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Abstract 

A novel alarm-system design strategy, which takes full advantage of the inherent hardware and spatial redundancy in a process 
network, is proposed in this paper. Specifically, systematic procedures have been developed to identify independent methods for 
evaluating any alarm variable in the process and to synthesize corresponding alarm generation logic. In order to implement this 
logic, the error models in data reconciliation and the formulas for evaluating conditional probabilities of type I and II mistakes 
have also been derived. The results of simulation studies show that it is indeed superior to any of the existing design techniques. 
This is because the resulting alarm system is appropriately tailored to minimize the expected loss. More importantly, it is robust 
in the sense that the system performs satisfactorily even under the influence of various sensor malfunctions. © 2000 Elsevier 
Science Ltd. All rights reserved. 
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I.  Introduction 

Alarm generation is a basic function of  the protective 
system in any chemical process plant. The current 
practice in the industry is simply to compare measure- 
ment data of the variable of  interest with a pre-deter- 
mined threshold value. The decision concerning 
whether or not to set off an alarm is then made 
accordingly. Naturally, all sensor measurements are 
subject to errors, i.e. the random and/or gross errors. 
Thus, two types of mistakes may be committed in the 
above decision making process. First of  all, spurious 
alarms may be produced due to measurement errors 
when the variations of the process variables are actually 
within acceptable limits (type I mistakes). Secondly, the 
system may fail to detect the existence of hazardous 
operating conditions and thus no alarms are generated 
(type II mistakes). 

One possible way to improve the current operation is 
to make use of  the spatial redundancy embedded in any 
process network. The hardware redundancy built in a 
traditional alarm system can actually be viewed as a 
special case of spatial redundancy in the sensor network 
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of the overall process. Consequently, the reconciled 
data, rather than the raw measurement data, are 
adopted in this study for alarm generation purpose. In 
a previous study (Tsai & Chang, 1997), a systematic 
method for synthesizing the optimal flow alarm logics 
has been developed according to the design criterion of  
minimizing expected loss. Although this method was 
demonstrated to be cost effective if only random errors 
exist, the problems caused by gross errors were not 
discussed in sufficient detail. Thus, in order to address 
the issue of  alarm resilience and to extend the approach 
to all measurable variables in the process network, i.e. 
the flow rates, the temperatures and the concentrations, 
it is necessary to perform a more comprehensive study. 

2. The error models  

In order to explore the structural characteristics of 
chemical processes, it is convenient to represent the 
process flow diagrams with process networks (Mah, 
1990). On each arc in a process network, the variables 
of  interest are the total flow rate, the temperature and 
the component concentrations. In this paper, they are 
referred to as the process variables. The true values of 
these variables can be viewed as 
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vt = v~+ Aj (1) 

where, vj denotes the true value of  the j t h  process 
variable, v d represents its design value and Aj is the 
corresponding difference resulting from unknown dis- 
turbances. In this study, Aj is assumed to be a normally- 
distributed random variable with time-variant mean. 
Specifically, its expected value is zero when the system 
is operated at normal steady state and otherwise when 
faults occur. Notice that, Eq. (1) is equally applicable 
to the temperatures, concentrations and total flow 
rates. 

Next, let us assume that, the measurement errors are 
related to their true values according to the following 
constraint 

vj = v) + ej (2) 

where, vj represents the measurement value of the j t h  
variable and ej denotes the corresponding error. In this 
study, ej is treated as a normally distributed random 
variable with zero mean. It should be reasonable to 
believe that the variance of each measurement error can 
be acquired from the vendor or an analysis of  its 
historical data. 

3.  T h e  r e c o n c i l i a t i o n  errors  

tion applications due to its iterative nature. In this 
study, a linearized version of  the constraint equations is 
adopted to produce estimates of  the process variables. 
In particular, let us linearize Eq. (3) with respect to the 
measurement values, i.e. 

A(1)Av + A(2)An + A°)Ali = - 6 (4) 

where Av = v t - v, Au = u t - u, Ali = l i t  _ li and 6 = 
[~l(V, u, li), tP2(v, u, li), "", ~%(v,  u, li)]T. It is assumed 
that the values of UkS and ~/lS can be determined by 
solving various subsets of  the constraint equations in 
Eq. (3) on the basis of  the measurement values vfl. As 
a result, the coefficient matrices in Eq. (4) can also be 
evaluated accordingly. 

In order to derive an explicit formula to estimate 
reconciliation errors, it is often necessary to rearrange 
the order of variables in vector v and partition A <1) 
accordingly into two matrices: 

A (1) = [A (11) A (12)] (5) 

Furthermore, this partition must be done in such a way 
that a nonsingular matrix T can be constructed with 
A (12), A (2) a n d  A (3), i .e .  

T = [ A  O2) A (2) A (3)] (6) 

By premultiplying T -1 ,  Eq. (4) can be transformed 
into 

In this work, the reconciled values of  the process 
variables are utilized in the alarm generation process. 
Consequently, the corresponding estimation errors 
must also be analyzed. It should be noted that the 
choice of constraint equations used in the reconciliation 
calculation is dependent upon the variables involved in 
alarm logic. For  example, it is only necessary to con- 
sider mass balance in the flow-alarm algorithm, but 
both mass and energy balance must be included in a 
temperature-alarm system. Let us express these con- 
straint equations in a general form, i.e. 

¢~(V t , n t, ll t) = 0 (3) 

where, • denotes the vector of  constraint functions, v t 

and n t represent respectively the true values of the 
measured and unmeasured process variables and lit is 
the vector of  unknown parameters, e.g. the reaction 
extent and the split fraction. 

If the constraint equations in Eq. (3) are linear, then 
the reconciled values of process variables can be deter- 
mined analytically (Crowe, Garcia Campos & Hrymak, 
1983). Otherwise, an iterative computation procedure is 
needed (Crowe, 1986). Notice that the intention for 
installing an alarm is usually to protect the process 
against certain hazards. Prompt remedial actions must 
be taken if such emergency situations occur. Thus, the 
standard reconciliation algorithm for nonlinear (or bi- 
linear) systems is really inappropriate in alarm genera- 

[ 1 [ ]Cli100L 
C 2 0 I2 0 1 Au = 

C 3 0 0 13 Aq 

where, Avl and Av 2 is vectors corresponding to the 
columns of A (m and A (12), respectively. On the basis of 
Eq. (7), it can be shown that the reconciled values of 
the measured variables ~ can be expressed as 

~¢ = v - Q B T ( B Q B  T) - 161 (8)  

where Q is the covariance matrix associated with ~ and 
B = [C1 I1]. Let us now define the vector of  estimation 
errors d as d = ~ -  v t. Then, by substituting this defini- 
tion and the first part of  Eq. (7) into Eq. (8), one can 
produce the following result: 

d = e - Q B T ( B Q B  T) - 1Be = / I - Q B X ( B Q B  T) - IB / e 

(9) 

Thus, the error of  every reconciled value can be 
estimated by a linear combination of  the measurement 
errors of  all sensors. 

4.  T h e  t h r e s h o l d  l imi t s  

In a chemical plant, a subset of the measured process 
variables may be selected as the alarm variables on the 
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basis of  process considerations. More specifically, each 
of  these variables must satisfy one or more operational 
constraint. A typical constraint can be written as 

v h - v ] - > 0  or v u - v  t>_0  (10) 

where, v] represents the true value of  the Ath process 
variable and v] and vA u denote, respectively, the lower 
and upper threshold limit. For  convenience, the opera- 
tional constraint can be expressed in an alternative 
general form as: 

a(vtA) > 0 (11) 

where G is referred to a performance function in this 
study. 

Obviously, an alarm is set off as an indication of  
constraint violation. Since the true process state can 
never be determined, one has to rely on the measure- 
ment data to evaluate the performance function. In 
other words, the values of indicator function G (s) (s = 1, 
2 . . . . .  NA) must be computed according to 

G (') = G(v~ )) (12) 

where, v]  ) denotes the value of  alarm variable obtained 
with the sth independent method. 

Apparently, the alarm variable can be monitored 
directly with a sensor. Although there is at most one 
sensor for each variable on any arc in the process 
network, it is still possible to identify more than one 
independent method to determine the alarm variable 
indirectly according to the measurement data of  other 
process variables. These indirect methods can be iden- 
tified mainly by exploiting the inherent spatial redun- 
dancy implied in the mass, component and energy 
balance relations. Due to measurement errors, the val- 
ues of  indicator function evaluated with data obtained 
from different methods are in general not consistent 
with one another. Nonetheless, one is still required to 
make a decision concerning whether or not to set off  an 
alarm with these data. Thus, let us now turn our 
attention to the development of  an optimal alarm gen- 
eration strategy. 

identified with the procedures described in the next 
section. Assuming that such functions are available, one 
should be able to compute v}~)s on-line and then substi- 
tute them into the performance function G to assess the 
current operation status. On the basis of  these results, a 
set of  binary indicator variables Ys can be determined 
accordingly, i.e. 

~1 if G( ' )<0  
(14) 

Ys = otherwise 

where, G (s) is the indicator function defined in Eq. (12). 
The system alarm should then be generated on the 

basis of these indicators. The logic for setting off  the 
alarm can be explicitly expressed with an alarm func- 
tion f(y),  i.e. 

f ( y ) =  J'l if the system is generating an alarm 

t0 otherwise 

(15) 

Obviously, the values of the indicator variables yss in 
y may not be consistent with the true state v~. Let us 
consider the true value of the performance function, G t. 
There are two kinds of mistakes that can be identified 
accordingly, i.e. Ys is set to be 1 when G t >  0 (type I 
mistake) or Ys is set to be 0 when G t <  0 (type II 
mistake). Similarly, the mistakes committed in generat- 
ing the system alarm can also be classified into type I 
and II. Since both types of  mistakes result in financial 
losses, there are incentives for developing an optimal 
alarm generation logic which minimizes the expected 
loss. This loss function L can be written as, 

L = C.(1 - PF)Pa + CbPFPb (16) 

where P .  and Pb, respectively, denote the probabilities 
of  type I and II mistakes in alarm generation, Ca and 
Cb are the corresponding costs. Also, PF is the demand 
probability which is defined as the probability of  violat- 
ing the constraint. It can be shown (Tsai & Chang, 
1997) that the expected loss is minimized if the alarm 
function is chosen such that 

5. The optimal alarm generation logic 

As indicated above, there may be several different 
evaluation methods available for the purpose of moni- 
toring the same variable of  interest. Let us express these 
methods with a set of  evaluation functions ~g~) (s = 1, 
2 . . . . .  NA), i.e. 

v ~) = ~F~)(v) (13) 

where each ~t'}~) is derived from a subset of the con- 
straint equations in Eq. (3) and v is the vector of  
measurement values of  all measured process variables. 
The explicit forms of  these evaluation functions can be 

10 i f h ( y ) > 0  
f(Y) = if h (y) _< 0 (17) 

where h(y) = CbPFPr(yIG t < 0} -- C~(1 -- PF)Pr(YIG t >_ 
0} After obtaining the values o f f ( y )  for all possible y, 
its functional form can be constructed accordingly. 
With the functional form given, the logic associated 
with f(y)  can be implemented as a hard-wired circuit or 
as a computer program. Finally, it should be noted 
that, in order to carry out the proposed alarm strategy, 
the demand probability and the two conditional proba- 
bilities in h(y) must be obtained first. Since the means 
of unknown disturbances defined in Eq. (1) are unpre- 
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dictable, these probabilities cannot be evaluated di- 
rectly. On the other hand, from the assumption that the 
means of measurement errors defined in Eq. (2) are 
negligible, an alternative estimation method can be 
developed according to the reconciled value of the 
alarm variable (Tsai & Chang, 1997). Thus, the result- 
ing alarm generation procedure is really time-variant. 

6. Independent evaluation methods 

Let us first consider the flow alarm installed on one 
particular arc, say a, in a process network. It has been 
well established that all the different ways of indirectly 
evaluating the same mass (or molar) flow are given by 
the cut sets that contain arc (I in which the total mass 
(or molar) flow of every other arc is measured (Ali & 
Narasimhan, 1993, 1995). However, since some of the 
elements may appear in more than two of these cut sets, 
the corresponding evaluation methods are statistically 
dependent. Consequently, it is necessary to select out 
cut sets that do not contain common arcs other than a. 
Tsai and Chang (1997) proposed a simple digraph- 
based procedure to perform this task: 

Consider the original process network. Merge the 
input and output nodes of every arc on which the 
flow sensor is not installed. Let the resulting process 
graph be the current digraph and also i = 1. 
Find a cut set Kc’). of the current digraph which 
contains arc a. 
Merge the input and output nodes of every arc in 
Kc’) except those of arc a. Let the resulting graph be 
the current digraph and i = i + 1. 
Repeat steps 2 and 3 until arc a itself forms a loop. 

It should be noted that the evaluation methods ob- 
tained with this approach might not be unique. This is 
due to the fact that more than one cut set can usually 
be found in any given graph. Conceivably, other candi- 
date measurement methods may be identified if differ- 
ent cut sets are adopted in step 2. 

Fig. 1. Process network of ammonia process. 

Let us next consider the problem concerning the 
temperature alarm on arc a. Notice that the connection 
between the cut sets and the evaluation methods in a 
mass-flow network is still valid in an energy-flow net- 
work. On the basis of this insight, a similar procedure 
can be developed to identify a set of independent 
temperature evaluation methods. Finally, it should be 
noted that, without reactors and splitters, the equation 
form of component-flow constraint in a process net- 
work is really identical to that of mass-flow or energy- 
flow constraint. Consequently, another modified 
version can also be developed to identify indirect inde- 
pendent concentration (or component flow) evaluation 
methods (Chu, 1999). For the sake of brevity, these two 
procedures are not described in the present paper. 

7. Case studies 

Let us consider the ammonia synthesis process (Fig. 
1) which was first studied by Crowe et al. (1983). In this 
process network, node 1 is associated with a mixer, 
node 2 a reactor, node 3 a separator and node 4 a 
splitter. A simple reaction N, + 3H, = 2NH, takes 
place in the reactor and there are at most four species, 
i.e. nitrogen, hydrogen, ammonia and argon, in each 
process stream. It is assumed that an alarm system 
must be installed on arc 2 to protect against the unde- 
sirable outcomes caused by low hydrogen flow rate. 
Consequently, it is more convenient to formulate the 
constraint equations in terms of component flows 
which are products of concentrations and total flow 
rates. In particular, these products should be replaced 
by a set of new variables n,+ representing the compo- 
nent flows. Then the apparent measurement error co- 
variance matrix corresponding to these variables should 
be block diagonal even if the measurement errors of 
flow rates and concentrations are independently 
distributed. 

Under normal operating conditions, the system is 
assumed to be at its original steady state and can be 
described with the statistical parameters presented in 
Table 1. The means and variances of every ‘true’ com- 
ponent flow rate in each stream can be found in the 
third and fourth column of Table 1. Notice that, in 
almost every stream, the data associated with one or 
more component flow are not included. This is due to 
the assumption that these components are not present 
in the corresponding stream. As mentioned previously, 
the difference between the true value of a process 
variable and its design value is treated in this work as a 
random variable with zero mean during normal opera- 
tion. Thus, the mean values listed in Table 1 are also 
used as the design values in the present example. In this 
process network, all component flow rates are measured 
except nZ,N,, n7,N, and n7,H,. The variance of each 
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Table 1 
Statistical parameters of component flows under normal operating 
conditions 

Stream Component E[n~ v a r ~  var[e.a] 
number (l) ( i )  

1 N2 39.74 0.1579 0.03947 
H 2 113.0 1.334 0.3335 
Ar 2.526 0.-164 0.2416 

2 N 2 101.0 15.67 N.A. 
H 2 253.4 6.704 1.676 
Ar 20.20 0.04111 0.01028 

3 N 2 70.02 17.27 4.318 
H2 160.4 2.686 0.6716 
Ar 20.20 0.04111 0.01028 
NH 3 61.98 0.4013 0.1003 

4 NH 3 61.98 0.4013 0.1003 
5 N 2 70.02 17.27 4.318 

H2 160.4 2.686 0.6716 
Ar 20.20 0.04111 0.01028 

6 N2 8.753 0.2699 0.06747 
H2 20.05 0.04197 0.01049 
Ar 2.526 0.74864 0.00016 

7 N z 61.27 13.22 N.A. 
H 2 140.3 2.057 N.A. 
Ar 17.68 0.03148 0.00787 

I 
I i I i 

Fig. 2. Results of  the true component flow n t 2,H 2" 

Table 2 
The performance of  optimal alarm strategy (fault origin: a decrease in 
H 2 supply) 

Alarm strategies Cb/Ca Proportion of  mistakes 

Type I Type II 

Traditional 0.06752 0.13680 
Approach A 0.02971 0.06551 
Approach B 30.0 0.07562 0.01541 

60.0 0.08373 0.00963 
100.0 0.09386 0.00771 

measurement error can also be found in Table 1 
(column 5). The covariance values of each pair of  
measurement errors associated with the ith and j t h  
components within the same stream (say stream l) are 
assigned according to the following formula: 

x/var[ntdvar[n°] (18) 
COV[nli' no] - 2 

The reconciled values of  component flow rates can be 
obtained with Eq. (8). The threshold limit n2LH. selected 
in the simulation studies is 248.1 mol/s. The t{rst inde- 
pendent evaluation method is naturally associated with 
the sensors for directly measuring arc 2, i.e. when s = 1 

n~l) H = ltP(1)(H2,H2 ) = n2,H2 (19)  
2 

The indirect evaluation methods adopted in this study 
can be expressed as: 

n~2,h 2 = IlJ(2)(r/1,H2 , n5,H 2, n6,n 2) = nl,H2 + nS,H 2 - -  n6,H2 
(20) 

(21) n(3) = ~(3)(n3,H2 ' /,/3,NH3 ) = n3,H 2 q_ n3,NH3 2 , t l  
2 

The effectiveness of the proposed alarm generating 
strategy can be demonstrated with simulation studies. 
The variation in the true flow rate n t%u 2 due to a sudden 
decrease in H:  supply from environment, i.e. nl H , was 
first simulated. Initially, E[nt2,ia2] was kept at its ~lesign 
value, i.e. 253.4 mol/s. The fault occurs at time 900At 
and At is the sampling interval. As a result, the mean 
value of n t%,. decreases gradually and reaches a new 
steady level o1" 248.2 mol/s after time 1 lOOAt. A total of  
2000 sets of  data have been generated in this case. Only 
half of  them, i.e. from sample number 600 to 1400, are 
shown in Fig. 2. Next, the measurement values were 
simulated. This was done by adding the measurement 
errors to the corresponding true component flow rates. 
The values of measurement errors were again created 
with a random number generator according to the 
given covariance matrix Q. Using the measurement 
data, one can then compute the reconciled component 
flow rates with Eq. (8). 

In this study, the traditional approach, i.e. using the 
raw measurement data n2,H2 , w a s  taken first to set off  
alarm. The proportions of  type I and II mistakes in this 
case were determined to be 0.06752 and 0.13680, re- 
spectively. On the other hand, by adopting the recon- 
ciled data as the basis for alarm generation, it was 
found that the chances of  making these mistakes can be 
lowered significantly to 2.97% (type I) and 6.55% (type 
II). 

Each time a new set of  measurement data and the 
corresponding reconciled component flow rates are ob- 
tained, an optimal alarm logic can be constructed on- 
line with the proposed synthesis procedure. The time 
needed to construct one of  these logics was found to be 
less than one second on a Pentium PC. The results of  
adopting the proposed alarm policy (approach B) with 
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Table 3 
The performance of optimal alarm strategy in additional case studies 
(ca~co = 30) 

Case number Alarm strategies Proportion of type II 
mistakes 

1 Traditional 0.13680 
Approach A 0.12524 
Approach B 0.04817 

2 Traditional 0.22667 
Approach A 0.14667 
Approach B 0.06667 

2. Case 2. The effects of a leakage in stream 4 are 
studied in this case. It is assumed that 2% of the 
ammonia flow is released to the environment. 

The results of these additional case studies are pre- 
sented in Table 3. One can see clearly that approach B 
performs better than the other two methods in all 
scenarios. 

8. Conclusions 

different Cb/C~ ratios are summarized in Table 2. In 
particular, the proportions of type I and II mistakes are 
presented in this table. For comparison purpose, the 
results of using only the direct measurement data (the 
traditional approach) and the reconciled data (ap- 
proach A) are also included. From these results, it is 
clear that the proposed alarm system is superior in the 
sense that the corresponding loss due to misjudgment 
reaches a minimum. Also notice that type II mistakes 
can be reduced to a negligible level by increasing the 
Cb/C~ ratio. This is usually the first priority in most 
cases since the purpose for installing an alarm is almost 
always to protect against certain catastrophic 
consequences. 

Due to the fact that more independent evaluation 
methods are adopted for alarm generation purpose, it is 
our belief that the proposed strategy should outperform 
the traditional practice even under the influence of 
gross errors. In order to demonstrate the resilience of 
the proposed approach, the alarm strategy was tested 
with various additional scenarios. A brief description of 
two of these cases is presented in the sequel: 
1. Case I. In addition to the fault simulated in the 

above studies, i.e. a decrease in hydrogen supply, an 
additional sensor failure on stream 1 is also intro- 
duced in this case. Specifically, the mean of the 
measurement values of n~.H was kept at it 'normal' 
level, i.e. 113.0 tool/s, when disturbances enter the 
system. 

From the above discussions, it is clear that the pro- 
posed alarm-logic design strategy is indeed superior to 
any of the existing techniques. Not only the resulting 
alarm system is optimal, but also robust. These desir- 
able features are brought about mainly by integrating 
the intrinsic characteristics of process network, i.e. the 
spatial redundancy, into system design. Furthermore, 
from experiences obtained in solving the example prob- 
lem, one can also conclude that the demand for on-line 
computation is reasonable especially when the sampling 
interval is in the range of seconds or longer. 
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