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Two critical decisions must be made in the charging sequence of batch reactors: 
target setting and alarm generation. A number of statistics-based strategies are proposed 
in this article to peflorm these tasks. The off-line and on-line target setting procedures 
developed in this work can be adopted to increase the profit margin of any given batch 
process without sacrificing reliabiliv. A synthesis method for building optimal alarm 
logic is also described in detail. Monitoring systems constructed according to this sug- 
gested approach are effective in reducing the probability of undetected faulty batches. 
Extensive simulation studies show that the proposed strategies are suitable for applica- 
tion of manufacturing high-value-added products, which is a prevailing practice in batch 
processes. 

Introduction 
Batch processes have always been employed in the manu- 

facture of small amounts of products with purities and/or 
other qualities not readily attainable in the continuous ones. 
In particular, specialty chemicals with high added value are 
often produced in batch reactors, such as specialty polymers, 
pharmaceuticals and biochemicals. Since batch processing is 
time-variant in both operating conditions and system configu- 
ration, there is a need to place significant emphasis on effec- 
tive control in order to ensure operational safety and to 
achieve repeatable and accurate batches. 

The control functions of a batch process can usually be 
divided into several levels (Severns and Hedrick, 1983). The 
top of the hierarchy is batch-cycle control. It has a plant-wide 
scope to accommodate tasks such as scheduling, production 
planning, and optimization. Although this is an area of active 
research (Birewar and Grossman, 1989; Tan et al., 1993; 
Kondili et al., 1993; Shah et al., 19931, the focus of this work 
is concerned with the next level of control functions, i.e., those 
needed to automatically sequence and execute all steps within 
a single batch. Further, for the sake of illustration clarity, the 
discussion presented later in this article will be limited to the 
specific case of batch reaction only. 

According to Perry et al. (19841, the operating sequence of 
a batch reactor typically consists of three stages, i.e., charging 
the reactor, manipulating the operating conditions to meet 
some processing criterion, and shutting down and emptying 
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the reactor. In principle, the specific control actions needed 
to perform these works can be synthesized manually based 
on experience or automatically with one of the algorithms 
proposed in the literature (Fusillo and Powers, 1987, 1988a,b; 
Lakshmanan and Stephanopoulos, 1988a,b; 1990; Foulkes et 
al., 1988; Aelion and Powers, 1991; Crooks and Machietto, 
1992). In executing these operating procedures, the targets of 
control actions must be specified first. For example, the tar- 
get amounts of the raw materials that must be charged into 
the reactor should be determined on the basis of production 
demand and/or some other operational constraints. Also, if 
an accurate mathematical model of the reaction system is 
available, the target profiles of the operating conditions can 
be established with the Pontryagin maximum principle 
(Cuthrell and Biegler, 1989; Villermaux and Georgakis, 1991). 

In realistic operations, uncertainties and unexpected dis- 
turbances in the control actions are almost unavoidable. The 
above target setting policies must thus be adjusted accord- 
ingly. As a result, monitoring becomes another critical con- 
trol function. Most of the related studies in the past are only 
concerned with the second stage of batch reaction sequence. 
The task of monitoring is confined to checking that the 
planned operation steps are followed and that certain mea- 
surement variables are following predetermined trajectories 
during reaction. A detailed account of the literature can be 
found in Nomikos and MacGregor (1994). However, it should 
be noted that, in addition to the operating conditions during 
reaction, the outcome of a batch is sensitive to the initial 
state as well. For example, a runaway reaction or at least a 
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drop in yield may result from improper preparation of the 
raw materials (Haldar and Rao, 1992). In other cases, the 
unreacted reactants remaining in the product may create un- 
desirable downstream problems, such as separation difficul- 
ties, pollution and safety hazards. Thus, it is clear that an 
accurate charging procedure, which includes a target setting 
method and a monitoring scheme, is one of the primary fac- 
tors for successful batch reactor control and the development 
of statistical operating strategies for charging the batch reac- 
tors is exactly the objective of this research. 

Although in practice there are various different types of 
batch chargers, the material transfer methods can be broken 
into a few general categories (Rosenof and Ghosh, 1987). Di- 
rect charging simply refers to the process of transferring the 
raw material from a storage tank into the batch reactor. The 
charge amount may be measured by level or weight sensors 
at the storage tank or batch reactor, or by flow between them. 
This method is simple and economical. On the other hand, 
indirect material transfer system use " preweigh" buffer tanks 
between source and destination. The additional investment 
in these tanks is justified by improved charge accuracy and 
reduced batch time. Whatever the method used, uncertain- 
ties are always associated with the material transfer process. 
The current target-setting practice in the industry is mainly 
experience-based. In this work, however, a statistics-based 
approach has been taken. Various simple error models were 
first formulated according to the characteristics of different 
types of charging and measurement methods. The techniques 
for extracting the parameters of these models from historical 
and/or on-line measurement data were then established. On 
the basis of these parameters, several target setting proce- 
dures were developed to achieve a given level of reliability. 

The statistical process control (SPC) methods are probably 
the most natural choices for monitoring purpose (Badavas, 
1993; Al-Saki and Statham, 1994; Nomikos and MacGregor, 
1994). However, if SPC techniques such as Shewhart or 
CUSWM charts are used directly for the present problem, 
there are drawbacks which require special attention. First of 
all, since the product value created per batch is quite high, it 
is not acceptable to detect the out-of-statistical-control 
batches only after several of them have already been com- 
pleted. In other words, the charging failure should be de- 
tected as soon as possible in each batch. Secondly, the alarms 
may be mistakenly set off due to measurement errors. Again, 
as a result of the high added value of the product, the finan- 
cial implications of false alarm and undetected failed batches 
may be too great to be ignored. Thus, there is also a need to 
minimize the loss caused by misjudgments in monitoring. A 
common approach to solve these problems in the industry is 
to introduce redundancy and diversity in the system. Specifi- 
cally, several independent sensors are installed to monitor the 
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Figure 1. Charging operation of batch reactors. 

same material transfer process. Any inconsistency identified 
in the measurement data obtained from different sensors is 
usually resolved on the basis of operation experience. In this 
research, however, a systematic method for synthesizing the 
optimal alarm generation logic has been developed. Basically, 
the design techniques of trip systems (Inoue et al., 1982; Ko- 
hda et al., 1983) were extended for the development of such 
a method. In addition, in order to implement the proposed 
logic synthesis method, the probabilities of false alarms and 
undetected failures must be estimated in advance. An estima- 
tion procedure for these parameters was also developed in 
this study. 

In this article, descriptions of the above strategies are pre- 
sented in detail. The implementation procedure of the pro- 
posed techniques is illustrated with an application example. 
The feasibility and benefits of the present approach are also 
clearly demonstrated with extensive simulation studies. 

Charging Operation of Batch Reactors 
To avoid confusion, it is best to define the batch reactor 

charging process conceptually at the beginning of our argu- 
ment. Figure 1 depicts the procedure of a typical charging 
operation associated with one reactant. If more than one raw 
material is involved, it is assumed that they are fed separately 
according to Figure 1 in sequence. 

Before the actual transfer takes place, a target amount X', 
usually determined on the basis of market demand, must be 
given to the operator or specified in the computer program 
of a PLC. This value can thus be regarded as a known con- 
stant during each batch. Each reactant is delivered from its 
storage tank either directly to the reactor or temporarily to a 
measure vessel first. The charge amount is-manipulated man- 
ually or automatically according to the on-line measure- 
ments, such as readings of the level indicator on reactor or 
measure vessel, or the time elapsed since the inception of 
pumping operation. It should be noted that the amount of 
material actually charged into the reactor, i.e., X c ,  may not 
be exactly the same as the target. Both bias and random er- 
rors are possible in this transfer process. In order to ensure 
operational reliability and safety, it is a common industrial 
practice to install several independent and diversified sensors 
to monitor X c  (Fisher, 1990; Rosenof and Ghosh, 1987; Tsai 
and Lane, 1976). There are a number of typical approaches 
available for measuring this amount, such as flow totalization 
of the raw material through the inlet pipeline and determina- 
tion of the level change (by DP cell) or weight change (by 
weight cell) in the reactor or measure tank. Again, due to 
random and systematic errors, the measurement values, i.e., 
X(' )  (i = 1, 2, . . . , n), obtained from different sensors are in 
general not consistent with one another. Nonetheless, one is 
still required to check the status of the charging process 
against operational constraints with these data. Usually, de- 
tection strategies for unacceptable conditions, i.e., the alarm 
generation logic, are developed on an ad hoc basis. For exam- 
ple, an alarm may be set off on the basis of the most reliable 
sensor or an arbitrarily chosen P-out-of-n ( 0 I n )  logic, and 
so on. If an alarm is generated accordingly, remedial mea- 
sures can be taken to correct this undesirable condition. Oth- 
erwise, the subsequent steps specified in the operation man- 
ual can be executed in sequence. 
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In summary, X c  in the charging process can never be ob- 
tained exactly and the data available to us in each batch are 
the values of X T  and X('h only. Based on these historical 
data obtained from previous batches, the target setting pro- 
cedure and the alarm generation logic are the two essential 
strategies that must be developed for any batch reactor 
charging sequence. 

Operational Constraints 
As mentioned before, the raw materials are charged into 

the batch reactor in sequential steps. In general, the actual 
amount transferred in each step is required to satisfy one or 
more operational constraints. Both inequality and equality 
constraints can be identified in practical applications. 

The inequality constraints are often imposed to address 
safety concerns. For example, in pesticides-producing proc- 
esses, toxic chemicals such as phosgene are frequently used 
in batch reactors. Complete conversion of these chemicals is 
thus highly desirable in this situation. In some other proc- 
esses, the possibility of an exothermic runaway reaction may 
occur if the ratio of two reactants exceeds the design value. 
Occasionally, it may even be necessary to satisfy multiple 
constraints in order to ensure operational safety. 

On the other hand, the charge amount may have to be 
equal to a prescribed value c1 to meet the production de- 
mand 

x c = c ,  (la) 

Or, for the sake of maximizing yield or selectivity, it is some- 
times necessary to maintain the ratio of X c  to the amount of 
another reactant at a target level 

where Z c  denotes the actual amount of one of the reactants 
which have already been charged into the reactor and c2 is a 
constant. Violation of the equality constraints usually results 
in inefficient operation or degradation in product quality. 

Due to various uncertainties involved in the charging 
process, the above two types of constraints cannot always be 
satisfied exactly in practice. Thus, the requirements implied 
by these constraints must be relaxed. In the former case, the 
expected probability of successful charging operation (in the 
sense that the constraints are satisfied) should be assigned. 
For the latter case, the equality constraints must first be 
changed into suitable forms. For example, Eqs. l a  and lb  can 
be replaced with 

and 

where cj" and cy represent the lower and upper bounds of cj 
respectively and j = 1, 2. As a result, the acceptable probabil- 
ity of satisfying these alternative constraints can be specified 
accordingly. 

From the above discussions, one can see that the realistic 
operational constraints can be written in a generalized form 
with a perfomzancefunction 6 

where Zy ( j  = 1, 2, . . . , rn) represents the actual amount of 
the j th raw material which has already been transferred into 
the reactor. In this article, only single-constraint problems are 
treated due to space limitation. Issues concerning the multi- 
ple constraints will be addressed in a scparate article. 

Error Models 
To understand the nature of our problem at hand, it is 

necessary to gain a clear picture of the errors associated with 
the charging and measuring processes. Let us first consider 
the process of charging. Owing to imperfect control and op- 
eration of the equipment, the actual amount of reactant 
charged into reactor is usually not exactly the same as the 
target value 

X C = X T + A  (3) 

where A is the error due to the charging system and, for 
convenience, it is assumed to be a normally distributed ran- 
dom variable. Note that, although both X c  and A are ran- 
dom variables, the target X T  should be viewed as a deter- 
ministic value in the charging process. As a result of variable 
market demand, it is often necessary to alter X T ,  accord- 
ingly. Further, in some cases, this target can be adjusted ac- 
cording to on-line measurements of the other previously- 
charged reactants to optimize a predefined performance in- 
dex. Thus, there is a need to formulate the error model asso- 
ciated with the charging process and, particularly, develop an 
expression of A as an explicit function of X T .  

The simplest approach to describe the behavior of A is to 
assume that it is independent of the target amount. This as- 
sumption is reasonable if the charging process is stopped on 
the basis of an end-point measurement, such as the output 
from a level or weight sensor. Throughout this article, these 
errors will be referred to as the charging errom of type A .  The 
second approach adopted in this study is to assume that the 
charging error is proportional to the targeted amount 

A = X T S  (4) 

where 6 is a random variable and its mean and variance can 
be considered to be independent of X T .  In other words, the 
actual amount X c  can be expressed with an alternative form 

where X S  is a random variable and 

X S = 1 + 6  (6) 

From a practical viewpoint, these charging errors exist when 
the transferring flow is maintained and terminated according 
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to flow measurements. Errors that can be described by Eqs. 5 
or 6 are called charging errors of type B in this study. 

Next, let us consider the process of measuring X c  with 
sensor i (i = 1, 2, . . . , n). Bias and random errors may both 
exist in this process. Thus, 

k = l ,  2, ..*, K (11) 

where the vector x& is defined as 

where E(i) is the measurement error associated with sensor i 
and it is also assumed to be normally distributed. In this study, 
it is further assumed that the charging errors A and these 
measurement errors E(') are statistically independent. 

As mentioned previously, the amount of a reactant charged 
into reactor can be determined with level, pressure, weight, 
or flow sensors. The typical measurement errors of these in- 
struments are in genera1 reported in terms of a percentage of 
full scale and/or a percentage of reading. Thus, the measure- 
ment errors can also be described with two corresponding 
models in this study. Measurement errors of type A refers to 
errors not affected by X c .  Specifically, the corresponding 
mean &[Z( ' ) ]  and Var [E")]  should be independent of the 
actual charge amount X c .  On the other hand, measurement 
errors of type B can be described by 

Thus, the random variables X ( ' h  can be expressed alterna- 
tively as a product of two random variables 

where 

In this case, it is assumed that the mean and variance of di) 
are not affected by the value of X c .  

Parameter Estimation 
Since the statistics-based techniques are probably the most 

appropriate tools for the development of a target setting pro- 
cedure and to devise the alarm generation logic, the parame- 
ters that describe the probability distributions of charging and 
measurement errors must first be estimated correctly. To be 
specific, let us assume that the measurement data obtained 
from K previous batches are available to us. Also, it is as- 
sumed that the measurement errors associated with n, sen- 
sors are of type A and those with the other nB (n, + n, = n)  
sensors are of type B. On the other hand, the charging errors 
of both type A and B are allowed in the following discus- 
sions. Our task is thus to determine the sample means and 
variances associated with various errors from the historical 
data. 
In this study, the maximum likelihood estimation tech- 

niques were adopted. In particular, the likelihood function 
for the parameters given the measurement data from one 
batch is assumed to be 

and x f )  is the measurement value of sensor i ( i  = 1, 2, .-. , n )  
obtained from the k th batch. The vectors ew and 8, consist 
of, respectively, the expected values and the variances of the 
charging and measurement errors 

and 

(13) 

(14) 

& [ A ]  
& [ X s  ] 

if the charging error is of type A 
if the charging error is of type B (15) e,C = 

Var [ Z ]  
Var [ X s  ] 

if the charging error is of type A 
if the charging error is of type B (16) e,C = 

and 

E [  E ( i ) ]  

&[X>') ]  

if the measurement error of 
sensor i is of type A 

if the measurement error of 
sensor i is of type B 

02) = 

Var[ $ i ) ]  if the measurement error of 
sensor i is of type A 

if the measurement error of 
sensor i is of type B 

Var [ X r ) ]  

i = l , 2 ,  * * * , n  

(17) 

(18) 

Finally, the vector j i k  contains the expected values of the on- 
line measurements associated with the target X z  of batch k 
and the matrix Ck is the corresponding covariance matrix. 
Notice that the target value XF may vary from batch to batch. 
It should also be noted that both & and Ck are functions of 
the target X? and the 2n + 2 parameters in and 8,. Thus, 
the best parameter values can be found by maximizing the 
product of the likelihood functions associated with all K 
batches 
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This is a nonlinear optimization problem which can be solved 
iteratively with a standard numerical technique. It should be 
noted that since the measurements X(')s can be nonlinear 
functions of the charging and measurement errors the as- 
sumption of a normally distributed likelihood function, i.e., 
Eq. 19, may not be theoretically rigorous in every application. 
However, since these functions can often be well approxi- 
mated by linearized models and, also, the subsequent deci- 
sions involving target setting and alarm generation are rela- 
tively insensitive to the accuracy of parameter estimates, the 
present approach is still taken for the sake of convenience. 

Although, in principle, the maximum likelihood estimates 
of parameters 0 ,  and 8, can be obtained with the proce- 
dure described above, the computational load is usually ex- 
tremely demanding. Thus, there is a need for the develop- 
ment of more efficient alternatives. In this study, it was found 
that this computation can be simplified if all measurement 
errors are of the same type. Specifically, it should be noted 
that, if only measurement errors of type A are involved, the 
differences between the measurement data from two differ- 
ent sensors does not involve the charging error 

Thus, the following relations among the means of the mea- 
surement errors can be utilized in producing the maximum 
likelihood estimates 

where, the superscript ( r )  denotes an arbitrarily chosen refer- 
ence sensor. Notice that the first term on the right side of 
Eq. 21 can be estimated from historical data and thus only 
the mean of one of the measurement errors, i.e., &[B(')], must 
be estimated iteratively. Further, useful information can be 
extracted from the variances of these differences. From Eqs. 
20, one can obtain 

' i t - j  

Notice that all terms on the right side of Eq. 23 can be esti- 
mated from measurement data and, consequently, the esti- 
mates of Var [@)Is can be determined without iteration. 

If, on the other hand, only type B errors exist in the mea- 
surement process, a similar approach can also be taken. In 
this case, the available data must first be transformed into 
acceptable formats. Specifically, the following equations can 
be used 

Notice that, since the magnitude of measurement error is 
usually small when compared with that of the actual charge 
amount, i.e., &) -ZK 1, the following approximations are in 
general valid 

Thus, relations similar to Eqs. 21 can be developed accord- 
ingly 

In addition, the variances can be expressed as 

Notice that there are in total n(n-1)/2 such equations. 
Adding all of them together yields 

Thus, the variances of the measurement errors can be ex- 
pressed as 

After obtaining the approximated values of Var [E( , ) ] s  or 
Var [ &)Is, maximum likelihood estimates of the other pa- 
rameters can be determined according to Eqs. 19, 21 and 26. 
Notice that the number of decision variables of this optimiza- 
tion problem is reduced to 3, Le., B:, 0; and 8;'). Thus, the 
iterative computation process should converge at a much 
faster rate. Finally, it should be noted that, if both the charg- 
ing and measurement errors are of type A, infinite number of 
solutions can be produced with this approach. In such case, 
additional assumptions must be introduced to produce sepa- 
rate estimates of these parameters. 
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On-Line Target Setting Procedure 
Because of charging errors, the plant engineers usually 

cannot guarantee the products of all batches in a production 
campaign to be satisfactory. Thus, the probability of a suc- 
cessful charging operation, i.e., reliability, can be considered 
as a performance index and should be chosen in advance. In 
practice, perfect operation cannot be expected, i.e., the 
achievable reliability should be always less than one. 

If there is only one operational constraint involved in the 
charging process, any given level of performance can be 
achieved with a proper target setting procedure. Since the 
performance function 6 is a function of random variables 
Xc and Z,"s, the probability of 6 < 0, i.e., the demandprob- 
ability PF, can be expressed as 

where 

(29) 

(30) 

and fs and & are the probability density functions of S and 
6 respectively. The lower bound of the integral in Eq. 28, 
i.e., y ,  will later be referred to as the safety index. 

Notice that Xc and Z,"s are functions of the charging er- 
rors only and, also, these charging errors are assumed to fol- 
low Gaussian distribution in this study. If the performance 
function is a linear function of Xc and Z,"s, then 8 must 
also be normally distributed. Thus, the value of y should be 
1.65 if the probability of failure is required to be 0.05 and 3.1 
if a probability of 0.001 is expected. However, if the per- 
formance function is nonlinear, then the value of safety index 
associated with a given level of demand probability must be 
determined with Monte Carlo simulation. This approach re- 
quires extensive computation. Thus, an alternative procedure 
was taken in this study. In particular, 6 was linearized by 
taking Taylor series expansion around pxc and jiZc = 
[ pZf,  pz-, . . . , pZ;lT. The mean and variance of the result- 
ing function were then used as approximations (Kapur and 
Lamberson, 1991) 

l r n  + - Var [ZF] (%) (31) 
2 j = 1  az,C2 pxc,&c 

m 

+ C Var[Z,"] (") (32) 
j = l  pxc,&c 

Due to the fact that the value of &[GI can be easily con- 
trolled by adjusting X T  and 23, it is convenient to set the 
charge targets according to Eq. 30 so that a required level of 
demand probability PF can be achieved. In the industry, this 
task is usually carried out off-line. Specifically, the charge tar- 
gets are determined in advance and maintained constant for 
every batch throughout the production campaign. However, 
it is also clear from Eq. 30 that these targets are affected by 
the variance of 6. Thus, if the off-line approach is taken, the 
corresponding target setting procedure tends to be conserva- 
tive. This is due to the fact that variabilities associated with 
Xc and Z y s  must both be accounted for in estimating 
Var[ S]. Consequently, the plant productivity may be less than 
maximum due to excessively large amount of unreacted reac- 
tant remaining in each batch. 

In this study, several on-line strategies have been devel- 
oped for setting the charge target XT. Notice that, in addi- 
tion to the statistical data of the previous batches, the mea- 
surements of the previously-charged reactants in the same 
batch are also available. Since the purpose for installing sen- 
sors is to ensure operational reliability and safety, it is rea- 
sonable to believe that the magnitudes of the means and vari- 
ances of the measurement errors are smaller than those of 
the charging errors. If one can produce accurate estimates of 
ZFs with these on-line data of the current batch. an alterna- 
tive performance function can be used to replace the original 
one 

where T T  represents the target of Xc in the current bat!h 
and Ax  denotes the corresponding charging error and 2," 
( j  = 1, 2, . . . , m )  is the estimated amount of the j th raw ma- 
terial which has already be:n transferred into the reactor. 
Notice that the estimates 2,"s should have been computed 
before setting xT, but their deviations from ZFs, i.e., the 
djs, are still uncertain. If the variances of these estimates can 
be made smaller than those of 2,"s 

Var [ d j ]  < Var [ Az,] (34) 

j =  1, 2 ,  ..., m 

then a more aggressive target setting policy can be developed 
accordingly. Notice that, given the value of target ZT, the 
variance of Z," is essentially the same as that of the corre- 
sponding charging error Azj .  

One of the approaches used in this study for determining 
2:s is to produce least-square estimates on the basis of on- 
line measurements of the current batch 

or 
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where nj is the number of sensors used for Z," and 2)') de- 
notes the current measurement value of the ith sensors. The 
deviations is this case can be expressed by 

Also, the means and variances of these deviations can be ex- 
pressed with the following equations 

&Idj] = 0 (38) 

- 1  
1 

VarIdj]= ( 5 ] 
= Var [ ~ $ 4  (39) 

From Eq. 39, one can clearly see that the on-line strategy is 
indeed more aggressive if the variability of measurement er- 
ror is on average smaller than the charging error. Thus, this 
approach is recommended for increasing the profit margin of 
batch processes. 

Optimal Alarm Generation Logic 
Since the expected values and variances of the charging 

and measurement errors must be estimated with an iterative 
numerical procedure, the accuracy of parameter estimates 
cannot always be guaranteed. As a result, the desired level of 
demand probability PF may be unachievable even with the 
proposed target setting strategy. Also, there are sometimes 
economical incentives to set the targets according to a safety 
index which is associated with a higher-than-acceptable level 
of PF. In these situations, the eventual probability of failed 
operation can be reduced with an on-line alarm system to 
detect undesirable batch state after completion of the charg- 
ing process. 

As mentioned before, multiple sensors are used to monitor 
the charging sequence. On-line measurement data can be 
substituted into the performance function to determine the 
status of the current batch. Let us assume that S distinct sets 
of sensors are chosen for this purpose. For illustration conve- 
nience, these sets are collected in a sensor set nZ. 

where i, jl, ..., j ,  are the labels of the sensors for X c ,  ZF, 
. . . , Z,", respectively. Corresponding to each m, E nt, the 
value of a binary indicator variable y, can be determined 

1 if g(') < O 
Y s = {  0 otherwise 

s = 1 ,  2, . * I ,  s 
(41)  

where $$') is an indicatorfunction whose value can be deter- 
mined by substituting the sth set of measurement values into 
the performance function 

and X('), Z(j l ) ,  1 - a * ,  Z$)  are the on-line measurements of 
Xc, ZF, .--, Z,". The system alarm can then be generated on 
the basis of these indicators. The logic for setting off the alarm 
can be explicitly expressed with an alarm function f ( y )  

(43) 
1 if the system is generating an alarm 

f ( y ) =  { 0 othenvise 

where Y =[yl, Y , ,  -.., y,IT. 
Obviously, the values of the indicator variables y,s may 

not be consistent with the true batch state after charging. 
Specifically, let us consider the true value of the performance 
function 

There are two kinds of mistakes that can be identified ac- 
cordingly, i.e., y, is set to be 1 when sc 2 0 (type I mistake) 
or y, is set to be 0 when 9' < 0 (type I1 mistake). Similarly, 
the mistakes committed in generating the system alarm can 
also be classified into types I and 11. The conditional proba- 
bilities associated with these two mistakes, i.e., Pa and Pb, 
can be expressed as 

Since both types of mistakes result in financial losses, there 
are incentives for developing an optimal alarm generation 
logic which minimizes the expected loss 6: 

min d: 
f ( Y )  

(47) 

where 

where C, and c b  respectively denote the losses caused by 
types I and I1 mistakes in alarm generation. Notice that the 
conditional probabilites Pa and Pb can also be written as 

Thus, the expected loss becomes 
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where 

Notice that the first term on the righthand side of Eq. 51 
represents the expected loss of no-sensor system. Thus, it is 
apparent that the expected loss is minimized if the alarm 
function is chosen such that 

(53) 

After obtaining the values of f ( y )  for all possible y ,  its func- 
tional form can be constructed accordingly. With the func- 
tional form given, the logic associated with f ( y )  can be im- 
plemented as a hard-wired circuit or as a computer program. 

It should be noted that in order to compute h(y )  and then 
construct f(y) the estimates of conditional probabilities pr(y 
I Sc < 0) and Pr(y 1 Sc  2 0) must be obtained first. For con- 
venience, it is assumed in this study that the S sets of mea- 
surements in X are statistically independent. Thus 

where 

An estimation procedure has been developed in this study for 
computing the conditional probabilities u,s and b,s. This 
procedure is explained in detail in the Appendix. 

Finally, it should be pointed out that the sensor set 3n 
may not be unique. It is possible to identify different combi- 
nations of s-independent sets ms from all available sensors. 
Thus, the alarm logic is also affected by the sensors selected 
for determining the indicator variables yss and the optimal 
system design should be obtained by 

where nt, ( K  = I, 11, 111,. . .) denotes the K th sensor set. 

Application Example 
The example presented here was designed to illustrate the 

implementation procedure of the proposed techniques. Since 
the actual amount of each reactant charged to the reactor is 
always unknown in practice and, also, there is an obvious need 
to quantlfy the benefits of adopting the present approach, a 

fictitious system is adopted in this article for the purpose of 
producing simulated data. 

Problem statement 

place 
Let us consider a batch process in which two reactions take 

where R is the batch product; S is an unwanted byproduct; 
A and B are the reactants; aR, as, PR and PS are stoichio- 
metric coefficients of reactants A and B in the above two 
reactions respectively. The rate equations of these two reac- 
tions are 

(60a) 

(60b) 

Let us further assume that reactant B is hazardous. Thus, 
the amount of B should be kept to a minimum after the batch 
reaction is terminated. It can be shown from Eqs. 59 and 60 
that 

where 

Also, C,, and C,, denote the initial concentrations of reac- 
tants A and B,  respectively; CAf and C,, represent the final 
concentrations of the two reactants. From Eqs. 60a and 60b, 
one can see that the reaction rate should be very slow at the 
end of batch if both Car. and CBf approach zero. However, 
from a practical standpoint, it is necessary to complete the 
batch within a reasonable amount of time. One of the meth- 
ods that can be adopted to achieve this purpose is to keep 
the ratio C,,/C,, sufficiently high during the charging 
process so that 

(62) 

where c is a chosen constant. On the other hand, it is appar- 
ent that the excess of reactant A initially charged to the re- 
actor should not be too great. This is due to the need to 
avoid an unnecessary loss of raw material A and a reduction 
in the yield of product R. 
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Operational Constraint 
By assuming reactant A is the first one charged, we can 

formulate a performance function according to Eqs. 61 and 
62 

where Z: represents the weight (kg) of A which has already 
charged to the reactor; XB“ denotes the weight (kg) of B fed 
to the reactor in the present charging sequence; pA and pB 
are the densities of A and B, respectively; MA and MB are 
the molecular weights of the two reactants. In this example, 
the following parameter values were adopted 

ffR=l PR = 

as = 3 Ps = 2 
MA = 190.66 (g.rno1-l) 
pA = 1.30 (g-cm- 3 1 
c = 1 . 5 ~  (mol*cm-3) 
k ,  = 4 . 7 ~  lo3 (mol-2*cm6*s-1) 
k ,  = 9 . 6 ~  lo-’ (mol-’ cm3.s-’) 

MB = 139.12 (g-mol-’) 

pB = 1.46 ( g . ~ m - ~  

Error models 

case are assumed to be of type B 
The charging errors associated with both A and B in this 

where Z l  and X; are the targets of reactants A and B, 
respectively and 2: and X,” denotes the corresponding 
charging errors. It is further assumed that three independent 
sensors are used for each reactant and the measurement er- 
rors are all of type A 

where, 32; and Egi  are the measurement errors associated 
with the ith sensor of reactant A and jth sensor of reactant 
B ,  respectively. 

In order to simulate the batch charging process with a ran- 
dom number generator, the means and variances of the ran- 
dom variables in the error models, i.e., Z j ,  X,”, Eg i s ,  and 
E(#, must be specified. These data are in Tables l a  and lb. 

Parameter estimation 
In realistic operation, the statistics of the charging and 

measurement errors must be obtained from historical data. 
Using subroutine DRNNOA in IMSL (Kinderman and Ram- 
age, 19761, these data have been created according to the 
targets specified for each batch and the parameters listed in 
Tables l a  and lb. A total of 320 “previous” batches have 
been simulated in this example. 

By making use of Eqs. 23, the variances of all measure- 
ment errors can be estimated first. Then, maximum likeli- 
hood estimates of the rest of the parameters associated with 
the charging and measurement errors can be determined on 
the basis of Eqs. 19 and 21. The results of the iterative calcu- 
lation are presented in Tables 2a and 2b. 

Target setting procedures 
Having obtained the estimated parameters, one can then 

compute the charging targets for “future” batches. First, it 
should be noted that Eq. 30 is the foundation of all targeting 
methods and thus the mean and variance of the performance 
function must be estimated in advance. Also, since this func- 
tion in the present example (Eq. 63) is nonlinear, the lin- 
earization techniques suggested in Eqs. 31 and 32 have been 
adopted in both the off-line and on-line target-setting 
processes. 

In order to quantitatively demonstrate the advantages and 
disadvantages of various approaches developed in the article, 
additional simulation studies have been carried out. The de- 
tailed simulation procedure and the corresponding results are 
presented as follows: 

Off-Line Strategy. Without evaluating the actual charge 
amount of A in every batch, Eq. 30 can be solved in advance 
to determine a constant X z  for use throughout the produc- 
tion campaign according to a set of given values of Z l  and y .  
In our studies, 1,024 batches have been simulated with the 
same target for reactant A, i.e., Zz= 18,638 kg. 

If the consequences of violating the operational constraint 
are extremely serious, then one may wish to choose a safety 

Table la. Means and Variances of Charging and Measurement Errors Associated with Reactant A 

Parameters -G E$; EG; zg; 
Mean 1.1030 - 2.4232 X 10’ 5.8252 X lo3 - 4.9648 X lo3 

2.4572 X lo4 Variance 2.6293 X 6.0225 X lo4 3.9931 X lo4 

Table lb. Means and Variances of Charging and Measurement Errors Associated with Reactant B 

Parameters x; = ‘ ( I )  -XB ze; E g  
Mean 1.1310 - 4.3240 X 10’ 7.5857 X lo3 - 8.2824 X lo3 
Variance 1.2212 x 4.3096 X lo4 5.0022 x 104 4.4159 x 104 
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Table 2a. Estimated Means and Variances of Charging and Measurement Errors Associated with Reactant A 

Parameters z: zy; Eg; Es; 
- 2.4727 X 10' - 4.9686 X lo3 Est. mean 1.1030 

Est. variance 2.6128 X 6.0826 X lo4 3.7412 X lo4 3.1001 X lo4 
5.8436 X lo3 

Table 2b. Estimated Means and Variances of Charging and Measurement Errors Associated with Reactant B 

Parameters XB" E g  q; Egg 
Est. mean 1.1268 -3.4201 X 10' 8.4896 X lo3 -7.3784X lo3 
Est. variance 1.3129 X 4.0878 X lo4 4.6118 X lo4 4.5346 X lo4 

index y so that the demand probability PF is kept under a 
very low level. For example, the value of X i  corresponding 
to PF = can be determined to be 23,956 kg. On the other 
hand, if the profit of producing more product per batch is 
quite high and the loss due to improper charging operation is 
not overwhelming, there may be incentives to accept a higher 
demand probability. As another example, the target for reac- 
tant B can be raised to 25,326 kg if PF = 0.05. This change 
represents a 5.7% increase in productivity. 

The correctness of the proposed target setting procedure 
has been verified with simulation studies. The simulation data 
of reactants A and B were both obtained with a standard 
random number generator. The percentage of failed batches, 
i.e., those in which the outcome of charging operation vio- 
lates the operation constraint, in the latter example was found 
to be around 4.5%. This is very close to the target value of 
PF. A sample (first 100 batches) of the simulation results is 
shown in Figure 2a. Note that the data points below the hori- 
zontal dashed line, i.e., g c  < 0, represent failed batches. 

The simulation data of reactant A used 
in this case were essentially the same as those adopted for 
testing the off-line strategy. Having obtained the simulated 
on-line measurements of A ,  the value of 22 was estimated 
in every batch according to Eq. 36. Using a demand probabil- 
ity of 0.05, the target of reactant B for every batch was then 
determined by solving Eq. 30. Finally, the simulated data of 
reactant B were produced with a random number generator. 
The percentage of failed batches was again found to be very 
close to the target demand probability. Its value is approxi- 
mately 4.2% this time. A sample of the simulation results for 
this case is provided in Figure 3a. Notice that, when com- 
pared with Figure 2a, the average value of 6' in this figure 
is closer to zero and the corresponding data variability is sig- 
nificantly smaller. This phenomeFon is precisely the result of 
adopting the on-line estimates Z," for calculating X i .  Using 
Eq. 39 the variance of its deviation from the actual value was 
estimated to be 1.3258X lo4. This value is much smaller than 
the estimated variance of the charging error (9.1358 X lo4), 
which can be determined on the basis of the following equa- 
tion 

On-Line Strategy. 

(66) 

It should also be noted that the average value of X i  now 
can be raised to 25,562 kg. This result shows that, when com- 
pared with the off-line strategy, the profit margin of the batch 
process can be increased with the on-line approach while still 

maintaining the same target demand probability. The targets 
of reactant B used in the first 100 batches are plotted in 
Figure 4. 

Ahrm generation logic 
As mentioned before, the outcome of reactant-charging 

operation can be monitored with on-line sensors. All possible 
sensor sets used in the present example are listed in Table 3. 
Also, notice that the task of constructing alarm generation 
logic is essentially equivalent to that of determining the form 
of the alarm function f(y). To achieve this purpose, one can 
conclude from Eqs. 52 to 57 that the conditional probabilities 
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Figure 2. Sample of the simulation results obtained with 
the off-line target setting strategy (PF r0.05) 
and stationary alarm logic. 
(a) Actual values of the performance function 9'; (b) values 
of the indicator function s(') corresponding to the set m,; 
(c) values of the indicator function S(" corresponding to 
the set m,; (d) values of the indicator function s(') corre- 
sponding to the set m3. 
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Figure 3. Sample of the simulation results obtained with 
the on-line target setting strategy (PF = 0.05) 
and dynamic alarm logic. 
(a) Actual values of the performance function sc; (b) values 
of the indicator function s(" corresponding to the set m,; 
(c) values of the indicator function s(') corresponding to 
the set m 2 ;  (d) values of the indicator function s(3' corre- 
sponding to the set m3. 
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associated with type I and type I1 mistakes must be evaluated 
first. In other words, if all measurements are statistically in- 
dependent, the following quantities must be computed in ad- 
vance 

Zij = Pr{g,, < 0 I G C  2 0) (674 

bij = Pr{gij 2 0 I G C  < o} 
i ,  j = 1, 2, 3 

(67b) 

where 

It should be noted that within a given sensor set nZ,, the 
conditional probabilities defined in Eqs. 56 and 57 can be 
related to these quantities by 

and 

1314 

1 '  24500 

rn, = (2, j ' )  E m, 
These quantities can certainly be computed with the equa- 

tions provided in the Appendix. Also, from Eqs. A5 to A8 in 
the Appendix, one can see that the conditional probabilities 
a,  and b, are really functions of the targets for reactant A 
and B. Thus, if the off-line target setting procedure is adopted 
in operation, estimates of these probabilites should be un- 
changed throughout the production compaign. However, if 
the on-line strategy is implemented, the values of as and b, 
should vary from batch to batch and the alarm generation 
logic may change accordingly. Thus, the former alarm config- 
uration is referred to as the stationary scheme and the latter 
as the dynamic scheme in this example. 

Corresponding to a demand probabil- 
ity of 0.05, the targets of reactant A and B have already 
been determined in this example, i.e., Z z =  18,638 kg and 
X l =  25,326 kg. The conditional probabilities defined in Eqs. 
67a and 6% can be computed according to these targets and 
the parameters listed in Tables 2a and 2b. The results are 

( 6 9 ~ )  

Stationary Scheme. 

1 6.7835X10-' 6.8400X10-' 1.2293xlO-' 

1.7174X10-' 8.6689X lo- '  4.1092X lo-* 
6 . 6 6 0 7 ~ 1 0 - ~  5.9823x10-' 5.2357x10-' 

and 

Table 3. Sensor Sets 

K 
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Table 4. Minimum Expected Losses 

K I I1 111 IV V VI 
&/C, 0.1601 0.2929 0.2787 0.1564 0.1683 0.5031 

I 3.1899X10-’ 5.7517X10-4 6.6944X10-’ 

5.9645X lo-’ 2.4817X10-7 3.4222X10-’ 
9.8911 x lo-’ 2 .6150~  lo-’ 9 . 9 9 0 3 ~  lo-‘ 

In this example, the ratio of the loss caused by type I1 mis- 
takes to that due to type I mistakes, i.e., C&,, is assumed to 
be 15. On the basis of this assumption and the conditional 
probabilities determined with Eqs. 69a to 69c, the minimum 
expected losses associated with all sensor sets listed in Table 
3 can be calculated with Eqs. 49 to 58 (Table 4). The best 
sensor set among the six possible candidates can then be se- 
lected accordingly. From Table 4, it is apparent that 3n,, 
should be our choice. The corresponding alarm function f ( y )  
can be determined by computing function h(y) with Eqs. 52 
to 55. 

h(O,0,0)= -2.4873XIO-’ - f ( O , O , O ) = O  
h(1,0,0) = -4.9415 X lo-’ * f(l ,O,O) = 0 
h(O,l,O) = -5.1179X lo-’ 3 f(O,I,O) = 0 
h(O,O,I)= 1 .1769x10-7~f (0 ,0 ,1 )=1  
h(1,0,1) = 5.8592X10-’ f(l,l,O) = 1 
h(1,0,1)= 4.3053x10-5-f(1,0,1)=1 
h(O,I, 1) = 3.8818X lo-’ 3 f ( O , I ,  1) = 1 
h ( l , l , l ) =  6 . 7 9 2 0 X 1 0 - 4 ~ f ( l , l , l ) =  1 

Thus, the alarm function should be of the form 

which is a standard OR-AND system. 
Extensive numerical simulation studies have also been car- 

ried out to test this alarm logic. The data previously used for 
evaluating the performance of off-line targeting procedures 
were again adopted in the present case. A sample of the re- 
sults is presented in Figures 2b to 2d. It was found in our 
simulation that the percentage of type I mistakes is about 
16.70% and that of the type I1 is 0.49%. Note that the batches 
corresponding to types I and I1 mistakes are marked with 
vertical dashed lines. For example, the first mistakes in these 
figures is of type I. One can see from Figure 2a that the 
corresponding batch operation is successful. However, from 
Figures 2b to 2d, one can also determine the values of the 
indicator variables according to $s) (s = 1,2,3), i.e., y l  = y ,  
= 1 and y ,  = 0. Obviously, the alarm must be mistakenly set 
off on the basis of Eq. 70 in this case. As another example, 
the last mistake is of type 11. The values of corresponding 
indicator variables are 1, 0 and 0 respectively and, thus, there 
should be no alarm. However, as indicated in Figure 2a, the 
corresponding batch failed to satisfy the operation constraint. 

It should be noted that, without implementing the alarm 
logic, only type I1 mistakes are possible in the charging oper- 

ation. The corresponding probability is essentially the de- 
mand probability PF. Thus, one can clearly observe that the 
alarm system can affect the batch reaction process in two dif- 
ferent ways. Certainly, the major advantage of the alarm is 
that the probability of type I1 mistakes can be further re- 
duced. On the other hand, it also causes an additional loss 
due to type I mistakes. The relatively high percentage of type 
I mistakes can be attributed to the fact that a C,, to C, ratio 
of 15 is used in this example. Since type I1 mistakes cost much 
more, it is not suprising to find that the optimal logic tends to 
place more emphasis on suppressing type I1 mistakes and less 
on type I. 

If the on-line strategy is used for set- 
ting targets, the corresponding alarm generation logic may 
have to be changed from batch to batch. Basically, the com- 
putation steps described in the previous section have to be 
repeated each time a new X L  is determined. 

Again, extensive simulation studies have been carried out. 
The data adopted here are essentially the same as those pre- 
viously used for testing the on-line targeting procedures. A 
sample of the simulation results is provided in Figures 3b to 
3d. It was found in our simulation that the sensor set 32, is 
the best choice for almost every batch and the corresponding 
optimal alarm logic is virtually unchanged. The averaged ex- 
pected loss was computed to be 0.1641. The alarm function 
adopted in most of the batches was 

Dynamic Scheme. 

+ Y l Y A l -  Y3)+ YlY2Y3 (71) 

This alarm configuration is simply a typical two-out-of-three 
logic. From the results obtained in simulation, the failed 
batches caused by type I and type I1 mistakes can be easily 
identified. The percentages of these two types of failures were 
found to be 3.31% and 2.25% respectively. Thus, when com- 
pared with the stationary scheme, the present alarm system is 
superior in the sense that tyr I mistakes can be reduced 
considerably. However, the chance of committing type 11 mis- 
takes in alarm generation may at the same time become 
higher. This can be attributed to the fact that 2-out-of-3 
strategy is a more “conservative” than the OR-AND logic in 
the sense that the former places more emphasis on suppress- 
ing type I mistakes but less on type I1 mistakes. For example, 
when y1 = y ,  = 0 and y ,  = 1, an alarm will be generated with 
the latter logic but not the former one. 

Economic assessment 
From the above discussions, one can see that the selection 

of the most appropriate target setting procedure and the cor- 
responding alarm generation logic has to be made on the ba- 
sis of three quantitative economic criteria, i.e., the profit due 
to productivity increase and the losses due to type I and type 
I1 mistakes. Three alternative were considered. The off-line 
target setting strategy was used in the first two systems. The 
demand probability of the first was set at Due to the 
extremely low probability of violating the operational con- 
straint, it was decided not to implement any alarm logic in 
this situation. The demand probability adopted in the second 
system was 0.05. The previously described stationary scheme 
was assumed to be used for detecting the charging failures 
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Table 5. Economic Parameters 

Case PR co cb 
No. ($/kg) ( x  lo3 $/Batch) ( X  lo3 $/batch) 
A 4.00 4.2 63.0 
B 0.55 4.2 63.0 
C 0.20 4.2 63.0 

for the second candidate. In the third system, the on-line tar- 
get setting procedure was applied with a demand probability 
of 0.05. Consequently, the dynamic alarm generation scheme 
must be used for this candidate system. 

In order to evaluate the profit of productivity increase, 
production rate of the batch process must be determined first. 
Corresponding to the given target($ for reactant A and a 
specific target setting procedure for reactant B,  the total 
amount of product R produced in a production campaign 
XzoT can be computed from the corresponding simulation 
results. In the present example, three different values, 4.6342 
X lo7 kg, 4.9014 x lo7 kg, and 4.9535 X lo7 kg, were found 
for the three candidates, respectively. The net profit created 
after completing a campaign ( P N )  can be calculated with the 
following equation 

P" PRX,ToT-CaNa- CbNb (72) 

where PR denotes the profit of producing one kilogram of R 
and N, and Nb represent the numbers of failed batches cor- 
responding to type I and type I1 mistakes respectively. From 
Eq. 72, it is obvious that the net profit is dependent upon the 
values of three parameters PR, C,, and C,. Three cases were 
studied in this example (see Table 5). The net profits corre- 
sponding to the three candidate systems were computed ac- 
cordingly and also presented in Table 6. 

From the results presented in Table 6, it can be concluded 
that the best choice of batch reactor charging system is really 
process-dependent. If the profit of productivity increase dom- 
inates, the combination of on-line target setting procedure 
and dynamic alarm generation scheme should be the most 
favorable operating strategy. If, on the other hand, this profit 
is very low when compared with the losses due to operational 
failures, a conservative off-line target setting policy should be 
adopted without alarm. Between the above two extremes, the 
second strategy, i.e., using an aggressive off-line target in con- 
junction with a stationary alarm scheme, may become more 
desirable. 

Table 6. Net Profits ( X lo6 $/Campaign) 

Case No. System No. Net Profit 

A 
1 
2 
3 

185.37 
195.07 
196.17 

B 
1 
2 
3 

25.49 
25.97 
25.27 

C 
1 
2 
3 

9.27 
8.81 
7.66 

Conclusions 
Several statistical operating strategies for charging the 

batch reactors are presented in this article. Based on mea- 
surement data, either an off-line or on-line target setting pro- 
cedure can be implemented to achieve a given level of relia- 
bility. In addition, the optimal alarm generation system can 
be installed to reduce the probability of undetected charge 
failures. The results of implementing the suggested strategies 
to the application example show that the approach taken in 
this study is feasible and effective. Further, when compared 
with the current practice in the industry, these strategies are 
superior under the condition that a higher-value-added prod- 
uct is produced in the process. 

Notation 
a, =conditional probability of type I sensor mistakes corre- 

b, =conditional probability of type I1 sensor mistakes corre- 

C, =financial loss resulted from type I mistakes 
C,  =financial loss resulted from type I1 mistakes 

sponding to the set m, 

sponding to the set ms 

CA,CB =molar concentrations of components A and B,  respec- 

C,, C, = molar concentrations of components R and S, respec- 
tively 

tively 
d .  =deviation of estimate 2; from its true value Z," 

&[.j =mean operator 
f(.) =alarm fucction s(-) =performance function 
&.) =performance function form adopted for implementing the 

=random variable obtained by normalizing S 
@') =indicator function for the sensors in set m, 

on-line target setting strategy 

g c  =true value of the performance function 
k,, k ,  =rate constants 

L(.) =maximum likelihood function 
d: =expected loss due to failed operation 
m =number of reactants which have already been charged in 

the current batch 
MA, MB =molecular weights of reactants A and B ,  respectively 

n =total number of sensors used for monitoring the same re- 
actant 

N, =number of failed batches resulted from type I mistakes 
N, =number of failed batches resulted from type I1 mistakes 
Pa =conditional probability associated with type I system mis- 

Pb =conditional probability associated with type I1 system mis- 

PN =net profit of a production campaign 
PR =profit per kg of product R 

xf)=measurernent value of sensor i obtained from the kth 

X c  =amount of a reactant actually charged into the reactor 
X ( i )  =measurement of X c  from the ith sensor zT = target value of X' 
X T  = target value of X c  determined with the on-line strategy 

takes 

takes 

Var[.] =variance operator 

batch 

X,'"' =total amount of product R produced in a campaign 
ys  =binary indicator variable corresponding to the sensors in 

Z," =actual amount of the j th  reactant which has already been 

2: =estimate of 2," 
Z,!') =measurement of 2," obtained from the ith sensor 
?(') =measurement values of 2," from the ith sensor in the cur- 

27 =target of z," 

set m,. 

charged into the reactor 

rent batch 
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Greek letters 
aR, as =stoichiometric coefficients of reactant A, primary and side 

p R ,  ps =stoichiometric coefficients of reactant B, primary and side 
reaction, respectively 

reaction, respectively 
y =safety index 
6 =charging error of type B 
A =charging error of type A 

0, =vector of the expected values for the charging and mea- 

0, =vector of the variances for the charging and measurement 

$ =mean vector for the kth batch run 

d’) =measurement error of type B associated with sensor i 

surement errors 

errors 

E ( 4  =measurement error of type A associated with sensor i 
pA, pB =densities of reactants A and B, respectively 

Zk =covariance matrix for the kth batch run 
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Appendix 
Let us  first assume that the performance function 6‘ is 

linear or can be approximated by a linear function. Alterna- 
tive formulations of the function can be written accordingly 

or 

where 

Notice that 
error types 
processes. 

Let us further assume that the charging and measurement 
errors are normally distributed. Thus, the probability density 
functions of SA and can be written as 

From Eqs. 59 and 60, one can express the conditional 
probabilities a,  and b, with 
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In order to evaluate the denominators in Eqs. A5 and A6, 
one must integrate the probability density function p(  sc = 

u).  From Eqs. A1 and A3, this function can be expressed as 

In order to evaluate the numerators in Eqs. A5 and A6, we 
can first derive the integral form of conditional probability 
Pr(g(s )  < u I S c  = u},  using Eqs. A2 and A4. This form is then 

differentiated to obtain the corresponding probability density 
function. Finally, from the multiplication rule of conditional 
probability, an explicit formula of the joint probability func- 
tion can be derived 

Therefore, if the means and variances of the charging and 
measurement errors can be estimated correctly, one can then 
determine a ,  and b, easily by integrating Eqs. A7 and A8 
with a standard numerical technique. 

Manuscript received Feb. 23, 1995, and revision received July 21, 1995. 

1318 May 1996 Vol. 42, No. 5 AIChE Journal 


