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AND SEMI-BATCH PROCESSES USING
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Taiwan 70101, Republic of China

(Received September 22, t994; infina/form August 1. 1995)

The objective of this work is to assess the feasibility of adopting artificial neural networks (ANNs) in fault
detection and diagnosis for batch and semi-batch processes. Although there is a large volume of related
publications available, most of them used steady-state data to train ANNs and, as such, the task of fault
diagnosis can only be implemented in continuous operations. Based upon the concept of analytical
redundancy. the framework ora two-stage fault monitoring system is proposed in this paper. In the first stage,
a hybrid ANN is adopted to predict the long-term dynamic behaviors of the output variables under normal
condition. The occurrence of fault(s) can be detected by inspecting the residuals, i.e. the differences between
the measured and the predicted values of outputs. A second feedforward neural network is then used for the
purpose of differentiating the residual patterns caused by various faults. In addition to the fact the results of
pilot tests are quite satisfactory, it is also demonstrated in our experimental studies that the proposed
fault-monitoring system is capable of detecting and diagnosing faults that cannot be described by traditional
mathematical models.

KEYWORDS Fault Detection and Diagnosis Batch and Semi-Batch process Neural Network

INTRODUCTION

In order to achieve economical production scale, the capacities of chemical processes
today tend to be much larger than before. Also, for the purpose of optimizing plant
performance, the introduction of more complex integration schemes and the demand
for more sophisticated control strategies are becoming popular trends in current design
practice. As a result, the chance for accidents in the chemical industries has increased
significantly during the recent years and, thus, in operating a modern plant, an efficient
fault detection and diagnosis method is very critical for preventing the incipient faults
from developing into serious consequences.

Most recent studies in this area are concerned with the development of computer­
aided systems to assist the operator to detect abnormal conditions and to locate fault
origins. Numerous approaches have been adopted in the past. For example,

• The qualitative cause-and-effect analysis using sign-directed graphs (SDGs) (Iri
et al., 1979; Tsunge et al., 1985; Shiozaki et al., I985a,b; Kramer and Palowitch,
I987b; Chang and Yu, 1990; Yu and Lee, 1991),

'"Author to whom all correspondence is to be addressed.
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40 Ci-S, TSAI et al.

• The quantitative diagnostic methods using filtering and estimation techriiques
(Stanley and Mah, 1977; Himmelblau, 1978; Park and Himmeblau, 1983;
Watanabe and Himmelblau, 1983a,b; Isermann, 1984; Watanabe and Himineblau,
1987; Li and Olson, 1991; Chang et al., 1993), and

• The rule-base expert systems (Kumamoto et al., 1984; Chester et al., 1984; Davis
et al., 1985; Ungar, 1990; Kramer, 1987a; Rich and Venkatasubramanian, 1987;
Shum et al., 1988; Petti et al., 1990).

Notice that the success of these approaches hinges essentially upon the construction
of representative models or rules about all possible faults. However, it is sometimes
impossible to formulate mathematical models of equipment failures or malfunctions
and, in some cases, expert's knowledge may simply be unavailable. Further, even if all
faults can be described precisely, the tasks of building a system model or rule base can
still be quite time-consuming and expensive.

Artificial neural networks (ANNs) may provide a viable alternative to the above
problems. This is because of the fact that accurate prior knowledge of the faults
is not necessary for its implementation. It can be "trained" to perform a given
task successfully, e.g. see Quantrille and Liu (1991). The usage of ANN in fault
detection and diagnosis for continuous chemical processes was first suggested by
Himmeblau and his coworkers (Hoskin and Himmeblau, 1988). Using steady-state
data, they demonstrated the effectiveness of multi-layer feedforward networks (FFNs).
Later, further improvements have been introduced. For example, Kramer and Leonard
(1990) and Leonard and Kramer (1991) adopted the distance-based classifiers and
radial basis functions in diagnostic neural networks. The validity of the above
approaches to solve the problem of fault' identification 'from steady-state data was
also confirmed in a number of application studies concerning a fluidized catalytic
cracking unit (Venkatasubramanian and Chan, 1989), a heat exchanger (Himmeblau,
1992), a distillation column (Lee and Park, 1992), sensor failure in a control system
(Naidu et al., 1990) and the Syschem plant (Hoskin et al., 1991). On the other
hand, the feasibility of FFN in diagnosing incipient faults from transient data was
assessed by Watanabe et al. (1989), Venkatasubramanian et al. (1990) and
Vaidyanathan et al. (1990). In these studies, the basic theme was that process trends
often offer better clues for diagnosis. Two types of network inputs were thus used,
i.e. (i) the raw time-series data from the plant sensors and (ii) the moving average
values of the same time-series data. However, in those studies, the process was
assumed to be at steady state initially and the system transients were caused by
the occurrence of faults. Thus, their techniques are still applicable only to the
continuous processes.

From the above discussions, it is clear that the previous studies are mainly concerned
with the continuous operations. However, other than the petroleum and petro­
chemical industries, the batch or semi-batch operation is still a common, if not
dominant, mode of operation in process plants. Thus, the main objective of this study is
to explore the possibility of developing neural-network-based techniques for fault
detection and diagnosis in these processes.

A two-stage approach was adopted in this work. Basically, two neural networks
were applied in series in the fault detection and diagnosis process. The first one
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FAULT DIAGNOSIS IN BATCH PROCESSES USING ANN 41

was used to predict the normal behavior of the system, while the second one was used
for fault diagnosis. The network structure used for diagnosis is the same as those
implemented for the continuous processes, i.e. the feed forward networks (FFNs). The
first network, however, has not been included in any of the publications concerning
fault detection and diagnosis and thus, the reason for its adoption is further explained
in the sequel.

For continuous operation, the system is usually assumed to be at steady state
if it functions normally. In such case, the detection of a fault is relatively straight­
forward. Basically, one simply has to compare the measured output variables with
their reference (steady-state) values. On the other hand, the normal behavior of
a batch or semi-batch system is dynamic in nature, i.e. the measured output values
are in general functions of time. This is mainly due to the facts that the inputs
are varied from one step to another during batch operation and, consequently, a steady
state can never be reached. In other words, the batch and semi-batch processes are
always operated at unsteady state. Thus, an additional neural network must be
introduced to generate the reference (normal) values of the output variables for these
processes. This network is, of course, not needed for detecting faults in a continuous
operation.

There are a large volume of literature concerning the identification of dynamic
models using neural networks, e.g. Bhat and McAvoy (1990), Thibault (1991), Su et al.
(1991) amd Koshijima and Niida (1992). Multilayer FFNs were widely used in
model-predictive control (Ungar et al., 1990; Lee and Park, 1992; Psichogios and
Ungar, 1991; Cooper et al., 1992). However, the FFNs are suitable only for short­
term predictions (Su et al., 1992). The effects of an incipient fault may not be detect­
able in this situation. This is due to the fact that, in essence, the state of the system
gets "calibrated" each time a measurement is taken. The output values predicted
from the present measurements may still be very close to the measurement values
at the next time step. On the other hand, the recurrent neural network was believed
to be capable of predicting long-term dynamic system behavior (Su et al., 1992;
Qin et al., 1992; Schenker and Agarwal, 1992; You and Nikolaou, 1993). However,
to adequately describe the variations in the output variables, a pure recurrent net­
work configuration may not be enough. This can be attributed to the fact that,
in a realistic batch or semi-batch system, the response rates of different outputs
corresponding to the same set of input changes can vary widely. Thus, in the
corresponding recurrent network, it is inappropriate to recycle the outputs that
respond quickly to the inputs. As a result, none the available network configurations
can be directly applied and they must be tailored to suit our need for long-term
prediction in these processes.

Finally, it should be noted that, in the previous studies related to fault diagnosis
using neural network, the training data were generated by numerical simulation almost
exclusively. The majority of the computer programs used for such simulation studies
were inevitably coded on the basis of mathematical models. However, as mentioned
before, it is sometimes extremely difficult to construct accurate mathematical models
for realistic systems, especially after faults occur. Therefore, experimental training data
were obtained in all example cases studied in this work to demonstrate the practical
value of the neural-network-based approach.
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42 Ci-S. TSAI et al.

THE FRAMEWORK OF A TWO-STAGE FAULT-MONITORING SYSTEM

Generally speaking, an on-line fault monitoring system should consist of two major
functions, i.e. fault detection and fault diagnosis. The framework of such a system
developed in this work can be found in Figure I. A brief description of all its

.components is presented in the sequel.
First, the plant here refers to a general chemical process operated in batch or

semi-batch mode. The outputs x(t) from the plant are obviously corresponding to the
sensor measurements of the process conditions and the inputs U(t) should be equival­
ent to the signals sent to the actuators. In a batch or semi-batch operation, the actuator

neural network
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FIGURE I The framework of two-stage fault-monitoring system for noncontinuous processes.
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FAULT DIAGNOSIS IN BATCH PROCESSES USING ANN 43

inputs are usually manipulated periodically according to a recipe. Further, these inputs
may vary from step to step during each batch cycle.

In this study, the residual-based approach (Kramer and Mah, 1993) is adopted for
fault detection. Thus, the residual generator is a critical component in this fault
monitoring system. The residuals, tl.x = x - X, are measures of the discrepancy between
the observed system behavior and that should result under normal condition. Signifi­
cant departure from their nominal values, i.e. 0, signifies the occurrence of a fault or
faults. This approach is essentially derived from the concept of analytical redundancy
(Chow and Willsky, 1984). In other words, the inherent redundancy contained in the
static and dynamic relationships among the system inputs and measured outputs are
exploited in fault detection. Traditionally, the predicted outputs xare computed from
the input values according to a mathematical model (Isermann, 1984;Wiinnenberg and
Frank, 1990;Gertler and Singer, 1990).However, since it is often difficult to derive such
model in realistic applications, a neural network has been used to take its place.

To detect faults(s), various statistical tests should be performed on the residuals. This
implies that a statistical description of the residual under normal operation should be
acquired before implementing the proposed fault-monitoring system on-line. The most
general approach to obtaining probability density function (PDF) of these residual
variables is to build a calibration set of residual values during normal operation, and
then model the PDF using an appropriate estimator (Kramer and Mah, 1993). In this
discussion, we were not concerned with the detailed decision process involving
elaborate statistical analysis. Instead, a simple threshold test was used as the basis for
fault detection.

The last step is fault diagnosis. Normally, this task can be further divided into the
subtasks of feature (signature) extraction and classification (Chow and Willsky, 1984;
Wiinnenberg and Frank, 1990; Gertler and Singer, 1990; Clark et al., 1991; Kramer,
1993). In our study, these subtasks are carried out with a second neural network which
maps the patterns of residuals to fault origins.

MODELING THE BATCH AND SEMI-BATCH PROCESSES
WITH A HYBRID NETWORK

Theoretically, the long-term dynamic behavior of a process system can be successfully
predicted with an external recurrent network (ERN) if enough data are given and, also,
the convergence criteria in training are satisfied (Su and McAvoy, 1992; Qin et al.,
1992). However, this approach is questionable if applied blindly. First of all, the weight
estimates may be extremely difficult to converge in the iterative training process.
Secondly, even if convergence is achieved, poor prediction may still be possible in the
generalization stage. This is caused by mistakenly identifying an unsuitable local
minimum.

In the present work, physical insights of the system were used as an aid for
conjecturing the configurations of the neural network. It has to be realized that; in
chemical engineering applications, a qualitative description of the system is almost
always available. In addition to the cause-and-effect relations amongst input and
output variables, some knowledge about the dynamic characteristics of the system can
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44 c.-S. TSAI et al.

also be obtained. Thus, it is often possible to establish at least the functional form of
mathematical model. In many practical batch and semi-batch process, the response
rates of different output variables with respect to an input change can vary widely. The
corresponding model should therefore be expressed as:

(Ia)

(I b)

where Xl and Xz are vectors of measurements output variables, u a vector of known
inputs and p a vector of unknown and unmeasured parameters. Notice also that the
orders of derivatives, i.e. n, m and I, dictate the dynamic characteristics of the system.
A neural-network-based approach to model such batch and semi-batch process is
appropriate if, in the above equations, either the orders n, m and I or the explicit
formulation of (, and (, are unknown, or the values of parameters p cannot be
determined with sufficient accuracy. However, from Equation (Ia) and (Ib), it is also
clear that an ERN was not designed to handle the coupled relations implied in these
equations. Difficult training process and inadequate prediction capability are its
obvious drawbacks for our applications. Consequently, it is necessary to introduce
modifications in the network structure.

In our study, a generalized hybrid network (Fig. 2) has been developed to facilitate
the construction of proper models for the batch and semi-batch processes. Essentially,
this network is built with two interconnected feed forward networks. The first one
(FFN 1)maps the estimated output values and theinput values at current and previous
steps, i.e.x lr)(T = t - I, t - 2, ..),xz(,r)and U(T)(T = t, t - I, t - 2, ...), to the estimates of
Xl at the present time, i.e.

x1(t)=sPl[x,(t -l),x l(t-2), ... ,;xz(t),xz(t-I), ... ,;u(t),u(t-I), ...] (2a)

In other words, it is a FFN with external feedbacks, i.e. an ERN. The second network
FFNz is used to describe the relation represented by Equation (Ib). The outputs of

(I)u

~ z:
~ ':~'1. ,.

FFNz cp FFN 1 cp·.o.~....

£2(1) £1(t)

FIGURE 2 The Configuration of a generalized hybrid network.
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FAULT DIAGNOSIS IN BATCH PROCESSES USING ANN 45

FFN2 are the variables in x2(t). The inputs to FFN2 are limited to u asnd xlat current
time t, i.e.

X2(t) = g;2 [XI (t), u(t)] (2a)

The following simple example is provided to further clarify the general concept
described in Figure 2.

Example I

Let us consider the system behavior of an intermediate storage tank (Fig. 3) located
between the batch and continuous sections in a chemical plant. This system will be
referred to as System I throughout this paper. The openings of valves BV? and NV5 on
the inlet and outlet pipelines are assumed to remain constant during routine operation.
There are only two process variables that can be measured on-line, i.e. the height of
liquid level H and the discharge pressure of pump P. Thus, the output vector of this
system is

xT = [H,PJ (3)

To transfer material from an upstream batch process to the storage tank, the pump on
the inlet pipeline is turned on and then off periodically according to a recipe. The on/off
status of pump, U, can thus be regarded as the input.

It is obvious that the rate of change of H(t) is affected by the inlet and outlet flow
rates. The inlet flow rate should be a function of the discharge pressure P(t) and the
liquid-level height H(t). The outlet flow rate, on the other hand, should be a function
of the height H(t) only. Notice that the discharge pressure P(t) should respond

T,

Pump'

NV5 x.t- ~

FIGURE 3 The single-lank intermediate storage syslem (System I).
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46 c.-S. TSAI et al.

Hrl)

FIGURE 4 The hybrid network used for modeling the storage system I.

instantaneously to the pump status U(t) and also, this pressure is affected by the local
static pressure, i.e. H(t). By taking into account, the above physical insights, a hybrid
network (Fig. 4)can be constructed to simulate the dynamic behavior of System I under
normal operating conditions.

The residuals in this case can be computed by subtracting the outputs predicted with
the hybrid network from the on-line measurement values of the outputs, i.e.

~P(t) = P(t) - P(t)

~H(t) = H(t) - H(t)

(4a)

(4b)

To use these residuals in fault detection, a statistical description of their variation
under normal operation should be required. Thus, it is necessary to first collect
a calibration set of residual values and model the probability distribution accordingly.
Then, rhe upper and lower threshold limits for each residual can be set to be two or
three times the sample standard deviation above and below zero respectively. The
occurrence of a fault is identified whenever a residual value exceeds such limits.

DIAGNOSING FAULT ORIGINS WITH A MOVING-WINDOW FFN

After the occurrence of a fault is confirmed, the feedforward network is used in this
study to map the corresponding residual pattern to its origin. Since the behavior of
a batch or semi-batch process is dynamic in nature, the residuals associated with
abnormal operating conditions may also vary with time. Thus, it is important to
include, as the inputs to FFN, informations concerning both the current and the past
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FAULT DIAGNOSIS IN BATCH PROCESSES USING ANN 47

states of the system. Intuitively, this task can be accomplished with a moving-window
FFN similar to the ones reported in several previous publications, e.g. Vaidyanathan
and Venkatasubramanian (1990).

A number of different approaches in processing the input data have been inves­
tigated in this work. The simplest one, i.e. to use the raw data directly, is reported here.
Specifically, the inputs to the network at time tare tl.xj (t - itl.t)(i = 1,2,... , I),
tl.x2(t - jtl.t)(j = 1,2, ... ,J), and u(t - ktl.t)(k = 1,2, ... , K). Let us use an example to
illustrate this approach.

Example 2

Let us again consider System I presented in Figure 3. Assume that there are four
different fault origins, i.e. (i) a leak in the inlet pipeline, (ii) partial blockage in the
inlet pipeline, (iii) partial blockage in the outlet pipeline and (iv) a leak in the tank.
Thus, if a feed forward network (see Fig. 5) is to be used for fault diagnosis, the
number of the outputs should be 4. Each signifies the intensity of one of the faults with
a value between zero and one. The number of nodes in the input layer is the sum of the
window sizes, I, J, and K, corresponds with tl.H, tl.P and U respectively. These window
sizes can be adjusted to improve the diagnostic performance of moving-window FFN.
The most appropriate number of nodes in the hidden layer is dependent upon the
number of input nodes. Jt can also be determined on a trial-and-error basis in the
training process.

EXPERIMENTAL SETUP

One of the most celebrated advantages of artificial neural network is its ability to
capture the complex input/output relations of a variety of physical systems directly
from realistic data without the need to derive mathematical models from fundamental
principles of chemical engineering. To verify the feasibility and effectiveness of this

FIGURE 5 The moving-window feedforward network used for fault diagnosis in system I.
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FIGURE 6 The simplified P & ID of experimental setup.

approach, a pilot plant (shown in Fig. 6) has been built in this study for producing the
training and testing data.

It can be seen from Figure 6 that this experimental setup consists of a water reservoir,
three open tanks (T!, T2 and T3 ) and the connecting pipelines. The reservoir is made
from 304 stainless steel. Its height is 70 cm and the diameter of its cross-sectional area is
75cm. The three tanks are also made with 304 stainless steel and they are identical in
dimensions. The height and bottom diameter of each equal 123em and 50 em respect­
ively. The water reservoir and tank T3 are on the ground. The other two tanks, i.e. T1

and T2 , are placed on a bench with a height of 77 centimeters.
The connecting pipelines are mainly made of ~n copper tubes. They are marked in

Figure 6 with thick solid lines. In order to regulate the interconnecting flows and to
alter system configuration, needle valves, i.e. NVI, NV2, ...• NV7, ball valves. i.e. BVI,
BV2•... , BV7,and globe valve, i.e.G VI, G V2, ... , G V8.are installed on these pipelines.
In addition, branch pipelines which are made of in copper tubes are attached to the 3/8"
pipelines. By opening the normally-closed needle valves, e.g. NV8, NV9 and NV 10,on
these branches. small leaks in the pipelines can be simulated. These in pipelines are
indicated by thinner solid lines.

Two pumps are installed in our experimental setup to drive the water flows in the
connecting pipelines. Water is delivered from the reservoir into T1 and/or T2 with
a 0.5 hp centrifugal pump. Another pump of the same type and capacity is used for
transferring water from tank T3 to the reservoir. The flows in other pipelines are
induced by gravity.
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FAULT DIAGNOSIS IN BATCH PROCESSES USING ANN 49

In our experimental setup, a number of process variables can be measured on-line.
The discharge heads of the above two pumps are monitored with two identical pressure
transmitters P T I and P T2. The corresponding measurement range is from 0 to 15
psig. The levels in T 1 and T2 are measured via differential-pressure type level transmit­
ters, i.e. L T I and L T2. Their ranges are from 0 to 2.5 psig. The level in the third tank T3

is detected with an external-displacer type level transmitter L T3 (Smith and Corripio,
1985).The signals from the above transmitters are collected in a PC-486 via an ADDA
card with 32-channel port and 12 bit resolution.

EXPERIMENTAL PROCEDURES

To generate the data needed for training and testing the proposed hybrid and moving­
window feedforward network, it is necessary to operate the experimental equipments in
two different modes, i.e. normal and abnormal. Their respective experimental pro­
cedures are outlined below:

Normal Mode

The first step in all experiments is to establish the system configuration. A large
number of different systems have been studied in this work with the same experi­
mental setup described in Figure 6. For example, System I in Figure 3 and the
systems presented in Figure 7a to Figure 7d can be realized by setting the valve
positions according to Table I. Each value given in the table represents the opening
of the corresponding valve, i.e. the number of counterclockwise turns from the
fully-closed position. Notice that valves BVI and BV2 remain fully opened in all
five cases, and the valve openings of BV4 and GV5 on the recycle lines were adjusted
once in each case to produce proper flow rates for all related experiments. Also, in each
case, the other unlisted valves and those corresponding to the blanks in Table I were
kept closed.

The next step is to initialize the system before startup. Specifically, the tank(s)should
be filled to a level within acceptable range and the pumps primed.

The final step is to carry out the actual experiment for a period of 2 to 3 hours. As
mentioned before, our experiments are designed to simulate the operation of intermedi­
ate storage tanks in a batch or semi-batch process. To imitate the intermittent input to
T1 and/or T2 from an upstream batch process, the power source of pump No. I is
manually switched on and off at constant or arbitrary intervals. Similarly, pump No"
2 is operated in the same fashion to produce the effect of periodical withdrawal of the
content from T3• Notice that pump No.2 is used only in System V.

Abnormal Mode

After the system has been successfully operated in normal mode, faults can be
introduced by manipulating the openings of various valves at different locations. As an
example, the faults that have been simulated in System III can be found in Table II.
Notice that faults associated with pipeline leakage have been included in our study. In
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FIGURE 7 The simplified flow diagram of system II.III,IV and V.
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NV2

NV/

T/

CV3

Pump 1

CV/

FIGURE 7 (Continued)

TABLE I

Valve Settings for Five System Configurations

System
No.

I
II
III
IV
V

Valve Opening
NVI NV2 NV3 NV4 NVS GVI

9
2 3 3
2 2 3 3
2t 2l 3 32

3 3 4

GV2

4

GV3

4

BV7

general, such faults are very difficult to describe mathematically and thus the model­
based techniques are not suitable for their diagnosis.

EXPERIMENTAL RESULTS

Although a large volume of results have been generalized in this work, only the
experimental data obtained from Systems I and III are included in this article. This is
due to the need for keeping the paper within a reasonable length. Detailed descriptions
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52 C.-S. TSAI et al.

TABLE II

The Operating Procedure for Simulating Faults in System III

Fault No.

(i)
(ii)
(iii)
(iv)
(v)
(vi)

Fault Origins

Partial blockage in the inlet pipeline of T,
Partial blockage in the inlet pipeline of T,
Partial blockage in the pipeline between T, and T,
A leak in the exit pipeline of T,
A leak in the storage tank T,
A leak in the pipeline between T, and T,
or
A leak in the storage tank T,

Operating Procedure

Close NV2 slightly
Close NVl slightly
Close NV4 slightly
Open GV6 slightly
Open NV? slightly
Open NV6 slightly

Open NV5 slightly

of these unreported case studies have been presented elsewhere (Chen, 1993). Three
examples are described in this section. In examples 3 and 4, the advantages of adopting
the proposed hybrid network for fault detection are demonstrated with experimental
data obtained from System I. The long-term prediction capability of a hybrid network
is compared with that of a conventional ERN in the former example. In the latter
example, the applicability of the proposed approach and also a short-term prediction
approach for residual generation has been accessed thoroughly. Finally, in Example 5,
the effectiveness of the suggested fault diagnosis scheme is verified with pilot data
obtained from System III.

Example 3. Prediction of the Lonq- Term Dynamic Behavior

As indicated above, the batch operation described in Example 1 is considered here in
the present example. To implement the residual-based fault detection methods, the
outputs must be predicted on the basis of input values. Two network configurations
have been tested for this purpose.

First, an external recurrent network (Fig. 8) was constructed to predict the values of
the outputs, i.e. the height of the liquid level in the tank (H) and the discharge pressure

fi(t)

1'(t)

FIGURE 8 The external recurrent network used for modeling the storage system I.
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of pump (P). In this work, 6, 9 and 2 nodes were selected for the input layer, the hidden
layer and the output layer respectively. In our experiment, the measurement data were
taken every 40 seconds and, in total, 568 data sets were obtained. The first 320 sets were
used for training and the remaining data were used for generalization. The objective of
the corresponding iteration process was to minimize

(5)

where, Bij is the difference between the predicted and experimental values of the jth
output variable in the ith data set; nd is the number of the data sets; no is the number of
the output nodes.

Twelve initial guesses were used to start the training calculation. The weights
corresponding 10 the smallest minimum objective function (0.03) were adopted to
produce the results presented in Figure 9a to Figure 9d. Notice that the pressure

."•••• Exp. Dote
-- ERN Data

00

recall generalization extension
~

I

~ ~ ~ ~ b\\ ~ ~ ~ ~ ~ !'l l.4I }o l.4I
0 10000 20000 ,... ,... 300

time(sec)

0.0

P 0.5

1.0

FIGURE9a Results of applying ERN in system I: long-term prediction of the inlet pressure.

••••• [lip. Data
-- ERN Dote

recall generalization
1.0 r---------___::_--.-----___::_~-:----.,..-___::_--___,

H 0.0

time(sec)

FIGURE 9b Results of applying ERN in system I: long-term prediction of the liquid level.
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1.0

P 0.5

c.s. TSAI et al.

["'.. of' ~ ~ ill ~ "i' r#!

l-

f--

I-

"- ~ ~L,~ ~ ,~ W~ :.. ~ ~

••• • • Exp. Data
-- ERN Data

5000 10000
time(sec)

15000 20000

FIG U RE 9c Results of applying ERN in system I: extended prediction of the inlet pressure with a different
set of initial conditions.

H 0.0

•••• • Exp. Doto
-- ERN Ooto

FIGURE 9d Results of applying ERN in system I: extended prediction ofthe liquid level with a different set
of initial conditions.

measurements have been linearly normalized between 0 and 0.8 from the original range
of 0 - 7.32 psig and, also, the level measurements were converted from a range of 68.77
to 115.3em to values between - 0.8 and +0.8.

It can be observed from Figure 9a and Figure 9b that, when compared with both the
trained and untrained data, the predictions of ERN in the recall and generalization
period are in general acceptable. This observation seems to suggest that an ERN can be
adopted to describe the dynamic behavior of the intermediate storage tank in this
example. However, if. the prediction computation is extended further, then erratic
results may be generated. One can also observe from Figure 9a and Figure 9b that, with
the same ERN, the predicted-values of pressure and height oscillate severely in the
extended period. Further, if a different set of initial values for P and H are adopted,
drastically oscillation and even chaos-like behavior were found throughout the entire
prediction period, e.g. Figure 9c and Figure 9d. It should be emphasized that similar
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results were obtained with all other sets of weights determined in training. Thus, it
becomes apparent that a modified version of the ERN must be implemented.

The above problems can actually be attributed to the fact that the output variables
(H and P) respond to the input (U), i.e. the signal to activate or deactivate the pump, at
widely different rates. The pressure P at the pump exit responds to the input almost
immediately. On the other hand, the present liquid level is affected by the inlet flow
rates and the liquid level at present and previous time steps. Since the network structure
in Figure 8 fails to reflect this situation directly, a hybrid network (Fig. 4) has been
developed. In this network, 4, 7 and 1 nodes were used in the input, hidden and output
layer of FFN t and, in the corresponding layers of FFN2' 2, 8 and 1 nodes were used
respectively.

The above network were trained with the same experimental data. The convergence
rate of the iteration process was found to be faster and smaller objective function (0.025)
can be achieved easily. The results of recall and generalization are presented in
Figure lOa and Figure lOb. It can be clearly observed that the performance ofthe

1.0

P 0.5

l- recell i generalization i extension

" "- \. "
,

" "- , " " " ':'-- -. ;..,.
•••• • Exp. Data
-- HN Data

10000 20000 30000
lime(sec)

FIGURE lOa Results of applying hybrid network in system I: long-term prediction of the inlet pressure.

~ extensionrecoil i generalization

,!

1.0 ,---------__,..--- ----.-- -----,

H 0.0

•••• • Exp. Data
-- HN Data

30000

\

, ,:
20000

, "
10000

lime(sec)

FIGURE lOb Resulls of applying hybrid network in system I: long-term prediction of the liquid level.
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56 c.-S. TSAI et al.

proposed network is quite satisfactory. Further, even with a different set of initial'
conditions, the prediction of the hybrid network is still very accurate (Fig. 10c and
Fig. IOd).

Finally, although in most cases the inputs to the storage system in Figure 3 are
manipulated periodically, the feasibility of the proposed approach for predicting
noncyclic system behaviors has also been assessed in our study. For this purpose,
experimental data were generated by arbitrarily changing the ON/OFF status of the
inlet pump in System I. In this case, the normalized ranges for P and H were [0, 0.8] and
[ - 0.8, + 0.8] respectively. It can be observed from the results obtained in recall and
generalization state (Fig. Ila and Fig. II b) that the hybrid network is indeed capable of
tracing the long-term variations of the output variables in noncyclic processes. In
addition, the trained network could be applied to predict the system response caused by

1.0

P 0.5

I-

.l- f#' ,t ~ ,; l"i f1 .;

"- -, <, " ~ ~ "- '- " "
••• • • Exp. Data
-- HN Data

5000 10000
time(see)

15000 20000

FIGURE IDe Results of applying hybrid network in system I:extended prediction of the inlet pressure with
a different set of initialconditions.

1.0 ,------------------------,

H 0.0

\
I

5000
I I

10000 15000
time(see)

••••• Exp. Data
-- HN Data

20000

FIGURE IOd Results of applying hybrid network in system I: extended prediction of the liquid level with
a different set of initialconditions.
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•••• • Exp. Dato
-- Rec. Data

200001500010000
time(sec)

5000

~
recoil generalization

~ ,; ~ f fl' "
~

l-

~ ~ I, .,.. ~ .., , ~

"'" ~ ~
0

0.0

1.0

P 0.5

FIG URE II a Results of applying hybrid network in system I: long-term prediction of the inlet pressure in
noncyclic operation.

1.0 ,--------------,.-----------,

H 0.0

.recou generalization

•••• • Exp. Dato
-- Rec. Dato

10000
time(sec)

15000 20000

FIGURE II b Results of applying hybrid network in system I: long-term prediction of the liquid level in
noncycle operation.

an operation sequence not adopted in training. From the results presented in the
generalization period, it can be concluded that the performance of the proposed
network is more than acceptable.

Example 4. Residual Generation

The focus of this example is to address the practical issues in implementing the
residual-based fault detection procedure. As mentioned before, the purpose of on-line
prediction of the outputs is to reconstruct the normal state of dynamic system and then
compute the residuals accordingly. Since the observed outputs values are always
affected by the random measurement error and random disturbances to the process, it
is not likely to find .1.x = 0 even in systems without faults. Thus, it becomes necessary to
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first establish the threshold limits of the residuals from the data obtained under normal
conditions. In this example, the calibration sets of residuals associated with inlet
pressure and liquid level in System I were obtained from the data presented in
Figure lOa and Figure lOb. The values of sample mean and standard deviation
corresponding to 6.Pare - 0.00511 and 0.009237, and those corresponding to 6.Hare
0.000294 and 0.034796 respectively. The threshold limits of 6.P and 6.H were set
to be three times the estimated standard deviations, i.e. ± 0.02771 and ± 0.104388,
respectively.

After the threshold limits were established, the experiments were repeated under
the influence of a fault. More specifically, to simulate the phenomenon that the
outlet pipeline is partially blocked, the opening of the exit valve in System I (i.e.
NV5 in Fig. 3) was reduced slightly after the experiments has been carried out
under "normal" operating condition for 3040 seconds. The corresponding residuals
can be found in Figure 12 of this paper. We can see that abnormal operation condition
is detected at 3360 second on the time axis, which is 320 seconds after the introduction
of fault.

In this study, the feasibility of using residuals generated with a short-term prediction
approach, i.e. the feedforward network, has also been assessed. It was found that in
general a trained FFN is capable of predicting the dynamic behavior of a batch or
semi-batch process under normal operatingconditions. However, the residuals gener­
ated by this prediction approach are not suitable for the purpose offault detection. This
is due to the facts that the network uses the measured outputs at previous time steps as
its inputs for predicting the outputs at present time, and thus the estimated outputs are
always close to the measurement values even when a fault does occur during operation.
This phenomenon can be clearly observed from the results produced with the feedfor­
ward network in Figure 13a. The corresponding residuals are presented in Figure 13b.
Notice that the values of 6.P and 6.H stay close to zero throughout the entire period of
operation. The occasional spikes in these curves are mainly due to the alternation in the
operation modes (ON/OFF) associated with the inlet pump.

1.0 ,------------------------,

"~
o
>
'0 0.0 ~)alO-.::,..~_........""P--
:J
'0
'in

"0:: -0.5

0.5

••••• 6H
..... liP

FIGURE 12 The residuals obtained with the long-term prediction approach under the influence of exit
pipeline plugging in system I.
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Prl)

FIGURE 13a The feedforward network used for modeling the storage system I.
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FIGURE 13b The residuals obtained with the short-term prediction approach under the influence of exit
pipeline plugging in system I.

Example 5. Fault Diagnosis

The simplified flow diagram ofthe process studied in this example is given in Figure 7b,
i.e. System III. One can see that, using pump No. I, water can be transferred from
reservoir to both tanks, T, and T2 , via parallel inlet pipelines. The content in each tank
is driven out by gravity. The outlet flow of the first tank is directed to the second tank.
The water in the second tank is then discharged back into the reservoir. There are three
variables that can be measured on-line, i.e. the outlet pressure of pump No. I (P) and the
height of liquid level in T1 and T2 (H 1 and H 2) respectively, The sampling interval in
this case is again 40 seconds.

The hybrid neural network associated with System III was constructed according to
Figure 2. The corresponding supervised learning process was terminated when the
objective function reached a value less than 0.02. In most cases, the performance of the
trained network is quite satisfactory. For the sake of brevity, these results are not
included here. The configuration of moving-window FFN in this case is very similar to
that used for System I (see Fig. 5).The outputs ofthis network is naturally related to the
faults that can be simulated in System III. The output value I signifies that the
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corresponding fault occurs and 0 means otherwise. There are 6 nodes in the output
layer. Their respective physical interpretations are provided in Table II. Notice that,
since the symptoms caused by the two faults "a leak in tank T," and "a leak in the
pipeline between T, and Tz" are almost identical, they are combined as fault (vi) here.
On the other hand, the residuals associated with the three on-line measurements, i.e.
I:1H" I:1Hz and I:1P, and the ON/OFF status of pump No. I, i.e. U, at consecutive
sampling intervals are fed into the input layer of the network. A uniform window size is
adopted for these four types of inputs. The number of data points in a window has been
varied from 6 to lOin training and testing. It was found that the network performed
satisfactorily with a size of eight. Finally, through extensive computational effort, we
have successfully reduced the value of objective function to below 0.025 using seven
hidden nodes.

The effectiveness of the proposed moving-window FFN has been verified with
untrained on-line data obtained from pilot experiments under normal and abnormal
operation modes. The results shown in Figure 14a are associated with normal oper­
ation. One can see that, as expected, all six output values stay close to zero with minor
fluctuations only at very rare occasions. The diagnostic conclusions presented in
Figure l4b to l4g are corresponding to fault (i) to (vi) respectively. These conclusions
are generally correct and sufficient for diagnosis purpose. The fact that faults (i) and (ii)
are diagnosable is a little surprising. Since the pressure residual is not affected, i.e.
1:1 P = 0, by partial blockage in either of the inlet pipelines when the pump is switched
off, one would expect that this type of faults should be indistinguishable from events
such as leakage in the corresponding tank during the same period of time. However,
after a closer examination of the interaction among measured variables in this system, it
can be concluded that these results are in fact reasonable. Notice that the two inlet
pipelines are connected to the same pump. Thus, the occurrence of either one of these
faults should affect the levels in both T, and Tz. For example, a partial blockage in the
pipeline leading to T, will cause a decrease in the inlet flow to T, and, at the same time,
an increase in the input to Tz. As a result, the corresponding pattern of residuals
associated with the levels (i.e. I:1H, < 0, 1:1 Hz> 0) is sufficient for the identification of
fault (i).

It should be noted that occasional instances of misdiagnosis can still be observed in
the above diagnostic results. From Figure 14b and Figure 14c, one can see that
significant oscillation occurs during the initial stage of diagnosis for fault (i) or (ii).This
can be attributed to the fact that, in the corresponding experiments, the output voltage
of power supply was unstable during the startup period.

A more serious type of misdiagnosis can also be found in Figure 14fand Figure 14g.
In the former case, fault (ii) was mistakenly identified instead of fault (v) for a short
period of time before switching to the correct conclusion. Similarly, fault (vi) was
momentarily replaced by fault (i) as the cause of abnormality during the initial stage of
diagnosis in the latter case. It should be emphasized that this type of misdiagnosis is
inevitable in our system. These results can be attributed to the fact that the symptoms
caused by two different faults are very similar for a short period during operation. Let
us use the diagnosis offault (v)as an example to explain in more detail. First, notice that
the pump was not activated initially for about 2000 seconds. Thus, the pressure
residuals should be constant at zero during this period and this outcome, i.e. I:1P(t) = 0
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FIGURE 14. Results of fault diagnosis in system 1II: normal operating conditions.
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FIGURE 14b Results of fault diagnosis in system III: partial blockage in the inlet pipeline of T,.
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FIGURE 14c Results of applying hybrid network in system III: generalized prediction of the liquid level
in T2 .
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FIGURE 15 The Initial residual trajectory corresponding to fault (v) in system III.

forO';;; t .;;; 2000,can be produced by either fault (ii)or (v). In Figure 15,the trajectory of
tlH 1 versus tlH 2 corresponding to fault (v) is plotted for the same period against
a background of the training data used for fault (ii) when the pump is turned off. One
can see clearly that the residual pattern generated after the introduction of fault (v)
"walks" into a region which has already been classified as fault (ii). As a result, the
unavoidable mistake was committed temporarily in diagnosis.

CONCLUSIONS

Effective neural-network-based techniques have been developed in this study for fault
detection and diagnosis in batch and semi-batch processes. The principal difference
between this paper and the published works which also address the problem of fault
identification from transient data (e.g.Watanabe et al., 1989;Vaidyanathan et al., 1990)
is that the external inputs to the given process are no longer assumed to be constant. As
a result, it is necessary to first generate residuals associated with the on-line measure­
ments and then locate the fault origins accordingly. This turns out to be the major point
of departure from the previous approaches.

The proposed fault monitoring system consists of two neural networks connected in
series, i.e, a hybrid network and a moving-window FFN. The former is capable of
predicting the normal long-term behavior of realistic batch and semi-batch systems in
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which various types of fast equilibrium and slow dynamic relations may exit simulta­
neously. The outputs of this network are the reference values for computing residuals
which, in turn, can be used for fault detection via statistical tests. Once the existence of
a fault is confirmed, the latter network can then be implemented to map the corre­
sponding residual pattern to its origin.

Extensive experimental studies have also been carried out in this work. Based on the
test data we have produced so far concerning the hybrid networks, one can conclude
that the accuracy demonstrated in their predictions definitely meets the need for
a reliable fault detection scheme in the fault monitoring system. Also, from the
diagnostic results presented in this paper, one can see that the moving-window FFN is
in general able to correctly identify the residual pattern caused by a single fault origin.
Although, in several cases, misdiagnosis appeared at occasional instances during the
initial stage, this network always yielded the correct results eventually within a short
period of time.

NOMENCLATURE

£"£2
17,,17 2

H"H 2

I'1H" I'1H2

nd

no
p
p
P
I'1P
r
X 1,X2

Xt'X 2
1'1x
U

U

Greek Symbols

Abbreviations

ANN
ERN
FFN
PDF

The descriptive functions of the process
The alternative descriptive functions of the process
The heights of water levels in tanks T, and T2 respectively
The residuals of HI and H 2 respectively
The number of training data sets
The number of nodes in the output layer
The discharge pressure of pump
The vector of unknown parameters
The normalized discharge pressure
The residual associated with P
The present time
The vector of system outputs
The vector of estimated outputs
The vector of residuals
The vector of system inputs
The ON/OFF status of the pump

The training errors
The dummy index of time intervals

Artificial neural network
External recurrent neural network
Feedforward neural network
Probability density function
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