters affecting the process conditions of the system. The inputs can always 
be measured on-line. However, in many batch operations, the actuator inputs are usually 
manipulated with a programmable logic controller according to a recipe. Thus, their target 
values at any time during operation should be available in advance and can be used directly 
as inputs to the neural networks. 

In this fault monitoring system, the residzlal generator is the most critical component. The 
residuals, Ay = y - 9, are essentially measures of the discrepancy between the observed 
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Fig. 1. The framework of integrated neural networks. 

system behavior and that should result under normal conditions (Kramer and Mah, 1993). 
In previous publications, transient data corresponding to the latter were usually computed 
with the aid of mathematical models. However, since it is sometimes difficult to derive 
realistic models from basic principles of chemical engineering, a hybrid neural network has 
been developed for the same purpose. The residuals are then processed in two other com- 
ponents of the system. First, simple threshold tests are performed in a fault detector to 
identify abnormal conditions on-line. Next, the task of fault diagnosis is carried out with a 
moving-window feedforward network which maps the patterns of residuals to fault origins. 

THE HYBRID NETWORK 

Theoretically, the long-term dynamic behavior of a process system can be successfully pre- 
dicted with an external recurrent network (ERN) if enough data are given and, also, the 
convergence criteria in training are satisfied (Su and McAvoy, 1992). However, this ap- 
proach is questionable if applied blindly. First of al!, the training process may be extremely 
difficult to converge. Secondly, even if convergence 1s achieved, poor prediction may still be 
possible in the generalization stage. This is caused by mistakenly identifying an unsuitable 
local minimum in the iterative training process. 

In this work, physical insights of the systems were used as an aid for conjecturing the 
configurations of the neural network. It has to be realized that, in most chemical engineering 
applications, at least a qualitative description of the system is available. In addition to the 
cause-and-effect relations amongst input and output variables, knowledge about the dynamic 
characteristics of the system can sometimes be obtained. If the response times of different 
output variables with respect to the inputs are known to vary widely, the qualitative model 
of the plant can be expressed in the following form: 

dxl 
- = fl(X1,X2,~,~) 
dt x2 = f2(Ml,U) (10) 

YI = h(m) ~2 = hz(x2) @,2b) 
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Fig. 2 The configuration of a generalized hybrid network. 

where t is the time, x1 and x2 vectors of state variables, and u a vector of known inputs. Eqs. 
(2a) and (2b) simply indicate that the outputs y1 and y2 are functions of the state variables 
x1 and x2 respective1 

“i 

. 
in Eqs. (la) and (lb 

Since an ERN is not designed to handle the coupled relations implied 
, it is necessary to introduce a change in the corresponding network 

structure. 

In our study, the above information was incorporated in a generalized hybrid network (Fig. 
2) to facilitate the construction of proper models for batch processes. Essentially, this 
network is built with two feed forward networks. The first one (FFN1) maps the estimated 
output values and the input values at current and previous time steps to the estimates of 
y1 at present time, i.e. 

31(t) = F.1 bw - W1(t - 3, * * * ; 92(t),Q2(t - l), . . . ; u(t), u(t - l), . . .] (3) 

In other words, it is a network similar to the FFN embedded in an ERN. The second network 
FFN2 is used to describe the functional relations represented by Eqs. (lb) and (2b), i.e. 

92(t) = 3.2 [W), u(f)1 (4) 

Notice that the outputs of FFN2 are the variables in 92(t). The inputs to FFN2 are limited 
to u and 91 at current time t. 

THE MOVING-WINDOW FEEDFORWARD NETWORK 

After detection of a fault, a feedforward network was used in this study to map the corre- 
sponding residual pattern to its origin. Since residuals associated with abnormal operating 
conditions may vary with time, it is important to include a profile trend as one of the inputs 
to FFN. Intuitively, this task can be accomplished with a moving-window FFN similar to 
the ones reported in previous publications, e.g. Vaidyabanathan and Venkatasubramanian 
(1990). 

Several methods of feeding this FFN were investigated in this work. In general, we have 
found that it is better to pre-process the raw time-series data associated with Eqs. (la) and 
(2a) and use the extracted features as inputs. At each time step t, the raw data in a window 
of size I, i.e. Ayl(t - iAt) (i = 0, 1,. . . , I - l), can be decomposed into the time-averaged 
values in AYl(t) and profile trend in Ayl(t - iAt) (i = 0, 1, . . . , I - 1) and then fed to the 
network. Specifically, these inputs can be calculated with the following equations: 

1 I-l 

Ah(t) = T c Ayl(t - i) (5) 
a=0 

AYl(t - iAt) = Ayl(t - ;At) - Agl(t) (6) 
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Fig. 3 The simplified P&ID of the pilot plant. 

On the other hand, the raw time-series data of Ay& - jAt) (j = O,l, . . . , J - 1) and 
u(t - kAt) (k = 0, 1, . . . , IC - 1) are still utilized in the network at each time t. 

THE PILOT PLANT 

One of the most celebrated advantages of artificial neural network is its ability to capture the 
complex input/output relations of a variety of physical systems directly from realistic data 
without the need to derive mathematical models. To verify the feasibility and effectiveness 
of this approach, a pilot plant (shown in Fig. 3) has been built in this study for producing 
the training and testing data. 

It can be seen from Fig. 3 that this experimental setup consists of a water reservoir, three 
open tanks (Z’i, Ts and T3) and the connecting pipelines. The reservoir’s height is 70 cm and 
the diameter 75 cm. The three tanks are identical in dimensions. The height and bottom 
diameter of each equal 123 cm and 50 cm respectively. The water reservoir and tank Ta are 
on the ground. The other two tanks, i.e. Tl and Tz, are placed on a bench with a height of 
77 cm. The 3/8” connecting pipelines are marked in Fig. 3 with thick solid lines, others l/4” 
pipelines are indicated by thinner solid lines. In order to regulate the interconnecting flows 
and to alter system configuration, needle valves, i.e. IV&, NVZ, . . . . NVT, ball valves, i.e. 
Sv,, BV2, . . . . BV,, and globe valve, i.e. G& , G&, . . . . 
In addition, branch pipelines which made of 1 

[ 

GVs, are installed on these pipelines. 
4” copper tubes are attached to the 3/8” 

pipelines. By opening the normally-closed need e valves, e.g. NVs, NVg and NVIO, on these 
branches, small leaks in the pipelines can be simulated. 

In our experimental setup, a number of process variables can be measured on-line. The 
discharge heads of the above two pumps are monitored with two identical pressure trans- 
mitters PTl and PT2. The corresponding measurement range is from 0 to 15 psig. The 
levels in Tl and Tz are measured via differential-pressure type level transmitters, i.e. LT, 
and LTZ. Their ranges are from 0 to 2.5 psig. The level in the third tank T3 is detected 
with an external-displacer type level transmitter LTS. 

EXPERIMENTAL RESULTS 

A total of five systems have been studied in this work. Due to space limitation, only a 
sample of the results concerning a simple two-tank system (see Fig. 4) can be reported in 
this paper. Notice that there are three variables that can be measured on-line, i.e. the 



European Symposium on Computer Aided Process Engineering-5 951 

HI 0.0 

-0 8 

Fig. 4 The flow diagram of a two-tank system. 

1 0.8 I 

HI 0.0 

0 4000 8000 12000 16000 

time(sec) time(sec) 

Fig. 5 Long-term prediction of the liquid levels in Tr and T2. 

outlet pressure of pump No. 1 (p) and the height of liquid level in Tl and TZ (h, and h2) 
respectively. The sampling interval in all experiments was 40 seconds. 

The specific hybrid neural network can be constructed according to Fig. 2. The correspond- 
ing supervised learning process was terminated when the objective function reached a value 
less than 0.02. In most cases, the performance of the trained network was quite satisfactory. 
An example of the generalization tests is shown in Fig. 5. One can see that the predicted 
values of the normalized liquid levels Hr and Hs match the untrained transient data very 
closely for a period of more than three hours. 

The standard FFN configuration has been adopted for fault diagnosis. The outputs of 
this network were related to six abnormal events that can be simulated experimentally, i.e. 
partial blockage in pipeline I, II and III, leakage in each of the two tanks and leakage in 
pipeline IV. The residuals associated with the three on-line measurements, i.e. AH,, AH, 
and AP, and the ON/OFF status of pump No. 1, i.e. U, at consecutive sampling intervals 
were decomposed and fed into the input layer of the network. A uniform window size of 8 was 
adopted for these four types of inputs. The training process was ended when the objective 
value was less than 0.025. Experimental tests showed that diagnosis corresponding to all 
fault origins were fairly accurate. The results corresponding to one of the simulated events, 
i.e. a leak develops in T,, are presented in Fig. 6. One can observe that, despite the fact 
that the symptoms of this event are very similar to those of partial blockage in the inlet 
pipeline to T+ the proposed network is still able to identify the correct cause of abnormal 
system behavlor within a short period of time. 

CONCLUSIONS 
Integrated neural-network-based techniques have been developed in this study for fault 
detection and diagnosis in dynamic processes. The principal difference between this paper 
and the published works which also address the problem of fault identification from transient 
data (Watanabe et al., 1989; Vaidyanathan and Venkatasubramanian. 1990) is that the 
external inputs to the given process are no longer assumed to be constant. As a result, it 
is necessary to first generate residuals associated with the on-line measurements and then 
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Fig. 6 Results of fault diagnosis. (1 = fault identified; 0 = otherwise) 

lccate + he ‘zurlt origins accordingly. This turns out to be the major point of departure from 
the Lrevious approaches. 

Extensive experimental studies have also been carried out in this work. Based on the test 
data we have produced so far concerning the hybrid networks, one can conclude that the 
accuracy demonstrated in their predictions definitely meets the need for a reliable fault 
detection scheme. Also, from the diagnostic results obtained in experiments, it can be 
observed that the moving-window FFN is in general able to correctly identify the residual 
pattern caused by a single fault origin. 
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