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Abstract--The extended Kalman filter (EKF) is one of the most popular model-based techniques for fault 
detection and diagnosis. Although its effectiveness has been widely recognized, the practical applications of 
EKFs are still very limited. This is due to the fact that the estimates of EKF are often biased when the 
occurrence of multiple faults is possible. In this study, we have extended the findings of our previous 
research on diagnostic observability and diagnostic resolution concerning a set of parallel single-parameter 
EKFs (Chang et al., 1993, A.I.Ch.E.J. 39, 1146) to the multiple-parameter EKFs which are designed to 
identify more than one fault origin. The problems in implementing these EKFs, i.e. misdiagnosis due to 
biased estimates and heavy computation load due to the parallel configuration, have been solved with 
a selection strategy for proper combinations of sensor locations and EKF parameters. More importantly, 
simple procedures have been developed to quickly evaluate the performance of any given system and the 
reliability of the proposed approach has been repeatedly confirmed in extensive simulation studies without 
exceptions. As a result, it becomes feasible to construct appropriate fault monitoring schemes without 
extensive computational effort even for large and complex chemical processes. 

INTRODUCTION 

Due to the frequency and seriousness of chemical 
accidents that have occurred during recent years, the 
importance of incipient fault detection and diagnosis 
in complex process plants has become apparent. Pre- 
vious studies in this area are mainly concerned with 
the developments of computer-aided monitoring sys- 
tems for assisting operators to respond to emergency 
situations effectively (Davis et al., 1987; Lamb et al., 
1987; Petti et al., 1990). Various different techniques 
were suggested, e.g. signed directed graph (Kramer 
and Palowitch, 1987; Chang and Yu, 1990; Yu and 
Lee, 1991), parameter estimation (Isermann, 1984), 
expert system (Rich and Venkatasubramanian, 1987; 
Petti et al., 1990) and neural networks (Venkata- 
subramanian and Chan, 1989; Watanabe et al., 1989; 
Venkatasubramanian et al., 1990; Hoskins et al., 
1991). In this research, a model-based approach was 
adopted for the development of fault detection and 
diagnosis methods. More specifically, detection of the 
changes in states and/or parameters of the mathemat- 
ical model was achieved by implementing system 
identification techniques and diagnosis of the fault 
origins, e.g. equipment malfunctions and external dis- 
turbances, were accomplished on the basis of the 
physical interpretations of these changes and/or struc- 
tural analysis of the model. As a direct result of this 
approach, the candidate faults in this research were 
limited to those that can be associated with parameter 
variations. In other words, sensor failures and failures 
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that can change the structure of system models were 
not considered in our analysis. 

There are a large number of related works pub- 
lished in the literature (Willsky, 1976; Isermann, 1984; 
Ljung, 1987). Among various different estimation 
techniques adopted in the past, the extended Kalman 
filter (EKF) is clearly one of the most popular 
methods, e.g. Hamilton et al. (1973), Park and 
Himmelblau (1983), Watanabe and Himmelblau 
(1983a, b; 1984), Dalle Molle and Himmelblau (1987), 
Li and Olson (1991) and Venkateswarlu et al. (1992). 
In essence, EKFs of one form or another were em- 
ployed to estimate both the states and parameters of 
chemical engineering systems and, then, causes of 
abnormal system behaviors were identified accord- 
ingly. Although the effectiveness of EKFs has been 
widely recognized, its use in commercial units was in 
fact very limited. This is mainly due to a critical 
drawback of EKF, i.e. its inability to guarantee un- 
biased estimates (Watanabe and Himmelblau, 1984). 
Obviously, incorrect information about the system 
parameters and/or states can mislead diagnosis. To 
overcome this problem, we modified the traditional 
way in implementing the extended Kalman filters in 
an earlier study (Chang et al., 1993). Instead of estima- 
ting all parameters simultaneously in a large EKF, 
several single-parameter EKFs were used in parallel. 
Although this approach served for the purpose of 
eliminating bias, there were still several unsettled 
issues requiring further attention. In particular, the 
computational effort needed to carry out the parallel 
parameter estimation scheme can be overwhelming 
and, more importantly, the possibility of multiple 
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faults was totally ignored. The present paper is a re- 
port of our recent studies which address these practi- 
cal issues in implementing the EKF-based fault diag- 
nosis techniques. 

The remainder of this paper is divided into eight 
parts. First, the specific steps to identify both the 
states and parameters with a conventional EKF are 
described and various causes of biased estimation 
reported in the literature are briefly reviewed. Sec- 
ondly, the concept of diaonostic observability is intro- 
duced to characterize outcomes of the above EKF 
computations. Next, an analysis of the propagation 
mechanisms of state estimates in EKF is provided to 
facilitate understanding of the relations between the 
state variables and model parameters. Then, on the 
basis of structural analysis of the system model, a test- 
ing procedure is outlined for identifying diagnostically 
observable EKFs. After the issue of observability is 
settled, a composite parameter estimation scheme, 
which incorporates several EKFs in parallel, is pro- 
posed to overcome another practical problem, i.e. 
misdiagnosis due to insufficient and/or inappropriate 
measurement points. Subsequently, the concept of 
diagnostic resolution is developed as a criterion for 
selecting the best scheme among competing candi- 
dates and a simple tool for its representation and 
quantification, i.e. the diagnostic performance table, is 
also described. Furthermore, a systematic procedure 
for constructing this table is presented in detail. Fi- 
nally, two application examples are provided to show 
the usefulness of the diagnostic performance table and 
to demonstrate the practical value of the proposed 
approach. 

PRACTICAL PROBLEMS IN IMPLEMENTING THE EKFs 

As mentioned before, the extended Kalman filter is 
used in this study as a tool for fault detection and 
diagnosis. Because parameter estimates are more sen- 
sitive to faults than those of the state variables, they 
are in general a better indication of the degradation of 
system performance. Since it is usually possible to 
associate all the assumed malfunctions with changes 
in the corresponding model parameters, all such para- 
meters must be treated as augmented states in the 
corresponding EKF (Himmelblau, 1978). Specifically, 
let us consider a system model with the following 
general form: 

dx 
d t  = f(x, 0, t) + COx (la) 

and 

in which 

COx ~ Jff(0, Q) (lb) 

f ( ' )  = [ A ( ' ) ,  A ( ' )  . . . . .  f . ( ' ) ] ~  

X -~- [ X l ,  X 2 . . . . .  Xn-I T 

0 = [ 0 1 ,  02 . . . . .  Om] T 

COx = [COl, C02, ..., COn] T 
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where x{s are the state variables and 0j's are the 
parameters of the system model, fk'S are nonlinear 
functions of x{s and 0fs, COk'S represent the normally 
distributed random system noises and Q is the 
covariance matrix associated with COx. 

In order to estimate the model parameters (0/s) in 
an EKF, one can treat them as state variables and 
augment the corresponding equations with eq. (la), 
i.e. 

d t  = dt = + = f +  c~ (2a) COo 

and 

cD ~ ./if(0, O) (2b) 

where, coo is a m-dimensional random vector with 
mean zero. For the sake of convenience, the compo- 
nents in c5 are assumed to be independent and thus 
0 is a diagonal matrix. Also, without loss of general- 
ity, it is assumed in this study that the first s (s ~< n) 
state variables can be measured directly. In other 
words, the measurement model can be written as 

z, = H~z + vt = [ U 0 ] ~ l  + vl (3a) 

v~ ~ A/'(0, R) (3b) 

l =  0,1,2 . . . .  

where, z~, ~ and v~ are the system output vector, 
augmented state vector and measurement noise vec- 
tor, respectively, at time tt, I is a s × s identity matrix 
and 0 is a s x (m + n - s) matrix whose entries are all 
zeros. Also, R is assumed to be a diagonal matrix in 
this study. 

From the above formulations, it is plain that they 
are consistent with the standard form and thus an 
EKF can be adopted directly to produce the estimates 
of parameters and state variables simultaneously. As 
a result of this approach to fault detection and diag- 
nosis, it becomes necessary to consider the common 
problems often observed in implementing the Kalman 
filters. In particular, the phenomena of "apparent" 
and "true" divergence (Gelb, 1974) in the correspond- 
ing calculations must be studied in depth. The 
possibility of unpredictable bias in estimations 
(Watanabe and Himmelblau, 1984) is regarded as the 
main reason which has prevented the use of EKFs in 
many realistic fault monitoring systems. There are in 
fact a variety of causes for the failure of a Kalman 
filter to achieve its theoretical performance. Accord- 
ing to Grewal and Andrews (1993), they can be 
grouped into five types, i.e. (i) natural behavior of the 
dynamic equations, (ii) unobservability with the given 
measurement, (iii) bad on-line data, (iv) numerical 
problems and (v) mismodelling. Type (i) causes can be 
attributed to significant system and/or measurement 
noises associated with equipments and, thus, the 
remedy for this type of problems is hardware im- 
provement. The third type of causes are due to large, 
one of a kind, isolated errors, i.e. "blunders", in the 
sensor systems. The best way to overcome this prob- 
lem is to implement prefiltering and data rejection 
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methods in real time. Sources of type (iv) problems 
can usually be traced to truncation errors in computa- 
tion. Possible counter measures include the use of 
higher (double) precision and more numerically stable 
methods in software. To simplify the arguments pre- 
sented later in this paper, let us assume that these 
three types of causes, i.e. type (i), (iii) and (iv), have 
already been removed through hardware and/or soft- 
ware means. Therefore, only structural issues, i.e. 
those concerned with type (ii) and (v) causes, are 
addressed in this work. Specifically, under the as- 
sumptions stated above and that accurate system 
model, eqs (la) and (lb), is available, our objective is 
to develop a practical strategy for constructing the 
appropriate augmented system equations, eqs (2a) 
and (2b), and measurement model, eqs (3a) and (3b), 
so that all possible combinations of multiple faults 
can be diagnosed correctly. 

DIAGNOSTIC OBSERVABILITY 

As mentioned previously, one of the reasons for the 
failure of a Kalman filter to produce unbiased esti- 
mates is due to the fact that the system itself is unob- 
servable, i.e. type (ii) causes. However, in this study, we 
are interested in the opposite question: can the tradi- 
tional obser.vability criteria, e.g. see Gelb (1974), 
guarantee the correctness of parameter estimates? The 
answer to this question can be found readily in the 
following example. 

E x a m p l e  1 
Let us use the simplest case, i.e. a linear constant- 

coefficient system, to generate the information we 
need. Consider the system model 

dxa 
- 4.2x1 + 5.3x2 - x3 (4a) 

dt 

dx2 
- -  = 1.1xl - 7.1x2 + x ,  (4b) 
dt 

where x~ and x2 are the state variables and x3 and 
x ,  are the model parameters associated with possible 
faults. If only x~ can be measured on-line, the observ- 
ability matrix of the augmented system equations, i.e. 
those corresponding to eqs (2a) and (3a), can be deter- 
mined to be 

I ~  - 4 . 2  23.47 - 164.453 1 
5.3 - 59.89 549.610 

- 1.0 4.20 - 23.470 

0.0 5.30 - 59.890 

(5) 

From the fact that this matrix is of full rank, one can 
conclude that the augmented system is observable. 

The corresponding Kalman filter was then tested 
using numerical simulation. It was assumed that the 
system was operated at its normal steady state ini- 
tially and the faults associated with x3 and x ,  oc- 
curred simultaneously at t = 40. More specifically, the 
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changes in these parameters were described with: 

dx3 dx4 
. . . .  0.02[u(t - 40) - u( t  - 50)] (6) 
dt dt 

where, u( t  - ?) is a unit step function defined by 

u ( t _  ?) = {10 i f t ~ > {  
otherwise 

Equations (4a), (4b) and (6) were integrated together 
to produce the transient behavior of the state vari- 
ables. Measurement noise was simulated with a ran- 
dom number generator and then added to xl to ob- 
tain the simulated on-line measurement data. The 
covariance matrices Q and R used in the correspond- 
ing EKF were: 

[ 0  0 0 0 1 
0 =  0 0  0 0 

0 0 10-* 0 (7) 

0 0 0 10-* 

r = [ 1 0 - 6 ] .  (8) 

The results of EKF estimation are presented in 
Fig. l(a)-(d). One can see clearly that, although the 
estimates of the measured state variable xl are close 
to the true values, the estimates of another state vari- 
able, i.e. x2, and the model parameters, i.e. x3 and x4, 
are erroneous. Furthermore, this situation cannot be 
improved by adjusting the entries of t )  and R. Thus, in 
this system, it is not possible to trace the changes of 
parameters with Kalman filter using only the 
measurement data of xl. This phenomenon will be 
referred to as "diagnostically unobservable" in this 
paper. 

If both xl and x2 are selected as the measurement 
variables, the resulting system should still be observ- 
able in the traditional sense, i.e. the corresponding 
observability matrix is of full rank. However, contrary 
to the previous results, it can be demonstrated with 
numerical simulation that all the state variables and 
model parameters can be estimated correctly with 
a Kalman filter. In this case, the system should be 
regarded as "diagnostically observable". 

At this point, the answer to our previous question 
should be quite clear. One can easily see that the 
traditional observability criteria cannot be adopted as 
the sufficient conditions for diagnost ic  observabi l i ty .  

One can also observe from the above results that 
biased estimation is really a practical problem that 
occurs in the implementation of EKF for the purpose 
of simultaneous state and parameter identification. 
Since none of the available techniques address this 
issue adequately, it is thus necessary to develop an 
alternative approach. 

PROPAGATION OF THE STATE ESTIMATES 

In this study, it is our intention to develop qualitat- 
ive criteria of diagnostic observability based only on 
structural information of the system model. The prac- 
tical value of such an approach is quite evident. Since 
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Fig. 1. EKF estimates of: (a) state variable xl; (b) state variable x2; (c) model parameter x3; (d) model 
parameter x4. 

there is no need for quantitative calculations, such as 
checking the observability matrix, the results of E K F  
estimation can be characterized quickly in advance 
even for a large and complex process. Although, by 
definition, the qualitative methods developed in this 
work are not  theoretically rigorous, their effectiveness 
can nevertheless be verified with extensive simulation 
studies. 

To achieve our purpose, it is obvious that an under- 
standing of the algorithm for generating the estimates 
is necessary. As mentioned previously, if an E K F  is to 
be used for fault detection and diagnosis, its state 
estimate propagation equations must be formulated 
according to eq. (2a). At any sampling time (say h -  0, 
these equations should be integrated numerically to 
determine the estimates at the next time step, i .e.h. 
Without  loss of generality, let us assume that the 
implicit Euler method is used, i.e. the state estimate 
propagation equations can be approximated by 

~ - ) ( h )  - ~ + ) ( t l -  1) 

- f ~  [~]-)(h),-. . ,  :(f)(tt); ~-)(t,) . . . . .  ~-I(t , )]  At = 0 

~. -} ( t , )  --  ~ .+ ) ( t t -1 )  

_ f .  [~-)(t ,) ,  ¢ )  . . . .  :~. (tt); g~-)(t,) . . . . .  0~,. ~(fl)] At = 0 

O ~ , - ~ ( t , )  - ¢,+~(t ,_ ~) = o 

O~,.-)(h) - gk+)(h_ ,) = 0 (9) 

where g(i-)(tl) ( i = 1 , 2  . . . .  ,n) and 6~-)(tz) ( j =  1, 
2 . . . . .  n) are the estimates of states and parameters at 
time h, which should be considered as the unknowns 
ofeqs (9). On the other hand, ~(i+)(h_ 1) and ~+~(tl-1) 
are the updated estimates of states and parameters at 
time t~_~. Their values must be determined before 
solving eqs (9) with the state estimate update equa- 
tions of EKF.  

In previous studies, e.g. Watanabe and Himmelblau 
(1984), it is a widely accepted assumption that the 
model parameters are more sensitive (than the state 
variables) to incipient faults. Thus, if an E K F  is used 
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for the purpose of fault detection and diagnosis, it is 
a common practice to adopt a system noise 
covariance matrix, i.e. t )  in eq. (2b), with the form 

t )  = 

"0 0 

0 "'. 

_o 

0 

q n +  l , n +  l 

m 
0 

"' .  0 

0 qn+m,n+m _ 

(lO) 

As a result, the corrections in the updated estimates 
of the state variables are in general small, i.e. 

:~,+)(t,_,) = ~l-)(h_ 1) + Axi(h- , )  ~ ~ ' i - ' ( t t - , )  

i = 1,2 . . . . .  n. (11) 

On the other hand, the values of ~+)( t t -O's  are al- 
lowed to deviate f rom/)~-)(h-0 's ,  i.e. 

~+)(tt-1) = ~-)(tt-1) + AOj(tt-1) ~Oj (tt_l) 

j = 1,2 . . . . .  m. (12) 

Since the estimates of state variables and model 
parameters, i.e. ~c~i-)(t,_ 1)'s and ~ - ) ( h -  O's, were com- 
puted at time tt_ 2 and should be available at time 
tt- 1, eqs (9) can be written as 

qh [:~-)(tt), (-) . . . .  ~ .  (t,); ~1+~(t,_1) . . . . .  ~ .+~ ( t , - l ) ]  = 0 

: (13) 

~b.[:~]-'(h) . . . . .  ~.-)(h); 0(l+)(t/- 1) . . . . .  ~.+)(fi-1)] = 0. 

At time h -  1, one first needs to determine the values of 
~+)(h-x) 's  and, then, eqs (13) can be solved accord- 
ingly. In other words, the state estimates at time h are 
mainly functions of the updated estimates of the 
model parameters at time h-1.  

If the EKF performs satisfactorily, correct estimates 
of ~+)(f i - l ) ' s  can be chosen to yield the following 
results: 

:~l-)(h) ~ xi i = 1,2 . . . . .  s (14) 

where, ~ ' s  are the measurement values of the state 
variables at time h. However, it is also a well-known 
fact that biased estimation is a phenomenon often 
encountered in the practical applications of EKF. 
Thus, the structure of the state estimate propagation 
equations, i.e. eqs (13), must be further analyzed to 
understand the precedence order of influences among 
the state variables, i.e. ~i-)(fi)'s, due to changes in the 
adjustable parameters ~+)(fi_ O's. 

STRUCTURAL ANALYSIS OF THE SYSTEM MODEL 

There are in general two standard approaches that 
can be used to solve n nonlinear algebraic equations 
numerically. One can certainly try to obtain the n un- 
knowns simultaneously using, for example, the New- 
ton-Raphson method. On the other hand, one can 
also try to promote the computation efficiency by 
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reordering the equations according to the model 
structure (Steward, 1965; Christensen and Rudd, 1969; 
Christensen, 1970; Stadtherr et al., 1974). The result of 
reordering is called a partition. More specifically, 
a partition is the division of the set of equations into 
subsets, which we call blocks, so that each block in the 
partition is the smallest set of equations that must be 
solved simultaneously. After such a partition is estab- 
lished, the blocks can be solved one at a time in series. 

In this work, the partition algorithm suggested by 
Steward (1965) is extended to determine the preced- 
ence order. Consequently, a systematic procedure can 
be developed for testing the diagnostic observability 
of any given system. To facilitate understanding of the 
rationale behind various steps in this proposed pro- 
cedure, a series of examples are presented below. First 
of all, it is intuitively correct that, in a diagnostically 
observable system, the symptoms of faults must ap- 
pear in the measurement data. Precedence order can 
be used as an aid to determine whether this criterion is 
satisfied. This fact can be demonstrated with a simple 
example: 

Example 2 
Let us consider the system of two storage tanks 

connected in series (see Fig. 2). The system model can 
be written as 

dhl Acll ~ (15) Aa ~ = ql -- ql -- 

dq, n d 2 [  8flllpql'qx'] (16) 
dt - 4pll pghl n2d51 

dh2 
A 2 - ~  = ql - q2 (17) 

dq2 n d 2 [  8 ( f2+  Af2)12pq2lq2l I (18) 
dt 4pl 2 pgh2-  /t2d2 5 

where p is the density of liquid, h k and Ak denote, 
respectively, the height of liquid level in and the 
cross-sectional area of tank k (k = 1, 2), qk, dk, Ik and 
fk represent, respectively, the volumetric flow rate in 
and the diameter, length and friction factor of the 
outlet pipeline from tank k (k = 1, 2). Also notice that 
the parameters Acll and Af2 are associated with two 
assumed failures, i.e. leakage in tank 1 and partial 
blockage in the exit pipeline of tank 2, respectively. 

Cl, _ _ _  

]"61 

1 q' 
T, 

t 
h2 

% 

Fig. 2. The simplified flow diagram of the two-tank system 
in example 2. 
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As indicated previously, the state estimate propaga- 
tion equations, eqs (13), can be solved if the values of 
model parameters are given. The corresponding pre- 
cedence order can be determined with Steward's par- 
titioning algorithm. Since the algorithm has been well 
documented in the literature, we choose not to present 
the detailed implementation steps for the sake of 
brevity. The result is represented with a structural 
matrix [see Fig. 3(a)] and also a precedence diagram 
[Fig. 3(b)]. Notice that q5~-¢4 in the structural matrix 
are corresponding to eqs (15)-(18), respectively. The 
equations ~5 and ¢6 are: 

ck5: Acll - cs = 0 (19) 

¢#6: Af2 - c6 = 0 (20) 

where e5 and c6 are the guess values of Acl~ and Af2, 
respectively. 

From Fig. 3(a) and (b), one can see that all four 
state variables in this system are affected by a leak in 
tank 1, but partial blockage in pipeline 2 can only 
cause h2 and q2 behave abnormally. Thus, if hi and 
ql (or only one of them) are chosen as the measure- 
ment variables, it is certainly not possible to produce 
correct estimates of Af2 on the basis of the available 
on-line data. 

Although direct application of the Steward's algo- 
rithm yields a precedence order which is useful for 
identifying a special class of diagnostically unobserv- 
able systems, this approach is still limited in the sense 
that the correctness and uniqueness of the solutions to 
the state estimate propagation equations cannot be 
confirmed accordingly. This situation can be illus- 
trated with another example: 

CHUEI-TIN CHANG and JEN-WEN CHEN 

(a) 
l 

T 

Example 3 
A simplified flow diagram of the system considered 

in this example is presented in Fig. 4(a). It is assumed 

~5 

¢~ 
¢~ 
¢5 

(a) 

Acll  A f2 hi ql h2 

X 

X X 

X X 

X 

q2 

X X 

X X 

(b) 
Fig. 3. The structural matrix (a) and the precedence diagram 

(b) of the two-tank system in example 2. 

q, 

? 

h~ 
q~ 

hi ql h2 q2 A l l  Aqi 
X × X 

X X X X 

X X X 

X X 

¢5 

¢3 
¢~ 

Cs x 

~6 x 
(b) 

(c) 

Fig. 4. (a) The simplified flow diagram of the two-tank sys- 
tem in example 3. (b) The structural matdx of the two-tank 
system in example 3. (¢) The precedence diagram of the 

two-tank system in example 3. 

that there are two possible faults, i.e. (i) a sudden 
change in the inlet flow rate and (ii) partial blockage 
in the pipeline between tank T1 and tank T2. The 
structural matrix of the system model can be found in 
Fig. 4(b). Notice that Aq~ and Afl are the parameters 
associated with faults (i) and (ii), respectively. The 
definitions of other symbols used here are essentially 
the same as those adopted in example 2. Again, 
Steward's partitioning algorithm has been applied 
and the precedence diagram can be obtained accord- 
ingly [see Fig. 4(c)]. 

From Fig. 4(c), it can be observed that all four state 
variables, i.e. hi, ql, h2 and q2, are affected by the two 
parameters Aq~ and Afl. Thus, if at least one state 
variable can be measured on-line, the occurrence of 
faults should be detectable. However, one can also 
find in the precedence diagram that all state variables 
are connected to both parameters and they are inter- 
connected via several feedback loops. In other words, 
all of them are within one block and thus must be 
solved simultaneously. Therefore, on the basis of this 
precedence order, one still cannot be certain whether 
a unique set of correct parameter values can be found 
to satisfy the requirements implied in eqs (14). 

If the measurement variables are embedded in 
coupled, feedback loops, one can conclude from the 
above discussions that the precedence order obtained 
with the traditional approach is not really useful for 
the purpose of confirming diagnostic observability. 
Thus, additional tools must be developed for our 
purpose. 
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It should be noted that it may not be necessary to 
guess and iterate each variable in solving an irredu- hi ql h2 q2 Af~ Aq~ 
cible set of equations. For sparse equation sets, it is 01 × x x 
often possible to reach a solution by guessing only 02 x × 
a few of the variables. This is the so-called tearing " 
technique recommended in the literature (Christensen Oa x × x 
and Rudd, 1969; Christensen, 1970; Stadtherr et al., 04 × 
1974), which can be used to determine an efficient 0s × 
iteration procedure. In this research, this method was 
also adopted as an aid for clarifying the cause-and- (a) 06 × 
effect relations between the model parameters and the 
measurement variables in the state estimate propaga- Afx Aq~ ql q2 hi h2 
tion equations. Specifically, all s measurement vari- 
ables were treated as the "tear-variables", i.e. the vari- 0s × 
ables which are guessed, and s "tear equations", i.e. 06 × 
the equations used to check the guesses, were then 03 × x 
chosen from eqs(13). These tear equations were 

04 × not determined with conventional strategies, e.g. 
Stadtherr et al. (1974). A simple criterion was used 01 × × × 
instead, i.e. each equation must contain the corres- 02 × × × 
ponding tear variable. The advantage of such an (b) 
approach can be demonstrated clearly with the fol- 
lowing example: 

Example 4 
Let us reconsider the system described in Example 

3. Assume that hi and h2 are the measurement vari- 
ables in this case and thus they should be regarded as 
the tear variables in the structural analysis. The tear- 
ing operation can be performed on the structural 
matrix presented in Fig. 4(b). Specifically, in each of 
the two columns associated with hi and h2, all ele- 
ments except an arbitrarily chosen one should be 
removed [see Fig. 5(a)]. The tear equations are cor- 
responding to the rows in which these remaining ele- 
ments are located, i.e. ~bl and tk3. Having determined 
the tear sets, one can then rearrange the structural 
matrix in Fig. 5(a) according to Steward's partitioning 
algorithm [see Fig. 5(b)]. The corresponding preced- 
ence order can be found in Fig. 5(c). 

In the conventional process of solving algebraic 
equations, the tear variables are unknowns. Their 
values must be obtained through iterative procedure. 
In this work, however, the desired values of the 
measurement variables should satisfy the constraints 
stipulated in eqs (14). Thus, in solving the state esti- 
mate propagation equations of this example, the 
values of tear variables can be set directly to be the 
measurement values and the outputs hi and h2 can 
then be calculated according to the precedence order 
in Fig. 5(c) and any given values of Afl and Aqi. Also 
notice that, in this computation process, q2 should be 
regarded as a constant since it is affected only by the 
tear variable h2. 

The most appropriate parameter values should be 
chosen, of course, on the basis of eqs (14). From 
Fig. 5(c), one can see that a change in either of the 
parameters Af~ and Aq~ can cause variations in one or 
both of the output variables, hz and h2. Since the two 
parameters in this case must be adjusted simulta- 
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(c) ( ~ ~  

Fig. 5(a). The post-tearing matrix of the two-tank system in 
example 4. (b) The re-ordered post-tearing matrix of the 
two-tank system in example 4. (c) The post-tearing preced- 

ence diagram of the two-tank system in example 4. 

neously in order to produce the two desired output 
values, it is therefore assumed that the chance for 
biased EKF estimation in this situation is low and the 
system should be diagnostically observable. This as- 
sumption has been verified with extensive simulation 
studies and the results are documented elsewhere 
(Chen, 1994). 

To facilitate later discussions, it is now necessary to 
classify the model parameters and measurement vari- 
ables according to the precedence diagram just de- 
scribed. In particular, if a parameter is connected to 
one or more measurement variables, it is referred to as 
a "tunable parameter". On the other hand, if 
a measurement variable is connected to at least one 
parameter, then this variable is the "affected variable". 
If some of the tunable parameters can be assigned 
independently and the rest of the parameters can al- 
ways be adjusted accordingly to produce the desired 
values for the affected variables, then there should be 
an infinite number of suitable parameter values that 
can satisfy eqs (14). As a result, the possibility of 
biased EKF estimation is extremely high and the 
system should also be regarded as diagnostically un- 
observable. The following example is used to demon- 
strate this special feature in EKF estimation. 

CES 50-18-C 
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Example 5 
Let us again consider the system described in 

Example 3 and use h2 and q2 as the measurement 
variables this time. After tearing, the resulting preced- q~2 
ence order can be obtained with Steward's partition- q~3 
ing algorithm (see Fig. 6). One can see that both Aqi ~4 
and Af~ are tunable parameters, but only h 2 is affected ff's × 
by these two parameters. Thus, the value of either one (a) ~'6 
of the parameters can be assigned arbitrarily first and 
then the other parameter can always be adjusted to 
ensure output h2 approaching its measurement value. 
Since the EKF does not have a prior knowledge 
concerning the actual variations in Aqi and Aft, the 
possibility of obtaining the correct results is almost nil 
in the corresponding optimal estimation process. The 
prediction that this system is diagnostically unobserv- 
able has been supported by extensive simulation re- 
sults presented elsewhere (Chen, 1994). 

Although the precedence order obtained after tear- 
ing can be adopted as the basis for identifying diag- 
nostically unobservable systems, the methods men- 
tioned above are still difficult to apply when the 
system is large and complicated. Thus, a systematic 
procedure has been developed to overcome this prob- 
lem. Since we are interested in keeping the affected 
variables at their measurement values, the corres- 
ponding equations in eqs (14) can be augmented with 
eqs (13) and our problem at hand can be transformed 
into one of determining the uniqueness of the solution 
to these augmented equations after tearing. For 
example, if this approach is used in example 4, the 
structural matrix in Fig. 5(a) should be changed into 
the matrix presented in Fig. 7(a). Notice that the equa- 
tions ~s and ~b6 are replaced by 

q~ = ha -/~1 = 0 (21) 

~b~ = h2 =/~2 = 0. (22) 

After executing the Steward's partitioning algorithm 
again, the precedence order for calculating the para- 
meters can be obtained [see Fig. 7(b)l. From this 
result, one can clearly see that Afl and Aqi can be 
sequentially determined. Specifically, q~ can be com- 
puted first by substituting h2 and q2 into q~3; Aft can 
then be calculated by substituting qt into ~b2; Aq~ can 
finally be determined by substituting h: and q~ into 
~b~. Thus, it can be concluded that the parameter 

Fig. 6. The post-tearing precedence diagram of the two-tank 
system in example 5. 

hi ql h2 q2 A fl Aqi 
X X X 

X X 

X >( X 

X 

hi h2 q2 qt A f t  Aqi 
~ × 
~'6 × 

q~4 x 
~3 X X X 

~2 X X 

(b) ~ x x x 

Fig. 7. (a) The augmented matrix of the two-tank system in 
example 4. (b) The re-ordered augmented matrix of the 

two-tank system in example 4. 

values are unique and the corresponding EKF esti- 
mates should be unbiased. 

On the other hand, if the proposed procedure is to 
be applied to the problem described in example 5, the 
resulting precedence order can be represented by the 
matrix given in Fig. 8. Notice that, since there is one 
affected variable in this case, it is only necessary to 
augment one equation, i.e. ~ = h2 - / ] 2  = 0, to the 
state estimate propagation equations. According to 
this precedence order, qt can be computed by substi- 
tuting h2 into ~b3. However, ha, Aft and Aqi have to be 
determined with only two equations, i.e. q~t and q52. 
Thus, the solution is not unique and the system is 
diagnostically unobservable. In fact, since the number 
of variables is larger than that of equations in Fig. 8, 
this conclusion can be drawn without actually com- 
pleting the Steward's algorithm. In implementing the 
procedure suggested by Steward, each variable must 
be assigned as the output of one equation and, in 
addition, each equation can only have one output 
which is distinct from that of another equation. Thus, 
these equations cannot be solved unless the value of 
one variable is fixed arbitrarily, which implies that 
there are an infinite number of solutions. 

In some cases, the task of identifying unobservable 
systems is not as trivial as that described above. For  
instance, let us consider the fictitious augmented 
matrix presented in Fig. 9(a). Notice that, although 
the number of equations equals that of the variables, 
the system is still diagnostically unobservable. The 
main reason for this outcome is again that not all 
variables can be assigned as outputs. This special 
insight can be gained by rearranging the structural 
matrix [see Fig. 9(b)]. From the corresponding pre- 
cedence order, one can see that it is necessary to 
determine three parameters (0~, 02 and 03) with only 
two equations (~bt and ~b2). This need is not immedi- 
ately obvious from the matrix in Fig. 9(a). 



h2 q2 ql 
i 

× × 

~ ]  X X X 

(~2 X X X 
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hi A f l  Aqi  • Outcome (ii): All variables and equations are de- 
leted. 

• Outcome (iii): At least one equation remains after 
deleting all variables. 

Fig. 8. The re-ordered augmented matrix of the two-tank 
system in example 5. 

O1 02 03 Xl X2 X3 X4 375 
~1 X X X 

~2 X X X 

(~3 X X 

(~4 X X X 

t~5 X X 

× 

× 

(a) ¢~ × 

x~ 01 02 03 3;3 Z4 X5 Xl 

X 

X 

~3 × X 

(~4 Y X X 

~5 X X 

t~l X X X 

(b) ~2 x x x 

Fig. 9. (a) The augmented matrix of a fictitious system. (b) 
The re-ordered augmented matrix of a fictitious system. 

In order to systematically detect such structures in 
large and complex systems, the Steward's algorithm 
has been modified slightly in this study. Notice that 
this algorithm was originally designed to determine 
the precedence order in a set of solvable algebraic 
equations. Thus, the first task was to make a choice of 
one output variable for each equation such that no 
variable becomes the output of more than one equa- 
tion, i.e. the outputs of all equations were chosen 
simultaneously in the beginning. Since this may not be 
possible in the present case, they are selected one at 
a time whenever an output is called for in the algo- 
rithm. For  convenience, the original algorithm will be 
referred to as Algorithm I and the revised version will 
be named Algorithm II later in this paper. After ap- 
plying Algorithm II to the augmented equations, 
three possible outcomes may be found: 

• Outcome (i): The algorithm fails before deleting 
all variables. In the remaining system, the num- 
ber of undeleted variables should be always lar- 
ger than that of the equations in which these 
variables appear. 

Outcome (i) implies that there are extra degrees of 
freedom for the variables and thus more than one set 
of parameter values can be identified. Outcome (ii) is 
an indication that the number of variables equals that 
of the constraints and outcome (iii) means that the 
former is less than the latter. In both cases, the opti- 
mal estimates produced by an EKF should also be the 
correct estimates. 

The various testing techniques described above can 
be integrated into a single procedure. Since only struc- 
tural information of the system model is required, 
implementation of this procedure should be simple 
and easy. Its specific steps are outlined below. 

Procedure A 
1. Construct a structural matrix according to the 

system model and the model parameter. 
2. Tear the measurement variables from the struc- 

tural matrix, i.e. remove all elements except one 
in each of the corresponding columns. 

3. Apply Algorithm I to the post-tearing matrix to 
obtain the corresponding precedence order. 

4. Identify the tunable parameters and the affected 
variables. If intunable parameters exist, then the 
system is diagnostically unobservable and the 
procedure should be terminated, Otherwise, go 
to the next step. 

5. Remove the rows corresponding to the model 
parameters in the post-tearing matrix and add 
rows associated with the affected variables to 
form an augmented matrix. 

6. Perform Algorithm II on the augmented matrix. 
(a) If outcome (i) is found, then the system is 

diagnostically unobservable. 
(b) If outcome (ii) or (iii) is found, then the sys- 

tem is diagnostically observable. 

It has to be emphasized that, although structural 
analysis is qualitative in nature and thus not theoret- 
ically rigorous, the correctness of its predictions has 
been verified in numerous simulation studies. Let us 
now use the system described in Fig. 4(a) as an 
example again. Assume that there are five possible 
faults: (i) a sudden change in the inlet flow rate of tank 
T1 (Aqi); (ii) a leak in tank T1 (Acll); (iii) partial block- 
age in the pipeline between tanks T1 and T2 (Afl); 
(iv) a leak in T2 (Ac/2); (v) partial blockage in the exit 
pipeline of tank T2 (Af2). Also assume that the prob- 
ability of simultaneous occurrence of three or more 
faults is very low and therefore can be neglected. The 
outcomes of EKF estimation can be predicted easily 
with the proposed procedure. The results associated 
with all possible binary combinations of faults are 
presented in Table 1. Each row in this table corres- 
ponds to the set of measurement variables indicated 
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Table l. The diagnostic observability of various EKFs for the two-tank system shown in Fig. 4 

Acll Acll Acll Acll All A fl A fl Acl2 Acl2 A f2 
Afl Acl2 A f2 Aql Acl2 A f2 Aqi A f2 Aql Aqi 

h,,ql Z Z Z * * * X/ * 4 4 
hi, h2 x/ Z x/ * Z Z 4 * x/ Z 
hi,q2 Z x~ ~/ * X/ X/ ~/ Z Z X/ 
q~,h~ . , /  ~/ . , /  , /  , , , /  , /  
q,,q2 * *~/ * * ~/ ~/ * x/ x/ x/ 
h2, q2 * * x/ * * ~/ * x/ * ~/ 

hl,q,,q2 ~/ x/ ~/ * X/ x/ ~/ ~/ X/ X/ 
h,, h2, q2 x/ x/ x/ * ~/ Z ~ x/ x/ x/ 
ql, h2, q2 * ~/ ~/ * ~/ ~/ * ~/ ~/ ~/ 

in the first cell on the left and each column corres- 
ponds to the model parameters indicated in the top 
cell. The symbol "~/" denotes a diagnostically observ- 
able system and the symbol "'~" means that the cor- 
responding system should be diagnostically unobserv- 
able. It must be noted that every entry in this table has 
been confirmed with numerical simulation. All predic- 
tions have been shown to be accurate. Also, the cor- 
rectness of the suggested approach has been tested 
with numerous other system models as well. Due to 
the limitation of space, these studies are not reported 
here. 

THE COMPOSITE PARAMETER ESTIMATION SCHEME 

As indicated in the previous discussions, in design- 
ing an EKF-based fault monitoring system, one of the 
basic requirements is that the system must be diagnos- 
tically observable with respect to the model para- 
meters included in the state estimate propagation 
equations. From structural analysis one can also con- 
clude that the number  of measurement variables 
s should be no less than that of the all possible faults 
p if only one E K F  is adopted for diagnosis purpose. 
However, due to economical or technical reasons, it 
may be difficult to satisfy this condition when the 
number  p is large. This situation can be improved 
with the composite parameter estimation scheme sug- 
gested below. 

If one can assume that the probability of coexist- 
ence of more than p* (p* < p) faults is extremely low 
and thus negligible, then it is usually possible to con- 
struct several parallel EKFs,  each with fewer than 
p measurement variables, to trace the variations in all 
combinations of p* parameters changing simul- 
taneously. The measurement data used in all these 
EKFs  are the same, but  the assumed faults in each of 
them are not  identical to those in any other filter. Of 
course, the number  of measurement variables s should 
always be larger than or equal to that of the aug- 
mented parameters in every EKF,  i.e. s >/m and m is 
the number  of augmented parameters, and the latter 
must be no less than the number  p*, i.e. m/> p*. 
A simple example is used here to illustrate its detailed 

implementation procedure and to demonstrate the 
advantages of adopting such an approach. 

Example 6 
Let us now consider only the first tank described in 

Fig. 2. Assume in this case that p = 3 and the three 
possible faults are: (i) a sudden change in the inlet flow 
rate; (ii) a leak in the tank; (iii) partial blockage in the 
outlet pipeline. The corresponding parameters are 
Aqi, Acl and Af, respectively. Also, let us assume that 
the probability of simultaneous occurrence of two or 
more faults is negligible, i.e. p* = 1, and the measure- 
ment variables are h and q, i.e. s = 2. 

If the traditional approach is taken, all three para- 
meters Aqi, Acl and Af must be augmented with the 
state variables h and q in one EKF,  as shown in 

h,q 

(a) 

h,q . 

(b) 

h,q 

I 
(ct 

E K F ( A q .  A f, Acl) 

E K F a ( A f )  

EKF2(Ad)  h 'q '  .A 

i,,¢ ,M 

A~ 
' A]  

A~I 

A~  

EKF1 (Aqi) h, 4, A~, 

• E K F 2 ( A f ,  Acl) h, ~, .Af, AS/ 

, EKFI(Aq,) I h,#,A4~ 

Fig. 10. (a) The conventional parameter estimation scheme 
for the one-tank system in example 6. (b) The parallel para- 
meter estimation scheme for the one-tank system in example 
6. (c) A composite parameter estimation scheme for the 

one-tank system in example 6. 
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Fig. 10(a). Thus, m = 3 in this case. It can be easily 
demonstrated with structural analysis that this E K F  
is diagnostically unobservable. Indeed, the results of 
simulation studies also support this prediction. The 
estimates of the state variables and model parameters 
corresponding to fault (iii) are presented in Fig. 
1 l(a)-(e). It is apparent that these results are erron- 
eous. 
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According to Chang et  al. (1993), the above draw- 
back can be remedied with several single-parameter 
EKFs  implemented in parallel. Notice that, in this 
case, m = p * =  1. The corresponding parameter es- 
t imation scheme is shown in Fig. 10(b). Using the 
procedure outlined in the previous section, it can be 
verified that all three EKFs  are diagnostically observ- 
able. Further, a comparison of the estimates generated 
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Fig. 11. Estimates generated by a conventional extended Kalman filter for the one-tank system in: (a) 
example 6 - h; (b) example 6 - q; (c) example 6 - Aql; (d) example 6 - A~ (e) example 6 - Acl. 
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from these EKFs and the on-line measurement data 
offers additional clues for identifying the correct fault 
origin. Again, simulation results corresponding to 
fault (iii) are used here to demonstrate the advantage 
of this approach [see Fig. 12(a)-(i)]. One can observe 
from Fig. 12(b) and (e) that the estimates of q pro- 
duced in EKF1 and EKF2 deviate significantly from 
the measurement data. Consequently, the possibility 
of faults (i) and (ii) should be excluded from considera- 
tion. On the other hand, from the fact that the esti- 
mates of both measurement variables in EKF3 follow 
the transient on-line data closely, fault (iii) can be 
regarded as a candidate cause of the abnormal system 
symptoms. Since this fault, i.e. partial blockage in the 
outlet pipeline, is the only candidate, one can thus 
correctly conclude that it is the fault origin. 

One of the drawbacks of the above parameter es- 
timation scheme is that its computation load is usu- 
ally very heavy. This problem is mainly due to the fact 
that a large number of EKFs must be implemented in 
parallel. In the present study, it has been shown that 
the amount of parallel calculations can be reduced by 
grouping some of the EKFs together. This modified 

configuration is referred to as the composite para- 
meter estimation scheme. For  example, the scheme in 
Fig. 10(b) can be changed to the one presented in 
Fig. (10e). Notice that it is not necessary for all EKFs 
to augment the same number of parameters. Also 
notice that, although m > p* in EKF2, it is still diag- 
nostically observable. The same set of simulation 
data, i.e. those corresponding to fault (iii), has been 
used to assess the feasibility of this approach. Since 
the estimates of EKF1 here should be exactly the 
same as those obtained with the previous scheme in 
Fig. 10(b), only the results associated with EKF2 are 
provided in Fig. 13(a)-(d). One can observe from 
these results that (1) the estimates of h and q are in 
close agreement with their measurement values, (2) 
the estimates of Afindicate that fault (iii) is a possible 
candidate and (3) the estimates of Acl remain approx- 
imately unchanged at zero. Naturally, the diagnosis in 
this case must be directed toward the only possibility, 
i.e. partial blockage in the outlet pipeline. Thus, when 
compared with the configuration shown in Fig. lO(b), 
the composite parameter estimation scheme is su- 
perior due to the fact that it can be used to achieve the 
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Fig. 12. Estimates generated, in the parallel parameter estimation scheme for the one-tank system 
in example 6, by EKF1 for (a) h, (b) q, (c) Aq. by EKF2 for (d) h, (e) q, (f) Ael, and by EKF3 for (g) h, (h) q, 

and (i) Af. 
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c o o  

same level of performance with less computation ef- 
fort. In addition, there is one other advantage which is 
probably worth mentioning. Notice that the pos- 
sibility of simultaneous occurrence of multiple faults 
was ignored completely in the previous studies, e.g. 
Chang et al. (1993), and this issue can be addressed 
readily within the framework of the composite para- 
meter estimation scheme. 

D I A G N O S T I C  R E S O L U T I O N  

In the previous section, although we have estab- 
lished that the composite parameter estimation 
scheme does possess certain desirable features, the 
question of how to select the augmented parameters in 
each EKF is still unanswered. Nevertheless, it is quite 
evident that, if these selections are to be made pro- 
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Fig. 13. Estimates generated by EKF2 in the composite parameter estimation scheme shown in: (a) 
Fig. 12(c) - h; (b) Fig. 12(c) - q; (c) Fig. 12(c) - A~ (d) Fig. 12(c) - Acl. 

perly, a set of logical criteria must first be developed to 
assess the performance of any given scheme. 

Apparently, diagnostic observability must be ad- 
opted as one of the selection criteria. This requirement 
implies that, if the occurrence of faults causes a subset 
of the augmented parameters in one of the EKFs to 
vary, the corresponding estimates should be correct. 
However, in the fault diagnosis process, one naturally 
does not have a prior knowledge about the actual 
causes of abnormal system behavior. As a result, one 
is bound to face the task of analyzing the results 
produced by EKFs in which some of the fault-affected 
parameters are not augmented. Since there is a mis- 
match between the assumed model and the actual 
system behavior in each of these EKFs, these results 
should be disregarded. Also, as indicated before, mis- 
modelling is one of the main causes of divergence, i.e. 
type (v) cause. From the standpoint of fault diagnosis, 
divergence in this situation is in fact desirable because 
model mismatch can be easily detected by comparing 
the measurement data and the estimates. However, 
this desirable feature cannot be guaranteed under all 
circumstances. Misdiagnosis may therefore be pos- 
sible if diagnostic observability is the only restriction 

imposed upon the composite parameter estimation 
scheme. 

Diagnostic resolution is the second criterion pro- 
posed in this work for evaluating the performance of 
a fault-monitoring system. In the literature, this term 
usually refers to a measure of uniqueness in identify- 
ing the correct fault origin among all possible candi- 
dates (Kramer and Polawitch, 1987). In order to rep- 
resent such an abstract concept explicitly, a diagnostic 
performance table has been designed. This table can be 
best illustrated with an example. 

Example 7 
The single-tank system described in example 6 is 

adopted here. In the present example, assume that 
liquid level h is the only measurement variable and 
that the parallel scheme in Fig. 10(b) is adopted for 
diagnosing faults. Assume also that the faults that 
may occur in this system are the same as those de- 
scribed in example 6. Let us again consider the results 
of EKF estimation when fault (iii), i.e. partial blockage 
in the outlet pipeline, occurs. It can be demonstrated 
with simulation studies that the estimates of h follow 
the measurement values closely in all three EKFs. 
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Consequently, none of the candidates can be excluded 
from the list of potential fault origins and misdiagno- 
sis becomes inevitable due to low resolution. Con- 
clusions associated with all other possible scenarios 
can also be obtained in a similar fashion by studying 
the corresponding simulation data. These outcomes 
of fault diagnosis can then be summarized in a diag- 
nostic performance table as shown in Table 2a. 

In general, the chosen measurement variables are 
indicated at the upper-left corner of a diagnostic per- 
formance table. For each possible combination of 
actual faults, simulated data can be generated by 
introducing a change in each of the corresponding 
parameters. The entries in each row of the table are 
obtained from the same set of simulated measurement 
data corresponding to the parameters indicated at the 
left side of the row. Each entry in this table is a con- 
clusion drawn from analyzing the results of imple- 
menting one EKF to the above data. The model 
parameters augmented in this EKF are indicated on 
the top of the corresponding column. The symbols 
used as entries in this table are defined below: 

Table 2. Diagnostic performance of 
a parallel parameter estimation scheme 

(Fig. 10b) 
(a) One-tank system with one measure- 
ment variable 

h Aqi Acl Af  

Aq~ x/  o o 

Acl o x /  o 
AS o o ~/ 

(b) One-tank system with two meas- 
urement variables 

h, q Aqi Acl Af  

Aq, x~ o 

Acl o ~/ 

Af ~/ 

• If all the parameters associated with the actual 
faults are included as the augmented parameters in 
an EKF, then two types of outcomes are possible, 
i.e. 

x/: The estimates of the augmented parameters 
and the state variables match their actual transi- 
ent behaviors, i.e. the EKF must be diagnosti- 
cally observable. 

- - ' k :  The EKF fails to trace the variations in the 
augmented parameters, i.e. the EKF is diagnos- 
tically unobservable. 

• If some of the parameters associated with the 
actual faults are not included as the augmented 
parameters in an EKF, then the corresponding 
results can also be classified into two categories: 
- - o :  The estimates of the measurement vari- 

ables follow the on-line data closely. In other 
words, mismodelling cannot be detected and 
the corresponding faults cannot be excluded 
from the list of candidates. 

- -  blank: The estimates of some of the state vari- 
ables do not match their measurement values 
or the estimates of all augmented parameters 
remain unchanged. In such cases, mismatch 
between the actual system behavior and the 
EKF model can be identified and thus the 
corresponding results can be disregarded. 

The diagnostic error "o" is due to the fact that the 
effects of the actual faults on the measured state vari- 
ables can be replaced by those of the faults assumed in 
the EKF. If the estimates of other unmeasured state 
variables are different from their actual behaviors, the 
corresponding errors can often be avoided by redis- 
tributing the sensor locations or placing additional 
measurement points. For instance, if both state vari- 
ables in the present example are measured, some of 
the entries "o" can be removed (see Table 2b). 
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Notice also that several cells in Table 2b are still 
filled with "o". A detailed analysis of the simulation 
results reveals that, in these cases, the effects of the 
actual faults on all state variables can be reproduced 
exactly by the anticipated faults. This special relation 
exists between the faults associated with Aqi and Acl 
in the present example. In particular, the abnormal 
transient behaviors of both state variables h and q, 
which are caused by a decrease in the inlet flow rate, 
may be mistakenly regarded as due to tank leaks and, 
similarly, the opposite situation may also occur. From 
a structural viewpoint, the two parameters Aq~ and 
Acl are interchangeable in the system model. As a re- 
sult, these mistakes cannot be eliminated even by 
measuring more state variables. 

Obviously, an ideal composite parameter estima- 
tion scheme should be one associated with a diagnos- 
tic performance table that contains only "x/" and 
blanks. Assuming that informations about all possible 
combinations of actual faults are available, i.e. the 
entries in the first column on the left are given in 
advance, one can develop such schemes by appro- 
priately selecting the measurement variables and the 
augmented parameters in EKFs so that the number of 
"~" and "o" can be minimized. In this research, diag- 
nostic observability is considered to be a basic condi- 
tion that all EKFs in the composite parameter estima- 
tion scheme have to satisfy. In addition, these EKFs 
should be selected in such a way that the parameters 
associated with each row of the diagnostic perfor- 
mance table must be the subset of the augmented 
parameters in at least one EKF. As a result, the 
possibility of "~" can be eliminated completely. On 
the other hand, although the number of "o" can be 
reduced by changing the sensor number and/or distri- 
bution, some of the corresponding errors may still be 
unavoidable due to inherent structural property of the 
system model. Thus, diagnostic performance is essen- 
tially dependent only upon resolution, i.e. the degree 
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of uniqueness achieved in diagnosis, which is con- 
sidered in this work to be proportional to the number 
of blanks in the diagnostic performance table. 

CONSTRUCTION OF THE DIAGNOSTIC PERFORMANCE 

TABLE 

As indicated previously, the diagnostic perfor- 
mance table can be considered as a performance 
measure of any EKF-based parameter estimation 
scheme and thus can be adopted as an aid in decision 
making when several competing designs are available. 
Although this table can be constructed by analyzing 
the simulation data, the numerical effort for generat- 
ing such data is often overwhelming. In order to 
overcome this difficulty, it has been our intention to 
develop a simple procedure for predicting the out- 
comes of fault diagnosis with only structural informa- 
tion of the system model. 

Since every EKF in the composite parameter es- 
timation scheme is required to be diagnostically ob- 
servable, the locations of"x/"  in the diagnostic perfor- 
mance table can be determined by comparing the 
fault-affected parameters with the augmented para- 
meters in each EKF. Specifically, if the former forms 
a subset of the latter, the corresponding cell should be 
filled with a "x/". 

The other entries in the table must be either "o" or 
blank. Notice that the augmented parameters asso- 
ciated with each EKF in the composite parameter 
estimation scheme should be considered as the tunable 
parameters. If some of the actual fault-affected para- 
meters are not the tunable parameters associated with 
an EKF, then the variables affected by the former may 
not be the same as those by the latter. For  conveni- 
ence, the former affected variables are referred to as 
class I variables and the latter as class II variables. 
Naturally, one question arises: can the tunable para- 
meters be properly adjusted so that the resulting 
values of class I variables can meet the requirements 
of eqs (14) ? If the answer is yes, then a diagnostic 
mistake "o" is sure to result. Otherwise, model mis- 
match can be identified by comparing the estimates 
and the measurement data. In this work, a systematic 
procedure has been developed to answer the above 
question. To facilitate understanding of the proposed 
procedure, an example is presented as follows. 

Example 8 
Let us now consider the two-tank system described 

in example 3. Assume that the measurement variables 
selected in this system are h~, h2 and q2. Three repre- 
sentative cases can be identified: 

• Assume that two faults, i.e. (i) a leak in tank 
/'1 and (ii) partial blockage in the pipeline be- 
tween T1 and T2, occur simultaneously during 
operation. Thus, the fault-affected parameters 
should be Aclt and Aft, respectively. If the aug- 
mented parameters of one of the EKFs in the 
composite parameter estimation scheme are Acll 
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and Acl2, then they should be regarded as the 
tunable parameters for this particular EKF. 

After applying Algorithm I to the post-tearing 
structural matrix, the precedence order pre- 
sented in Fig. 14(a) can be obtained. Notice that, 
for illustration purpose, both fault-affected para- 
meters and tunable parameters are included in 
Fig. 14(a). The former parameters are marked 
with asterisks in this figure. One can easily ident- 
ify from this precedence order that class I and 
class II variables are identical, i.e. hi and h2. As 
indicated before, the values of class I variables 
hi and h2 must be forced to meet the require- 
ments of eqs (14) by properly adjusting the tun- 
able parameters Acll and Acl2. Since there are 
two parameters and two constraints, conver- 
gence in EKF estimation can generally be ex- 
pected. As a result, the diagnostic mistake "0" 
should be unavoidable. 

• Next, let us consider the case when the same 
EKF is used to process the transient data caused 
by simultaneous occurrence of two abnormal 
events, i.e. (i) a leak in tank TI(AeII) and (ii) 
partial blockage in the exit pipeline of tank 
T2(Af2) . From the corresponding precedence 
order ['Fig. 14(b)], one can identifiy that hi and 
q2 are class I variables and hi and h 2 a r e  class II 
variables. 

Since q2 is not connected to any of the tunable 
parameters, it is apparently not possible to trace 

-(c) 
Fig. 14. The post-tearing precedence diagram of the two- 
tank system in example 8. (a) Case 1, (b) case 2, (c) case 3. 
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its changes with the present EKF. Thus, one can 
conclude that the estimates of the measurement 
variables should diverge and the corresponding 
entry in the diagnostic performance table must 
be a blank. 

• If the actual faults are (i) a leak in tank Tz (Acl2) 
and (ii) partial blockage in the exit pipeline of 
Tz (Af2) and the tunable parameters associated 
with another EKF are Afl and Afz, the preced- 
ence order shown in Fig. 14(c) can be deter- 
mined. Thus, h2 and q2 are class I variables and 
hi, h2 and q2 are class II variables in this case, 
i.e. class I is a subset of class II. One can also see 
that, by means of adjusting the tunable para- 
meter Afl, the value of the affected variable 
hz cannot be varied independently without caus- 
ing a change in the variable hi as well. In other 
words, one should actually be concerned about 
all constraints associated with class II variables 
in this situation. Since the total number of con- 
straints is greater than that of the tunable para- 
meters, the resulting EKF estimates must diverge 
and the corresponding entry in the diagnostic 
performance table should be a blank. 

It should be emphasized that all predictions pre- 
sented in example 8 have been verified with thorough 
numerical simulation studies. For  the sake of brevity, 
the results of these studies are not included in this 
paper. From the three different cases discussed in this 
example, one can see that the precedence order ob- 
tained after the tearing operation is quite helpful in 
securing a solution to our problem at hand, i.e. to 
determine whether class I variables can be forced to 
meet the requirements of eqs (14) by adjusting the 
tunable parameters. Generally speaking, the diagnos- 
tic error "o" is committed if 

• class I variables are a subset of class II variables, 
and 

• the number of constraints associated with class 
II variables is not greater than that of the tunable 
parameters. 

Other;vise, the corresponding entry in the diagnostic 
performance table should be blank. Notice that Algo- 
rithm II can be adopted to verify the validity of the 
second condition. Specifically, outcomes (i) and (ii) are 
indications of a model structure which facilitates con- 
vergence in EKF estimation and thus should be as- 
signed a "o" and, on the other hand, outcome (iii) 
should be associated with a blank in the table. 

Under the assumptions that all possible combina- 
tions of faults are given and that all the EKFs chosen 
in the composite scheme are diagnostically observ- 
able, the techniques introduced in this section have 
been integrated into a procedure for constructing the 
corresponding diagnostic performance table. The spe- 
cific steps to determine the entry in each cell of the 
table are outlined below. 
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Procedure B 
1. Compare the fault-affected parameters with the 

augmented parameters associated with the se- 
lected cell. If the former does not form a subset of 
the latter, go to the next step. Otherwise, fill the 
cell with a "x/". 

2. Determine the class I variables. 
• Construct a structural matrix according to the 

system model and the fault-affected para- 
meters. 

• Tear the measurement variables from the 
structural matrix, i.e. remove all but one ele- 
ment in each of the columns corresponding to 
the measurement variables. 

• Apply Algorithm I on the post-tearing matrix 
to obtain the corresponding precedence order 
and identify accordingly the class I variables, 
i.e. the measurement variables which are con- 
netted to the fault-affected parameters. 

3. Attach the tunable parameters, i.e. the aug- 
mented parameters of the EKF under considera- 
tion, to the above precedence order and identify 
the class II variables, i.e. the measurement vari- 
ables connected to the tunable parameters. 

4. If some of the class I variables are not class II 
variables, then the cell should be blank. Other- 
wise, go to the next step. 

5. Build an agumented matrix corresponding to the 
tunable parameters and class II variables. 
• Remove the rows and columns corresponding 

to the fault-affected parameters in the post- 
tearing matrix. 

• Add columns associated with the augmented 
parameters of the EKF under consideration. 

• Add rows corresponding to class II variables. 
6. Perform Algorithm II on the augmented matrix. 

• If outcome (i) or (ii) is found, then the cell 
should be filled with a "o". 

• If outcome (iii) is found, then the cell should 
be left as blank. 

APPLICATION EXAMPLES 

Two application examples of the diagnostic perfor- 
mance table are provided here. The first is concerned 
with the simple two-tank system which has been dis- 
cussed repeatedly throughout this paper and the other 
is a complex two-phase reaction process. The former 
example is designed to illustrate the implementation 
procedure and to show the usefulness of the informa- 
tion generated with the proposed approach. The latter 
is meant to demonstrate the practical value of our 
techniques and the potential for other realistic 
applications. 

Example 9 
Again the system described in Fig. 4(a) is con- 

sidered here. Let us assume that there are five (5) 
possible abnormal events, i.e. a leak in tank 7"1 or T2, 
partial blockage in the pipeline between T, and T2 or 
the exit pipeline of T2, or a sudden change in the inlet 
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flow rate of TI. Their corresponding model para- 
meters are Acll, Acl2, Afl, Af2, and Aq~, respectively. 
Let us neglect the possibility of three or more events 
occurring simultaneously. In other words, p = 5 and 
p* = 2. All diagnostically observable EKFs with two 
parameters, i.e. m = 2, have been selected in the para- 
meter estimation scheme. Notice that, due to the re- 
quirement for diagnostic observability, the EKF 
which incorporates the augmented parameters Aq~ 
and Acl~ are not included in the scheme. 

Let us first consider the case when h~ and q2 are 
chosen as the measurement variables, i.e. s = 2. The 
resulting diagnostic performance table (Table 3a) can 
be obtained easily with Procedure B. Notice that none 
of the entries are blanks. Thus, if diagnostic observ- 
ability is the only condition imposed upon the para- 
meter estimation scheme, its diagnostic performance 
may not be acceptable. 

The resolution of diagnosis can be improved by 
adding more measurements. As shown in Table 3b, 

and JEN-WEN CHEN 

the number of misdiagnosis, i.e. "o", can be reduced 
significantly by introducing an additional measure- 
ment variable h 2. On the other hand, if h 2 is replaced 
by another measurement variable ql, then the diag- 
nostic performance can be enhanced further. The 
number of"o"  is decreased from 34 in Table 3b to 21 
(see Table 3c). As a matter of fact, the diagnostic 
resolution associated with this choice, i.e. hi, ql and 
q2, is the highest among all four possible combina- 
tions of three measurement variables. Notice also 
that, although the undesirable entries "o" cannot be 
eliminated completely in this case, almost all combi- 
nations of faults can be uniquely identified with the 
aid of fault patterns. One can observe from Table 3c 
that there are in fact only two groups of indistinguish- 
able fault origins, i.e. (i) those associated with rows 4, 
5 and 7 and (ii) those corresponding to rows l0 and 
11. 

Finally, it must be noted that every entry in the 
above three tables has been confirmed with numerical 

, L  Exit 
~ C J : ~  product C 

. . . .- v , 1 F  1 

Entering ~~'7~ q ~ t  
product B F0 / . - .~  

Entering 
---------~1 t " product A 

FC 

TC F ~ [ _ _ . _ ~  

W a t e r p r o B d U C  t 

Phase I 
. . . . . . . .  Phase II 

Fi F1 
y2 y0 

FO, xO ~ I , ~  

I F3,X5 

(b) [ • W, x6 

Fig. 15. (a) The process flow diagram of a two-phase reaction process. (b) The process block diagram of 
a two-phase reaction process. 
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3. Diagnostic performance of a composite parameter-estimation scheme 
(a) Two-tank system with two measurement variables 
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Acll Acll ACll A f l  A f l  Al l  Acl2 AcI2 ~f2 
hi, q2 All Acl2 A f2 AcI2 A f2 Aql A f2 Aqi Aqi 

act,, ,% , /  o o o o o o o o 

Acll, Acl 2 0 J 0 o 0 0 0 0 0 

Acll, A f2 0 0 J 0 0 0 0 0 0 

Afi, Ac4 o o o x /  o o o o o 

AS,, A f2 0 0 0 0 J 0 0 0 0 
A fl ,  Aqi o o o o o x~ o o o 

Acl2, A f2  o o o o o o x /  o o 
Acl2, Aqi 0 0 0 0 0 0 0 J 0 
Af2, Aql 0 0 0 0 0 0 0 0 . /  

Aq, o o o o o J o J 
A ~ l ,  , /  , /  , /  o o o o o o 

AS, J o o , /  J J o o o 
~c~ o , /  o , /  o o ~ , /  o 
~:~ o o d o d o ,/ o d 

(b) Two-tank system with three measurement variables--0) 

Acll Acll Acll Afl Afi Afl AcI2 Acl2 A f2 
hi, hE, q2 Afl AcI2 A f2 Acl2 A f2 Aqi A f2 Aqi Aqi 

~c4, AA x~ o o o o 

Acid, Acl2 o J o o o 
Acll, A f2 x /  
Af , ,  acl2 o o x /  o o 
As,, As~ ,/ 
A f , ,  aql o o o x~ o 
Acl2, A f2 x/  
AcI2, Aqi 0 0 0 0 4 
A f2, Aqi 0 

Aqi 0 0 0 0 J J 
zl~l, , I  d d o o o 
Ai, 4 o ~ , l d  d l O  
Act: o , I  o , i  
a:~ d d 

o 

J 

(c) Two-tank system with three measurement variables--(ii) 

Acll Acll Ac4 A f l  A f l  A f l  Acl2 Acl 2 A f2 
hi, ql, q2 A f l  AcI2 A f2 AcI2 A f2 Aql A f2 Aqi Aql 

AclI, A f ,  J 0 
AcI1, Acl2 x /  o 
ACll, A f2 ~/ o 
A fl ,  Acl 2 J 0 0 

A f, ,  A f2 o x/  o 
A f , ,  Aqi 0 x~ 

Act2, A f2 o 0 x /  
Acl2, Aqi o x /  
A f2, Aqi o ~ /  

Aqi 0 0 0 x /  X/ ;/ 
~cl, , /  4 4 o o o 
is, W ~ 4 4 ~ j  
A<l~ d o d 
As: d o , /  W 
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simulation. The predictions are all correct without 
exception. 
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dx5 
(o 0 + S~.) ~ = F2(x 4 - x5) - W[(ct I - 1)x5 + fl] 

Example 10 
Let us consider the process shown in Fig. 15(a) in 

which reactants A and B are converted to product 
C by the reaction 

A + B ~ C .  

The reactants are fed to the process in two different 
immiscible phases (A is in phase I and B is in phase II), 
and the reaction takes place in the mixer of the 
mixer-settler pairs. The objective of the process is to 
convert a fixed percentage of A into product C. The 
mathematical model of this system can be found in 
Himmelblau and Bischoff (1968): 

(1 - a) V-~tl = F I ( Y  -- Yl) - klctVxxyl (22) 

. dXl 
av'-d- [- = Foxo + F 3 X 5  - -  F 2 X 1  - -  2klaVxlyx  

dy2 
V'I - -~  = F~ (Yl - Y2) 

dx2 
V~ ~ = f2(xl -- X2) 

de 
v3 ~ = F:(x~  - ~) 

. dy3 
(1 -- a) e--~- = FI(yo -- Y3) -- k2aVxay3 

. dx3 
c t v - - ~  = F2(~ -- x3) -- 2k2aVx3Y3 

d Y  
V'I --~ = FI(y3 - Y) 

dx4 
V~ "-~ = F2(x 3 -- X4.) 

(31) 

S d2 -~ = F 2 -- W -  F 3 (32) 

dW Kt 
dt - S -(F2 - W -  f3) + K2~. (33) 

dFo F 2 -  F o X -  X 
. . . .  (34) 
dt Xo - X r 

dF3 dFo 
- ( 3 5 )  

dt dt 

Most of the notation used in this model is presented 
in the block diagram of the process shown in Fig. 
15(b). Additional explanations can also be found in 
the Notation section at the end of this paper. 

To verify the correctness of proposed procedures, it 
is necessary to carry out extensive simulation studies 

(23) corresponding to every entry in the diagnostic perfor- 
mance table. For the purpose of cutting down the 

(24) computational load, only four parameters, Xo, F1, Yo 
and k2, were allowed to vary in this example. The rest 
of the parameters were assumed to be constants and 

(25) their values can be found in Himmelblau and Bischoff 
(1968). It was also assumed that the probability of 
three or more faults occurring simultaneously in this 

(26) process is very low and thus can be excluded from 
consideration. As a result, the possible abnormal sys- 

(27) tem transients are associated with 10 combinations of 
parameters, i.e. (Axo, AF1), (Axo, Ayo), (Axo, Ak2), 
(AF1, Ayo), (AF1, Ak2), (Ax0), (AF0, (Ayo) and (Ak2). 

(28) To cover all 10 possibilities, the first six pairs of the 
above parameters were augmented in six separate 
EKFs. These EKFs were found to be diagnostically 

(29) observable using Procedure A. Procedure B was then 
applied to determine the entries in the diagnostic 

(30) performance table (see Table 4). Notice that, with this 
parameter estimation scheme, any of the possible 

Table 4. Diagnostic performance of a composite parameter estimation 
scheme in a two-phase reaction process with six measurement variables 

Y2, Fo 
Fa,xs AF1 AF1 AF1 Axo Axo Ayo 
2, Y Axo Ayo Ak2 Ayo Ak2 Ak2 

AF1, Axo x/ 
AF1, Ayo x/ 
AFx, Ake x/ 
Axo, Ayo x/ 
Axo, Ake x/ 
Ayo, Ak2 d 

AF1 , /  , /  , /  
Axo , /  / , /  
Ayo , /  , /  

d d d 
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combinations of faults can be uniquely identified. It 
should also be emphasized that the scenarios corres- 
ponding to all entries in the diagnostic performance 
table have been simulated numerically. It was found 
that every prediction is correct and no exceptions can 
be found. 

CONCLUSIONS 

Several important issues concerning the implemen- 
tation of EKF-based fault diagnosis techniques are 
addressed in this paper. First, the concept of diagnos- 
tic observability is introduced to characterize the phe- 
nomenon of bias in simultaneous state and parameter 
estimation. Second, on the basis of structural analysis 
of the system model, a testing procedure is outlined 
for identifying diagnostically observable EKFs. Third, 
a composite parameter estimation scheme, which in- 
corporates several EKFs in parallel, is proposed to 
overcome the problem of insufficient measurement 
data. Then, the concept of diaonostic resolution is 
developed as a criterion for selecting the best scheme 
among competing candidates and a simple tool for its 
representation and quantification, i.e. the diagnostic 
performance table, is also described. Finally, a system- 
atic procedure for constructing this table is presented 
in detail. 

It must be emphasized that, although the approach 
adopted in this study is not theoretically rigorous, the 
correctness of its results has been supported by nu- 
merous simulation studies. Since only structural in- 
formation of the system model is required, application 
of the above procedures should be simple and easy. 
One can thus conclude that the proposed techniques 
are practical even for large and complex chemical 
processes. 
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S cross-sectional area of the evaporator 
(example 10) 

t time 
X concentration of B entering reactor 

R I ( X  = Foxo + F3xs/F2) (example 10) 
)( reference value of X (example 10) 
Xo entering concentration of B in phase II 

(example I0) 
Y concentration of A entering reactor 

1 (example 10) 
Yo entering concentration of A is phase 

I (example 10) 
W flow rate of vapour from the evaporator 

(example 10) 
V total volume of reactors 1 and 2 (example 

10) 
Vo total volume of liquid in the evaporator 

and in the heat exchanger E 3 (example 
10) 

V 3 volume of heat exchanger E 2 (example 
10) 

V' total volume of decanters 1 and 2 
(example 10) 

V~, V~ volume of the individual decanter 
(V~ = V~ = V'/2) (example 10) 

Greek letters 
~t volume fraction occupied by phase II in 

each reactor (example 10) 
~ , f l  constants in the model of evaporator 

(X 6 = ~lX5 + fl) (example 10) 
2 variation from the reference level in the 

evaporator (example 10) 
concentration of B leaving exchanger 
E2 (example 10) 

p the density of liquid (example 2-example 
9) 

z time constant of the multifunctional con- 
troller (example 10) 

NOTATION 

Ai the cross-sectional area of the tank 
i (example 2-example 9) 

eli the parameter that characterizes tank 
i leaks (example 2--example 9) 

di the diameter of pipeline i (example 
2-example 9) 

J~ the friction factor for the flow in pipeline 
i (example 2--example 9) 

F1 flow rate of phase I (example 10) 
Fo, F2,/73 flow rates of phase II (example 10) 
hi the height of liquid level in tank 

i (example 2--example 9) 
li the length of pipeline i (example 

2-example 9) 
kl, k2 reaction-rate constants in reactors and 

2 (example 10) 
K1, K2 adjustable constants in the level control- 

ler of evaporator (example 10) 
qi the volumetric flowrate in pipeline 

i (example 2-example 9) 
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