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The extended Kalman filter ( E m )  is one of the mosf popular model-based tech- 
niques for fault detection and diagnosis. In this study, the suboptimal EKF technique is 
utilized to enhance computation eficiency without sacrificing diagnostic accuracy. In 
particular, three simple strategies are proposed to decompose the filter model according 
to the precedence order of the state/parameter estimation process. The computation 
load needed in fault identification can be reduced significantly by implementing all or 
part of these decomposed EKFs on-line. Extensive simulation results are also presented 
to demonstrate the eflectiveness of these proposed techniques. 

Introduction 
Due to the frequency and seriousness of chemical acci- 

dents that have occured in recent years, the importance of 
incipient fault detection and diagnosis in complex process 
plants has become apparent. Among various different 
model-based approaches adopted in the past, the extended 
Kalman filter (EKF) is clearly one of the most popular meth- 
ods, (see Watanabe and Himmelblau, 1983a,b. 1984). In 
essence, EKFs of one form or another were employed to esti- 
mate both the states and parameters of chemical engineering 
systems, and then causes of abnormal system behaviors were 
identified accordingly. 

Although the effectiveness of the EKF has been widely 
recognized, its use in commercial units has been, in fact, very 
limited. This is mainly due to a critical drawback of EKF, 
namely, its inability to  guarantee unbiased estimates 
(Watanabe and Himmelblau, 1984). Obviously. incorrect in- 
formation about the system parameters and/or states can 
mislead diagnosis. To  overcome this problem, we modified 
the traditional way of implementing the EKFs (Chang et al., 
1993; Chang and Chen, 1995). Instead of estimating all pa- 
rameters simultaneously in a large EKF, several EKFs were 
used in parallel. Although this approach served the purpose 
of eliminating bias and misdiagnosis, the computational ef- 
fort needed to  carry out the parallel-parameter estimation 
scheme can be ovenvhelming. 

The present article is the first of two companion articles 
that address this practical issue. Basically, the idea of a sub- 
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optimal Kalman filter was utilized in our studies to enhance 
computation efficiency without sacrificing diagnostic perfor- 
mance. There are in general two approaches to achieve this 
purpose: choosing simplified system models. and choosing 
simplified filter gains (Gelb, 1974). For illustration conve- 
nience, the latter approach is discussed in a separate article. 
This article is primarily concerned with the former. that is, 
replacing the system model with simpler ones in the EKF 
computations. Notice that such a practice has never been sys- 
tematically studied before. 

In ordcr to facilitate understanding of the proposed simpli- 
fication strategies, some background information is provided 
in the next three sections. The key concept of fault obseru- 
ability (Chang and Chen, 1995) is reviewed first to avoid con- 
fusion. The pattern of estimated propagation in EKF compu- 
tations is then analyzed in detail. New data concerning the 
relative magnitudes of the adjustments in updating the esti- 
mates of parameters and states are also presenied to justify a 
critical assumption, namely, that corrections needed in state 
updates are usually negligible. Finally, the algorithms for es- 
tablishing precedence order of influences among state vari- 
ables and then identifying fault-observable system structures 
are described with several examples. 

The rest of this article is concerned with a new simplifica- 
tion procedure for applying EKFs in fault diagnosis. Specifi- 
cally, the original EKF is decomposed into several subopti- 
mal but smaller EKFs according to the precedence order. This 
task can be easily accomplished with three simple decoupling 
techniques developed in this study. The computation demand 
can then be greatly reduced by adopting these smaller EKFs 
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on-line. In addition. the computation process can be simpli- 
fied even further by judiciously removing some of the EKFs 
that do not produce estimates of interest. 

Fault Observability 
The EFK is used in this application to estimate both states 

and parameters of the system model. This is because parame- 
ter estimates are in general more sensitive to faults than esti- 
mates of the state variables. and thus they are better indica- 
tions of the degradation of system performance (Dalle Molle 
and Himmelblau, 1987). Since it is usually possible to associ- 
ate the assumed malfunctions with changes in the corre- 
sponding model parameters, these parameters can be treated 
as augmented states in the corresponding EKF (Himmelblau, 
1978). Specificallv, let us consider a system model with the 
following general form: 

where x ,  represents the state variables and 8, the 
parameters or inputs of the system; fk represents nonlinear 
functions of x, and O,, wk represents the normally dis- 
tributed random system noises, and Q is the covariance 
matrix associated with w,. 

In order to estimate the time-variant parameters and/or 
inputs (6,) in an EKF, one can treat them as state variables 
and augment the corresponding equations with Eq. 2, 

& d  

where we is an m-dimensional random vector with mean 
equal to zero. For the sake of convenience, the _components 
in 6 are assumed to be independent, and thus Q is a diago- 
nal matrix. Also, without loss of generality, it is assumed in 
this study that the first s (s 5 n )  state variables can be mea- 
sured directly. In other words, the measurement model can 
be written as 

where z L ,  X I ,  and L*, are the system output vector, augmented 
state vector, and measurement noise vector, respectively, at 
time t,; I is an J x s identity matrix; and 0 is an s x ( m  + n - 
s) matrix whose entries are all zeroes. Also, R is assumed to 
be a diagonal matrix in this study. 

One of the obvious reasons for the failure of a Kalman 
filter to produce unbiased estimates is that the system itself is 
unobservable (Grewal and Andrews, 1993). However, the tra- 
ditional criteria for testing system observability cannot be used 
as sufficient conditions to guarantee the correctness of pa- 

rameter estimates (Chang and Chen, 1995). It is thus highly 
desirable to develop a systematic approach for identifying 
EKFs that always produce accurate estimates if their models 
are correct. Such filters will be referred to as fault observable 
EKFs in this article. 

Estimate Propagation 
To develop a systematic method for testing fault observ- 

ability, it is obvious that a thorough understanding of the es- 
timation algorithm is necessary. First of all, notice that it is a 
common practice_ to adopt a diagonal system noise covariance 
matrix, that is, Q in Eq. 2, in which the variances associated 
with the augmented parameters are much larger than those 
with the states (Watanabe and Himmelblau, 1984). This is 
due primarily to the belief that the model parameters are 
more sensitive than the state variables to incipient faults. As 
a result, the corrections in the updated estimates of the state 
variables are usually negligible when compared with those of 
the parameters. In other words, the relative magnitude of ad- 
justment (RMA) in parameter must be much larger than that 
in state: 

where 6:-) ( t )  and i j - ) ( t )  represent the estimates of model 
parameters and state variables obtained by integrating Eqs. 
2: &(”(t> and i : ’ ) ( t )  denote the corresponding updated es- 
timates obtained on the basis of online measurements. This 
phenomenon can be demonstrated in the following example: 

Let us consider the system of two identical 
storage tanks connected in series (see Figure 1). The system 
model can be written as 

Example 1. 

(5) 

dh, 
A2- = 41 - q2 dt (7) 

Figure 1. Simplified process flow diagram of a two-tank 
system. 
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where p ( = 1,000.0 kg/m3) is the density of liquid; h, and 
A ,  ( = 1.0 rn2) denote, respectively, the height of liquid level 
in and the cross-sectional area of tank k ( k  = 1, 2); q,, dk 
( = 0.0508 m), I ,  ( = 5.0 m) and f k  ( = 2.509x lo-’) repre- 
sent, respectively, the volumetric flow rate in and the diame- 
ter, length, and friction factor of the outlet pipeline from tank 
k ( k  = 1, 2). Also notice that the parameter Afi is associated 
with the assumed failure, that is, partial blockage in the 
pipeline between tank 1 and tank 2.  

Numerical simulation studies were carried out to verify the 
correctness of Eq. 4. It was assumed that the system was op- 
erated at its normal steady state initially. The initial heights 
of liquid levels h ,  and h,  were chosen to be 1.378 m and 
0.689 m, respectively, and the corresponding flow rates were 
q, = q1 = q2 = 0.015 mys. The fault just mentioned occurred 
at t = 50 s. More specifically, the change in Af,  was de- 
cribed as 

and 

(10) 

where Cf ( = 0.001) and a (=  0.05 s-I)  are constants. 
Equations 5-10 were integrated together to produce the 

transient behavior of the state variables. In this example, it 
was further assumed that the state variables h ,  and q2 can be 
measured on-line. The measurement noises were produced 
with a random-number generator and then added to the sim- 
ulated values of these two variables to obtain the simulated 
on-line measurements. 

The corresponding EKF was then applied to the simulated 
measurement data. The covariance matrix Q adopted in this 
EKF was of the form: 

0 0 0 0  0 

0 0 0 0  
0 0 0 0 Q s  

(11) 

From the results of extensive simulation studies, we found 
that it is always possible to obtain correct estimates of both 
the parameter and states. A sample of the parameter esti- 
mates is presented in Figure 2. In addition, the correspond- 
ing RMAs were computed and plotted (Figure 3). From these 
results, one can see that the RMA in A f l ,  that is, rAf,,  is 
indeed much larger that those in states, that is, r, , ,  rq,, rh2 ,  
and rq2, even after the initialization period. 

If an EKF is to be used for fault detection and diagnosis, 
its state-estimate propagation equations must be formulated 
according to Eq. 2. At any sampling time (say t L - , ) ,  these 
equations should be integrated numerically to determine the 
estimates at the next time step, t,, based on the update esti- 
mates at t,_ Whichever numerical method is used in this 
application, a set of nonlinear algebraic equations should al- 
ways be solved simultaneously. As mentioned previously, one 
can neglect the adjustments in states, 
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Figure 2. EKF estimates of Af, in Example 1. 

Also from Eq. 2 

Therefore, the task of numerically integrating the state- 
estimate propagation equations is essentially one of solving 
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Figure 3. Relative magnitude of adjustment in A f , ,  h,, 
ql, h,, and q2. 
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simultaneous algebraic equations of the following general 
form: 

where 2; ~ ! ( t , )  ( i  = I, 2, ... , n )  are the estimates of states at 
time t,, which should beconsidered as the unknowns of Eqs. 
14. On the other hand, 6j.j (t,- are the updated estimates 
of parameter- at time t lYl .  At time t , - , ,  one first needs to 
determine the values of 0;” (t,- 1) and then Eqs. 14 can be 
solved accordingly. In other words, the state estimates at time 
t l  are mainly dependent upon the updated estimates of the 
model parameters at time t,- 

If the EKF performs satisfactorily, correct estimates of 6/+) 
( t l -  can be chosen to yield the following results: 

where X I  represents the measurement values of the state 
variables at time r / .  However, it is also a well-known fact that 
incorrect estimation is a phenomenon often encountered in 
the practical applications of EKF. Thus, the structure of the 
state-estimate propagation equations, that is, Eqs. 14, must 
be further analyzed to gain additional insights for identifying 
all possible causes of estimation bias. Specifically, the prece- 
dence order of inj7uences among the state variables ( t , )  
must be established fo: this purpose due to changes in the 
adjustable parameters O:+) ( t , -  

Structural Analysis 
The main thrust of structural analysis is to identify fault 

observable EKFs with simple qualitative techniques. Specifi- 
cally, the partition algorithm suggested by Steward (1965) is 
used in this work as the basic procedure to determine the 
precedence order. This original algorithm will be referred to 
as Algorithm A. For the sake of illustration convenience, it is 
also included in the Appendix. 

To facilitate understanding the rationale behind various 
steps in the proposed procedure for testing fault observabil- 
ity, a series of examples is presented below. First of all, it is 
intuitively correct that, in a fault observable system, the 
symptoms of faults must appear in the measurement data. 
Precedence order can be used as an aid to determine whether 
this criterion is satisfied. This fact can be demonstrated with 
a simple example. 

Let us consider the two-tank system pre- 
sented in Figure 4. The system model can be written as 

Example 2. 

dhl 
A , - - q q i -  

lit 41 - ACllJiET (16) 

dh2 
A2 - = 41 - 42 dt (18)  

I 

T, - 41 
Figure 4. Simplified process flow diagram of another 

two-tank system. 

where the parameters A d l  and A f 2  are associated with two 
assumed failures, namely, leakage in tank 1 and partial block- 
age in the exit pipeline of tank 2, respectively. As indicated 
previously, the state-estimate propagation equations (Eqs. 14) 
can be solved if the values of the model parameters are given. 
The corresponding precedence order can be determined with 
Algorithm A. The result is represented with a precedence 
diagram (Figure 5). From Figure 5 one can see that all four 
state variables in this system are affected by a leak in tank 1, 
but partial blockage in pipeline 2 can only cause h2 and q2 to 
behave abnormally. Thus, if h ,  and q1 (or only one of them) 
are chosen as the measurement variables, it is certainly not 
possible to produce correct estimates of Af2 on the basis of 
the available on-line data. 

Although application of Algorithm A yields a precedence 
order that is useful for identifying a special class of diagnosti- 
cally unobservable systems, this approach is still limited in 
the sense that the correctness and uniqueness of the solu- 
tions to the state estimate propagation equations cannot be 
confirmed accordingly. This situation can be illustrated with 
another example. 

Figure 5. Precedence diagram of the two-tank system 
in Figure 4. 
Result of implementing Algorithm A (fault parameters: A d ,  
and Af2).  
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Example 3. Let us again consider the system presented in 
Figure 1. It is assumed that there are two possible faults: (1) 
a sudden change in the inlet flow rate, and (2) partial block- 
age in the pipeline between tank T I  and tank T2.  Again, Al- 
gorithm A has been applied and the precedence diagram can 
be obtained accordingly (see Figure 6). Notice that Aq,  and 
Afi are the parameters associated with faults (1) and (21, 
respectively. From Figure 6, it can be observed that all four 
state variables-h,, 4,, h,, and 4,-are affected by the two 
parameters Aqt  and Af, .  Thus, if at least one state variable 
can be measured on-line, the occurrence of faults should be 
detectable. However, one can also find in the precedence di- 
agram that all state variables are connected to both parame- 
ters, and they are interconnected by several feedback loops. 
In other words, all of them are within one block, and thus 
must be solved simultaneously. Therefore, on the basis of this 
precedence order, one still cannot be certain whether a unique 
set of correct parameter values can be found to satisfy the 
requirements implied in Eqs. 15. 

If the measurement variables are embedded in coupled 
feedback loops, one can see from the preceding example that 
the precedence order obtained with the traditional approach 
is not really useful for the purpose of confirming fault observ- 
ability. Thus, additional tools must be developed for our pur- 
pose. 

It should be noted that it may not be necessary to guess 
and iterate all variables in solving an irreducible set of equa- 
tions. For sparse equation sets, it is often possible to reach a 
solution by guessing only a few of the variables. This is the 
so-called tearing technique (Stadtherr et al., 19741, which can 
be used to determine an efficient iteration procedure. In this 
research, this method was also adopted as an aid for clarify- 
ing the cause-and-effect relations between the model param- 
eters and measurement variables in the state-estimate propa- 
gation equations. In particular, all s measurement variables 
were treated as the “tear variables” (the variables that are 
guessed), and s “tear equations”(the equations used to check 
the guesses) were then chosen from Eqs. 14. These tear 
equations were chosen with a simple criterion, namely, each 
equation must contain the corresponding tear variable. The 
tearing operation can be performed on the precedence dia- 
gram obtained with Algorithm A. Specifically, the edges be- 
tween the tear variables and their outputs are removed from 
the original digraph. In this article, the term Argorithm B will 
be used to indicate the procedure of implementing Algorithm 
A after the proposed tearing steps. The advantage of Algo- 
rithm B can be demonstrated clearly with the following ex- 
ample. 

r 1 

I I 

Figure 6. Precedence diagram of the two-tank system 
in Figure 1. 
Result of implementing Algorithm A (fault parameters: Aqt  
and Af,).  

Figure 7. Precedence diagram of the two-tank system 
in Figure 1. 
Result of ~mplementing Algorithm B with h i  and h 2  as the 
measurement variables (fault parameters Jq, and A f l )  

Example 4. Let us reconsider the system described in Ex- 
ample 3. Assume that h ,  and h ,  are the measurement vari- 
ables in this case, and thus should be regarded as the tear 
variables in the structural analysis. The tearing operation can 
be performed on Figure 6, and the resulting precedence or- 
der is presented in Figure 7. In the conventional process of 
solving algebraic equations, the tear variables are unknowns. 
Their values must be obtained through iterative procedure. 
In this work, however, the desired values of the measurement 
variables should satisfy the constraints stipulated in Eqs. 15. 
Thus, in solving the state-estimate propagation equations of 
this example, the values of tear variables can be set directly 
to be the measurement values, and the outputs h ,  and h ,  
can then be calculated according to the precedence order in 
Figure 7 and any given values of A f l  and Aq, .  Also notice 
that, in this computation process, q, should be regarded as a 
constant since it is affected only by the tear variable h,. Of 
course, the most appropriate parameter values should be 
chosen on the basis of Eqs. 15. From Figure 7, one can see 
that a change in either of the parameters Afl  and Aq,  can 
cause variations in one or both of the output variables, h ,  
and h,. Since the two parameters in this case must be ad- 
justed simultaneously in order to produce the two desired 
output values, it is therefore assumed that the chance for bi- 
ased EKF estimation in this situation is low and the system 
should be fault observable. 

To facilitate later discussions, it is now necessary to classify 
the model parameters and measurement variables according 
to the precedence diagram just described. In particular, if a 
parameter is connected to one or more measurement vari- 
ables, it is referred to as a “tunable parameter.”On the other 
hand, if a measurement variable is connected to at least one 
parameter, then this variable is the “affected variable.” If 
some of the tunable parameters can be assigned zndepen- 
dently and the rest of the parameters can always be adjusted 
accordingly to produce the desired values for the affected 
variables, then there should be an infinite number of suitable 
parameter values that can satisfy Eqs. 15. As a result, the 
possibility of biased EKF estimation is extremely high and 
the system should also be regarded as diagnostically unob- 
servable. The following example is used to demonstrate this 
special feature in EKF estimation. 
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Figure 8. Precedence diagram of the two-tank system 
in Figure 1. 
Result of implementing Algorithm B with h,  and q2 as the 
medwrtmtnt  kariables (fault parameters Aqt  and A f , )  

Example 5. Let us again consider the system described in 
Example 3 and use h ,  and q2 as the measurement variables 
this time. The results obtained with Algorithm B can be found 
in Figure 8. One can see that both A q ,  and A f l  are tunable 
parameters, but only h z  is affected by these two parameters. 
Thus, the value of  either one of the parameters can be as- 
signed arbitrarily first and then the other parameter can al- 
ways be adjusted to ensure output h ,  approaching its mea- 
surement value. Since the EKF does not have a prior knowl- 
edge about the actual variations in AqL and Afl, the possibil- 
ity of obtaining the correct results is almost nil in the corre- 
sponding optimal estimation process. 

Although the precedence order obtained after tearing can 
be adopted as the basis for identifying diagnostically unob- 
servable systems, the methods mentioned before are still dif- 
ficult to apply when the system is large and complicated. Thus, 
a systematic procedure was developed in an earlier study 
(Chang and Chen, 1995) to overcome this problem. It has to 
be emphasized that, although structural analysis is qualitative 
in nature and thus not theoretically rigorous, the correctness 
of its predictions has been verified in numerous simulation 
studies (Chen, 1993). 

Decomposition Strategies 
Applications of the techniques described earlier are in fact 

not limited to the development of tests for fault observability 
only. The insights gained with structural analysis offer clues 
to properly decompose the EKF model without sacrificing di- 
agnostic performance. Three methods have been developed 
in this study: 

Method 1 
First of all, the size of the EKF model can be reduced 

according to the precedence diagram obtained with Algo- 
rithm A. In particular, several blocks can be identified. Since 
specific faults are assumed to occur in an EKF, it is only 
necessary to consider those blocks that are affected by the 
assumed faults, that is, the blocks in which the corresponding 
parameters appear and their downstream blocks. If some of 
the upstream variables are included in this subset of the model 
equations, their values should be considered to be at the nor- 

Figure 9. Precedence diagram of the two-tank system 
in Figure 4. 
Result of implementing Algorithm A (fault parameter: A d 2 ) .  

ma1 levels without variations. This method is illustrated with 
the following example. 

Let us consider the system in Figure 4 and 
assume that a leak may develop in the second tank. This fault 
is described with a parameter A d , .  Algorithm A can be ap- 
plied to produce the precedence diagram in Figure 9. Since 
only the block ( h 2 ,  q2)  is affected by a change in A d 2 ,  the 
upstream variable q1 can be treated as a constant, that is, its 
initial steady-state value. As a result, the system in Figure 9 
can be reduced to the one presented in Figure 10. The corre- 
sponding EKF model is 

Example 6. 

q 2  - (20) 

(22) 

where q: is the initial steady-state value of ql. The feasibility 
of this approach has been verified with numerical simulation 
studies. The results are presented as Supplementary Material 
of this article (Figures S1 to S3). 

Method 2 
Secondly, an EKF may be decomposed into smaller ones 

by making use of the informations produced with Algorithm 
B. Notice that several separate components may be found in 
the resulting digraph. It is always possible to use an indepen- 
dent EKF to estimate the states and parameters within each 

n 

Figure 10. Results obtained by applying Method 1 to the 
precedence diagram in Figure 9. 
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These two EKFs have been tested again with numerically 
simulated data. The results can be found in the Supplemen- 
tary Material (Figures S4 to Sll) .  

Figure 11. Precedence diagram of the two-tank system 
in Figure 1. 
Result of implementing Algorithm B with q1 and h ,  as the 
measurement variables (fault parameters: A d ,  and A d 2 ) .  

component. If the variables in other components appear in 
the model equations associated with a particular component, 
they must be the measured state variables and should be 
treated as the augmented parameters in the corresponding 
EKF. Let us use another example to illustrate this technique: 

Let us consider the system in Figure 1. As- 
sume that there are two possible fault origins: leaks develop 
in tank T,, or in tank T,. Two parameters A d ,  and Acl, are 
used to describe their effects. The measurement variables se- 
lected in this example are q1 and h,. The precedence dia- 
gram obtained with Algorithm B contains two components 
(see Figure 11). Consequently, two smaller EKFs can be 
adopted to estimate A d l  and A d 2  on-line. Their respective 
models are 

EKFl 

Example 7. 

dhl A ,  - = q1 - q ,  - A d ,  vq 
dt (23) 

EKF2 

dh,  
A ,  - = q1 - q2 -Ac12& 

dt 

dAcl, 
dt 

-- - w,(t>. 

(25) 

(26) 

(28) 

(30) 

Method 3 
Finally, it should be noted that the digraph obtained with 

Algorithm B may contain only one component. In that case, 
it is still possible to divide this component into several sub- 
components at some appropriately selected nodes that are 
associated with unmeasured state variables. These nodes are 
referred to as seuering nodes in this work. Notice that the 
EKF used to estimate the states and parameters in any of 
these subcomponents must be smaller. In addition, if a sub- 
component contains only states, the corresponding EKF com- 
putations can be omitted entirely. 

A procedure for identifying the severing nodes follows: 
1. Identify a candidate path that is initiated at a node 

without inputs and terminated at one corresponding to a 
measured variable. 

2. Let the terminating node of the candidate path be the 
current node and check its upstream nodes on the path ac- 
cording to the following steps: 

(a) Let the input of the current node on the candidate 
path be the test node. 

(b) If the test node is not affected by any of the parame- 
ters, then go to the next step. Otherwise, let this test node be 
current node and repeat step (a). 

(c) Treat the corresponding variable as an augmented 
parameter in EKF. In particular, other than its output edge 
on the candidate path, all the input and output edges of the 
test node are removed. The node symbol is then replaced 
with a A .  

(d) Test fault observability of the resulting subcompo- 
nent. If this subcomponent is fault unobservable, then go to 
the next step. Otherwise, the test node should be considered 
as a severing node. Go to step 3. 

(e) Treat the corresponding variable as a state in EKF. 
Specifically, recover the input edges that are removed in step 
2(c) and change the node symbol back to 0. 

(f) If the test node is not an initiating node. let the test 
node be the current node and then go to step 2(a). Other- 
wise, this initiating node should be regarded as a severing 
node. 

3. Identify a different candidate path and repeat steps 2(a) 
to 2(f). This procedure is continued until all paths are ex- 
hausted. 

An example is presented below to illustrate the preceding 
procedure and also demonstrate the effectiveness of the pro- 
posed approach. 

Example 8. Let us reconsider Example 7 and use instead 
h ,  and h 2  as the measurement variables. The precedence di- 
agram obtained with Algorithm B is presented in Figure 12. 
One can see clearly that in this case there is only one compo- 
nent and thus the size of corresponding EKF cannot be re- 
duced with method 2. 

Notice that three candidate paths can be identified in Fig- 
ure 12: q, + h, ,  q ,  + h 2 ,  and q2 + h,. Let us first examine 
the path q1 -+ h,  and check 9,. If one treats the test node q1 
as an augmented parameter and removes all its edges that 
are not on the candidate path, the resulting subcomponent 
will be unobservable. Notice that q ,  is also an initiating node. 
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w 

w 
Figure 12. Precedence diagram of the two-tank system 

in Figure 1. 
Result of implementing Algorithm B with h ,  and h ,  as the 
measurement variables (fault parameters: A d ,  and A d z ) .  

This node, therefore, should be viewed as a severing node 
and must be treated as a state in the EKF. The resulting 
subcomponent can be found in Figure 13. The corresponding 
EKF model should be the same as Eqs. 23-26. The effective- 
ness of this EKF has been confirmed with simulation studies 
and the results are presented in the Supplementary Material 
(see Figures S12-Sl5). 

The preceding procedure can be applied to the path q1 + 

h,. The conclusion of this exercise is similar, namely, q, is a 
severing node (see Figure 14) and should be treated as a state 
in EKF. The corresponding EKF model can be described with 
Eqs. 24, 27, 28. 30, and 

(31) 

Again, simulation studies have been carried out to verify the 
correctness of this approach. The results are included in Fig- 
ures S16 to S20 of the Supplementary Material. 

Finally, since examination of the path q2+ h ,  does not 
result in a smaller subcomponent, no other alternative EKFs 
can be found with method 3. 

Application Example 
This example is designed to show the effectiveness of the 

proposed methods in lowering the computation load caused 

. 1 

Figure 13. Subcomponent identified from the prece- 
dence diagram in Figure 12 with method 3. 

n 

Figure 14. Another subcomponent identified from the 
precedence diagram in Figure 12 with 
method 3. 

by applying EKFs on-line. The benefit of reducing the size of 
EKF is demonstrated here by counting the number of differ- 
ential equations that are required to be integrated numeri- 
cally. This number Neq can be computed by 

( n  + rn)(n + rn + I )  
2 

+ n.  (32) Ncq = 

Let us now consider the five-tank system presented in Fig- 
ure 15 and assume that two parameters A d 4  and A d 5  are 
augmented in one of the EKFs used for diagnosis. From the 
precedence diagram produced with Algorithm A (Figure 161, 
one can see that A d ,  is located in the block corresponding 
to tank Ts and A d 4  is in the block formed by T3 and T4. In 
other words, one only has to consider the precedence dia- 
gram presented in Figure 17. Consequently, the model equa- 
tions associated with tanks T,  and T2 can be omitted and the 
variable q2 should be set to a constant, q2=q2(0), in the 
resulting EKF. Specifically, the model used in this filter con- 
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Figure 15. Simplified process flow diagram of a five-tank system. 

dhcl, 

dt 
-- - w, ( t>  

dAcl, 
dt 

-- - w,( t ) .  

(40) 

The results of numerical simulation studies show that accu- 
rate estimates of states and parameters can be produced with 
this simplified EKF. On the basis of Eq. 32, one can see that 
the number Neq is lowered significantly-from 117 to 52-by 
using method 1 alone. 

Next, let us assume that five of the state variables-h,, h,, 
h,, q6,  and q,-are measured on-line. After applying Algo- 
rithm B on Figure 17, three separate components can be 
identified (Figure 18). Since the parameters A d ,  and A d ,  
are located within one of the components, only one EKF is 

Figure 16. Precedence diagram of the five-tank system 
in Figure 15. 
Result of implementing Algorithm A (fault parameters: 
A d 4  and Acl,). 

needed. In this EKF, three measured state variables-h,, h,, 
and h,  -and two unmeasured state variables- q4 and 
q, -are described with the original model equations, Eqs. 
33-37. However, the other two measured variables-q, and 
q,-and also hcl, and hcl, are all treated as the augmented 
parameters, as in Eqs. 40, 41, and 

(43) 

The number of equations requiring integration is thus re- 
duced to 50. Again, numerical simulation studies have been 
carried out to verify the correctness of state and parameter 
estimation. The results are satisfactory. Notice that, in this 
case, the improvement in computation efficiency does not ap- 
pear to be rewarding. This is due to the fact that a relatively 
large EKF is needed to estimate A d 4  and A d ,  with the pre- 
sent selection of the measured variables. 

Figure 17. Result obtained by applying method 1 to the 
precedence diagram in Figure 16. 
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Figure 18. Precedence diagram obtained by applying 
Algorithm B to the subsystem represented by 
Figure 17. 
With five measurement variables h, ,  h,, h,, q6,  and q7 
( faul t  parameters: A d ,  and A d , ) .  

Figure 19. Precedence diagram obtained by applying 
Algorithm B to the subsystem represented by 
Figure 17. 
With five measurement variables h,, h,, h,, 4,. and q7 
(fault parameters: A d l  and A d 2 ) .  

A n 

Figure 20. Subcomponent identified from the prece- 
dence diagram in Figure 18 with method 3. 

If, for example, the measured variable qs is replaced by q4,  
the precedence diagram can be divided into four components 
(see Figure 19). Since the parameters A d ,  and A d ,  are lo- 
cated in the first and second components, respectively, two 
smaller EKFs can be applied for diagnosis purpose. Specifi- 
cally, the model corresponding to the first component can be 
described with Eqs. 33, 34, 37, 38, 40, and 

The model used in the second EKF consists of Eqs. 35, 41, 
43, and 44. The feasibility of these two EKFs has been again 
verified with simulation studies. Further, it should be noted 
that the number N can now be brought down to 36. 

To illustrate the implementation procedure of method 3, 
let us reconsider the precedence diagram in Figure 18. Two 
severing nodes, q4 and q5, can be identified in the compo- 
nent containing A d 4  and A d 5 .  Consequently, two subcom- 
ponents can be obtained (see Figures 20 and 21). The EKF 
model associated with Figure 20 consists of Eqs. 34, 37, 40, 
42, and 

“ 4  

Figure 21. Another subcomponent identified from the 
precedence diagram in Figure 18 with 
method 3. 
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Figure 22. Estimates of Ad, using the EKF corre- 
sponding to the subcomponent in Figure 20. 

(45) 

O n  the other hand, the EKF model corresponding to  the sec- 
ond subcomponent in Figure 21 can be described with Eqs. 
35, 36, 41, 43, and 45. Notice that the number Ney is now 17 
for each EKF, and thus the total number of equations is 34. 
The effectiveness of these two EKFs has also been confirmed 
with numerical simulation. Samples of the results can be 
found in Figures 22 and 23, respectively. 

Conclusions 
A new approach has been proposed in this study to  sim- 

plify EKF computations in fault identification without sacri- 
ficing diagnostic performance. In essence, this improvement 
is achieved with effective decoupling strategies that are de- 
veloped on the basis of the precedence order of the 
state/parameter estimation process. From the results of ex- 
tensive numerical simulation studies, one can see that the es- 

I 0 . 0 0 2 0 7 - - -  - 

+ - - ~ 

I 

--I -0.0010 ) I 1  “ I  - -  ’ 1 ’ ” ’  

0 200 400 600 
Time(sec) 

Figure 23. Estimates of A d 5  using the EKF corre- 
sponding to the subcomponent in Figure 21. 

timatcs of the simplified EKFs are indeed correct and, fur- 
thermore, the computation load can be reduced to less than 
30% of the original level. 
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Appendix: Algorithm A 
For the completeness of this article, a modified version of 

the partitioning algorithm suggested by Steward (1965) is pre- 
sented here. This algorithm can be bcst explained with the 
so-called structural rnatnx. Specifically, the (i, j)th entry in this 
array is filled with an X if the ith equation in Eqs. 14 in- 
volves the j t h  variable. Otherwise, it is blank. Notice that the 
diagonal positions are reserved for the output variables. One 
output must be chosen for cach equation in Eqs. 14, and no 
variable becomes the output of more than one equation. 

After constructing the structural matrix, the following pro- 
cedure can be followed to  obtain a partition of the system: 

1 .  We look for a row with no off-diagonal element and 
eliminate that row and the column corresponding to it. We 
repeat this process until there arc no further rows without 
off-diagonal elements. 

2. We begin tracing a path through the structural matrix 
by following the off-diagonal elements in scarch of a loop as 
follows: 

(a) Select the first row remaining in the matrix as the 
“row to be examined” and enter its row number on a list. 

(b) Locate the first off-diagonal element in the row be- 
ing examined. 

(c) Select the row corresponding to the column in which 
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Table A l .  Structural Matrix of the Two-Tank System in 
Example 2 

the off-diagonal element was found as the next row to be 
examined and add the row number to the list of rows exam- 
ined. 

(d) If the new row number has not previously been ex- 
amined (i.e., i s  not already on the list), return to Step b and 
continue tracing. 

( e )  If the new row number is already on the list, then we 
have found a loop containing all of the rows whose numbers 
appear on the list between the two occurrences of the last 
row number on the list. 

3. When we find a loop, we replace the set of rows in the 
loop by one row that is the union of the rows replaced. The 
union of two rows is a row that contains an element in each 

column in which either row originally contained an element. 
This we call collapsing the rows in the loop. Similarly, we 
collapse the columns corresponding to these rows. 

4. We proceed to Step 1 and look for a row with no off-di- 
agonal element. When a row is eliminated in Step 1, that row 
and the rows that collapsed to form it represent the equa- 
tions in a block. The order in which rows without off-diago- 
nal elements are eliminated gives an order in which the 
changes in the variables of these blocks can occur. 

As an example, notice that the precedence order in Figure 
5 can be easily converted to the structural matrix presented 
in Table A1 and vice versa. The latter is actually the result of 
implementing Algorithm A. 
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