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A novel alarm-system design strategy, which takes full advantage of the inherent hardware
and spatial redundancy in a process network, is proposed in this paper. Specifically, systematic
procedures have been developed to identify independent methods for evaluating any alarm
variable in the process and to synthesize corresponding alarm generation logic. To implement
this logic, the error models in data reconciliation and the formulas for evaluating conditional
probabilities of type I and II mistakes have also been derived. The results of applying the proposed
approach to the application example show that it is indeed superior to any of the existing design
techniques. This is because the resulting alarm system is appropriately tailored to minimize
the expected loss. More importantly, it is resilient in the sense that the system performs
satisfactorily even under the influence of various sensor malfunctions.

Introduction

Alarm generation is a basic function of the protective
system in any chemical process plant. The current
practice in the industry is simply to compare online
measurements of the variable of interest with a thresh-
old value. In most applications, this threshold value is
identified on the basis of process considerations, e.g., the
onset temperature of a runaway reaction or the rupture
pressure of a storage vessel. Thus, the implementation
issues of an alarm generation strategy are really not
the same as those concerning the SPC-related tech-
niques for incipient fault detection.1 Notice that, in the
latter case, the control limits are determined mainly
according to statistical data obtained during normal
operation.

To protect the process against potential hazards, the
decision concerning whether to set off an alarm usually
must be made as soon as a new batch of online data
become available. However, all sensor measurements
are inevitably subject to random and/or gross errors.2
Thus, two types of mistakes may be committed in the
above decision-making process. First, spurious alarms
may be produced because of measurement errors when
the variations of the process variables are actually
within acceptable limits (type I mistakes). Second, the
system may fail to detect the existence of hazardous
operating conditions, and thus no alarms are generated
(type II mistakes).

A common industrial practice to reduce the chance
of misjudgment is to introduce hardware redundancy
in the alarm system.3 Specifically, several independent
sensors are installed to monitor the same process
variable. Any inconsistency identified in the measure-
ment data obtained from different sensors is usually
resolved on the basis of operation experience or an

arbitrarily chosen alarm logic. It should be noted that
the implied objective of such a practice is to achieve a
compromise between the conflicting emphases on de-
creasing type I and II mistakes. Although this approach
is effective on a qualitative basis, there are still several
deficiencies. In particular, the conventional alarm strat-
egy utilizes only the information obtained from the
redundant sensors for measuring the process variable
of interest. Consequently, a large amount of additional
useful information embedded in the process system is
neglected entirely. Also, the alarm-generating logics
adopted in industrial applications have always been
developed on an ad hoc basis and thus may not be cost
optimal. This drawback can be significant in cases when
the financial loss of misjudgment is large.

One possible way to improve the current operation is
to make use of the spatial redundancy (or analytical
redundancy) embedded in any process network. The
hardware redundancy built in a traditional alarm
system can actually be viewed as a special case of spatial
redundancy in the sensor network of the overall process.
Consequently, the reconciled data, rather than the raw
measurement data, are adopted in this study for alarm
generation purposes. There are several advantages in
taking this approach. The most obvious one is that the
variance of each estimate is known to be smaller than
that of the raw data.4 However, it should be noted that,
as a result of gross and random errors in the measure-
ment data, all reconciled estimates are also subject to
errors and thus type I and II mistakes may still occur
in generating alarms. In a previous study,5 a systematic
method for synthesizing the optimal flow alarm logics
has been developed according to the design criterion of
minimizing expected loss. Although this method was
demonstrated to be cost-effective if only random errors
exist, the problems caused by gross errors were not
discussed in sufficient detail. Because the decision to
set off an alarm in the proposed system is made on the
basis of multiple sets of independent measurements, we
feel that its overall performance should still be better;
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i.e., the chance of misjudgment is lower than that of the
other approaches even under the influence of undetected
gross errors. Therefore, to verify our proposition con-
cerning alarm resiliency and to extend the approach to
all measurable variables in the process network, i.e.,
the flow rates, the temperatures, and the concentra-
tions, it is necessary to perform a more comprehensive
study.

Several specific tasks have been accomplished in this
work. First, notice that the mass balances are linear
equations and the energy and component balances are
essentially nonlinear in nature. The reconciliation error
models obtained on the basis of only the former are
apparently not applicable when the latter two types of
constraint equations are also included in the estimation
algorithm. A modified version is thus derived in this
work to facilitate the development of a comprehensive
alarm strategy. Second, a systematic procedure has been
established to identify independent methods for evalu-
ating any alarm variable with available measurement
data. Third, the design techniques for trip systems6,7

have been modified for the purpose of synthesizing
optimal alarm logics. Because the probabilities of false
alarms and undetected failures must be obtained in
order to implement this logic synthesis method, an
online estimation procedure for these parameters has
also been developed in this work. Finally, a series of
simulation studies have been carried out to demonstrate
the advantages of our approach. In particular, the
proposed alarm logic is not only cost optimal but also
resilient. The alarm resilience is, in fact, ensured by
incorporating the redundant information embedded in
the mass, component, and energy balance relations. As
a result, the logic should be effective even under the
influence of gross measurement errors.

Error Models of Process Variables

To explore the structural characteristics of chemical
processes, it is convenient to represent the process flow
diagrams with process networks.2 On each arc in a
process network, the variables of interest are the total
flow rate, the temperature, and the component concen-
trations. In this paper, they are referred to as the
process variables. The true values of these variables can
be viewed as

where vj
t denotes the true value of the jth process

variable, vj
d represents its design value, ∆j is the

corresponding difference resulting from unknown dis-
turbances, and NV is the total number of process
variables. Notice that NV can be determined with the
number of species C and the number of arcs M in a
process network; i.e., NV ) (C + 2)M.

In this study, ∆j is assumed to be a normally distrib-
uted random variable with a time-variant mean. Specif-
ically, its expected value is zero when the system is
operated at normal steady state and otherwise when
faults occur. Notice that, although eq 1 is applicable to
the temperature, concentrations, and total flow rate,
these three types of variables are treated equally here
for the sake of conciseness. More explicit notation will
be introduced later.

Next, let us assume that the total number of unmea-
sured process variables is U. The measurement errors
are related to their true values according to the follow-
ing constraint:

where vj
(i) represents the measurement value of the jth

variable using sensor i, ej
(i) denotes the corresponding

random error, and mj is the total number of independent
sensors used to measure the jth variable. In this study,
ej

(i) is treated as a normally distributed random vari-
able with zero mean. It should be reasonable to believe
that the variance of each measurement error can be
acquired from the vendor or an analysis of its historical
data.

As indicated above, there may be multiple redundant
sensors installed on a stream to measure the same
variable. To facilitate concise formulation of the error
model for data reconciliation, this stream is treated in
our study as several fictitious streams connected in
series by fictitious nodes. If the temperature, concentra-
tions, and total flow rate of a particular process stream
are measured respectively with rj

T, rj,k
x (k ) 1, 2, ..., C),

and rj
m redundant sensors, then the number of ficti-

tious streams nj
fic should be

Consequently, there can be at most one sensor for each
process variable on a fictitious stream and thus the
superscripts of vj

(i)’s and ej
(i)’s in eq 2 can be dropped

without causing confusion.

Estimation Errors in Reconciled Data

In this work, the reconciled values of the process
variables are utilized in the alarm-generation process.
Consequently, the corresponding estimation errors must
also be analyzed. It should be noted that the choice of
constraint equations used in the reconciliation calcula-
tion is dependent upon the variables involved in alarm
logic. For example, it is only necessary to consider mass
balance in the flow-alarm algorithm, but both mass and
energy balances must be included in a temperature-
alarm system. The issue of selecting the appropriate set
of constraint equations for data reconciliation has
already been addressed fully in the past, e.g., see work
by Mah.2 Let us express these constraint equations in
a general form, i.e.

where Φ ) [Φ1, Φ2, ..., ΦNE]T denotes the vector of
constraint functions, vt ) [v1

t , v2
t , ..., vNV-U

t ]T and ut )
[u1

t , u2
t , ..., uU

t ]T ) [vNV-U+1
t , ..., vNV

t ]T represent respec-
tively the true values of the measured and unmeasured
process variables, and ηt ) [η1

t , η2
t , ..., ηNP

t ]T is the vector
of unknown parameters, i.e., the reaction extent and the
split fraction. In principle, the mass and/or energy
balance described in eq 4 should be exact. If empirical
equations are used as the constraint equations in data

vj
t ) vj

d + ∆j j ) 1, 2, ..., NV (1)

vj
(i) ) vj

t + ej
(i) i ) 1, 2, ..., mj

j ) 1, 2, ..., NV - U (2)

nj
fic ) max(rj

T,rj
m,rj,1

x ,rj,2
x ,...,rj,C

x ) (3)

Φ(vt,ut,ηt) ) 0 (4)
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reconciliation, they are assumed to be a fairly accurate
approximation of the reality in this study.

If the constraint equations in eq 4 are linear, then
the reconciled values of process variables can be deter-
mined analytically.8 Otherwise, an iterative computa-
tion procedure is needed.9 Notice that the intention for
installing an alarm is usually to protect the process
against certain hazards. Prompt remedial actions must
be taken if such emergency situations occur. Thus, the
standard reconciliation algorithm for nonlinear systems
is really inappropriate in alarm-generation applications
because of its iterative nature. In this study, a linearized
version of the constraint equations is adopted to produce
estimates of the process variables. In particular, let us
linearize eq 4 with respect to the measurement values,
i.e.

where

It is assumed that the values of uk’s (k ) 1, 2, ..., U)
and ηl (l ) 1, 2, ..., NP) can be determined by solving
various subsets of the NE constraint equations in eq 4
according to the measurement values vj’s (j ) 1, 2, ...,
NV - U). Several systematic procedures will be de-
scribed later in this paper to identify the suitable
evaluation functions for this purpose. The coefficient
matrices in eq 5 can be expressed as

Again notice that the elements of the above matrices
and vector are functions of the measured and calculated
values of the process variables and parameters.

To derive an explicit formula to estimate reconcilia-
tion errors, it is often necessary to rearrange the order
of variables in vector v and partition A(1) accordingly
into two matrices: one NE × (NV - NE + NP) matrix
A(11) and another NE × (NE - U - NP) matrix A(12).
Specifically,

Furthermore, this partition must be done in such a way
that a nonsingular matrix T can be constructed with

A(12), A(2), and A(3), i.e.

When T-1 is premultiplied, eq 5 can be transformed into

where ∆v1 is a NV - NE + NP vector corresponding to
the columns of A(11); ∆v2 is a NE - U - NP vector
corresponding to the columns of A(12); the 0’s denote
matrices in which all entries are zero; I1, I2, and I3 are
identity matrices; and the matrices C1, C2, and C3 can
be obtained by partitioning the product of T-1 and A(11).
Notice that the number of rows in C1, C2, and C3 should
be NE - U - NP, U, and NP, respectively. Finally, the
vectors δ1, δ2, and δ3 can be determined in a similar
way by partitioning T-1δ.

On the basis of eq 15, it can be shown that the
reconciled values of the measured variables v̂ can be
expressed as

where Q is the covariance matrix associated with v and
matrix B is defined as

Notice that eq 16 is the result of minimizing the
weighted sum of squared errors (v̂ - v)TQ-1(v̂ - v)
under the constraint of eq 5. This derivation is omitted
in the present paper for the sake of brevity.

Let us now define the vector of estimation errors d
as

where

Substituting eq 18 and the first part of eq 15 into eq
16, one can produce the following result:

Thus, the error of every reconciled value can be esti-
mated by a linear combination of the measurement
errors of all sensors, i.e.

where the coefficients wkj can be determined by eq 19.

Threshold Limits of Alarm Variables

In a chemical plant, a subset of the NV - U measured
process variables may be selected as the alarm variables
on the basis of process considerations. More specifically,
each of these variables must satisfy one or more

A(1)∆v + A(2)∆u + A(3)∆η ) -δ (5)

∆v ) vt - v ) [v1
t - v1, v2

t - v2, ..., vNV-U
t - vNV-U]T

(6)

∆u ) ut - u ) [u1
t - u1, u2

t - u2, ..., uU
t - uU]T (7)

∆η ) ηt - η ) [η1
t - η1, η2

t - η2, ..., ηNP

t - ηNP
]T (8)

A(1) ) (∂Φi

∂vj
t
(v,u,η))

NE×(NV-U)

(9)

A(2) ) (∂Φi

∂uj
t
(v,u,η))

NE×U

(10)

A(3) ) (∂Φi

∂ηj
t
(v,u,η))

NE×NP

(11)

δ ) [Φ1(v,u,η), Φ2(v,u,η), ..., ΦNE
(v,u,η)]T (12)

A(1) ) [A(11) A(12)] (13)

T ) [A(12) A(2) A(3)]NE×NE
(14)

[C1 I1 0 0
C2 0 I2 0
C3 0 0 I3

][∆v1
∆v2

∆u
∆η

] ) -[δ1
δ2
δ3

] (15)

v̂ ) v - QBT(BQBT)-1δ1 (16)

B ) [C1 I1] (17)

d ) v̂ - v (18)

d ) [d1, d2, ..., dNV-U]T

d ) e - QBT(BQBT)-1Be ) [I - QBT(BQBT)-1B]e
(19)

dk ) ∑
j)1

NV - U

wkjej k ) 1, 2, ..., NV - U (20)
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operational constraints. A typical constraint can be
written as

where vA
t represents the true value of the Ath process

variable (1 e A e NV - U) and vA
L and vA

U denote
respectively the lower and upper threshold limits. For
convenience, the operational constraint can be expressed
in an alternative general form as

where G is referred to as a performance function in this
study.

Obviously, an alarm is set off as an indication of
constraint violation. Because the true process state can
never be determined, one has to rely on the measure-
ment data to evaluate the performance function. In
other words, the values of indicator function G(s) must
be computed according to

where vA
(s) denotes the value of the alarm variable

obtained with the sth independent method and NA is
the total number of evaluation methods.

Apparently, the alarm variable can be monitored
directly with a sensor. Although there is at most one
sensor for each variable on any arc in the process
network, it is still possible to identify more than one
independent method to determine the alarm variable
indirectly according to the measurement data of other
process variables. These indirect methods can be identi-
fied mainly by exploiting the inherent spatial redun-
dancy implied in the mass, component, and energy
balance relations. Because of measurement errors, the
values of the indicator function evaluated with data
obtained from different methods are, in general, not
consistent with one another. Nonetheless, one is still
required to make a decision concerning whether to set
off an alarm with these data. Thus, let us now turn our
attention to the development of an optimal alarm-
generation strategy.

Optimal Alarm-Generation Logic

As indicated above, there may be several different
evaluation methods available for the purpose of moni-
toring the same variable of interest. Let us express these
methods with a set of evaluation functions ΨA

(s), i.e.

where each ΨA
(s) is derived from a subset of the con-

straint equations in eq 4 and v is the vector of measure-
ment values of all measured process variables. The
explicit forms of these evaluation functions can be
identified with the procedures described in the next
section. Assuming that such functions are available, one
should be able to compute vA

(s)’s online and then substi-
tute them into the performance function G to assess the

current operation status. On the basis of these results,
a set of binary indicator variables ys can be determined
accordingly, i.e.

where G(s) is the indicator function defined in eq 23.
The system alarm should then be generated on the

basis of these indicators. The logic for setting off the
alarm can be explicitly expressed with an alarm func-
tion f(y), i.e.

where y ) [y1, y2, ..., yNA]T.
Obviously, the values of the indicator variables ys may

not be consistent with the values of true state vA
t . Let

us consider the true value of the performance function,
i.e.

There are two kinds of mistakes that can be identified
accordingly; i.e., ys is set to be 1 when G t g 0 (type I
mistake) or ys is set to be 0 when G t < 0 (type II
mistake). Similarly, the mistakes committed in generat-
ing the system alarm can also be classified into types I
and II. The conditional probabilities associated with
these two mistakes, i.e., Pa and Pb, can be expressed as

Because both types of mistakes result in financial
losses, there are incentives for developing an optimal
alarm-generation logic which minimizes the expected
loss L, i.e.

where

where Ca and Cb respectively denote the losses caused
by type I and II mistakes in alarm generation. PF is the
demand probability, which is defined as the probability
of violating the constraint; i.e., PF ) Pr{G t < 0}.

It can be shown5 that the expected loss is minimized
if the alarm function is chosen such that

where

After obtaining the values of f(y) for all possible y, its
functional form can be constructed accordingly. With the

vA
t - vA

L g 0 (21a)

vA
U - vA

t g 0 (21b)

G(vA
t ) g 0 (22)

G(s) ) G(vA
(s)) s ) 1, 2, ..., NA (23)

vA
(s) ) ΨA

(s)(v) (24)

s ) 1, 2, ..., NA

ys ) [1 if G (s) < 0
0 otherwise ] (25)

f(y) ) [1 if the system is generating an alarm
0 otherwise ]

(26)

G t ) G(vA
t ) (27)

Pa ) Pr{f(y) ) 1|G t g 0} (28)

Pb ) Pr{f(y) ) 0|G t < 0} (29)

min L
f(y)

(30)

L ) Ca(1 - PF)Pa + CbPFPB (31)

f(y) ) {1 if h(y) > 0
0 if h(y) e 0 (32)

h(y) ) CbPFPr{y|G t < 0} - Ca(1 - PF)Pr{y|G t g 0}
(33)
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functional form given, the logic associated with f(y) can
be implemented as a hard-wired circuit or as a computer
program.

It should be noted that, to compute h(y) and then
construct f(y), the estimates of demand probability and
also conditional probabilities Pr{y|G t < 0} and Pr{y|G t

g 0} must be obtained first. For illustration purpose,
let us consider the constraint given in eq 21b. Using the
relation presented in eq 2, the demand probability can
be expressed as

Because the mean of the deviation ∆A is time-variant
and thus unknown, it is not possible to evaluate PF with
eq 34. On the other hand, from the assumption that the
means of measurement errors are negligible, the de-
mand probability can be estimated according to the
reconciled value of the alarm variable (v̂A), i.e.

where dA denotes the estimation error. Notice that B
and δ1 in eqs 16 and 19 must be computed each time
when a new batch of measurement data v is available
and, then, v̂A and the parameters of the probability
density function of dA can be determined accordingly.
Thus, it is necessary to evaluate PF online based on the
updated value of v̂A - vA

U with a standard look-up table
for normal probability distribution.

The computation of the conditional probabilities can
be greatly simplified if the measurement methods are
s-independent. In particular, they can be written as

where

From the definition of conditional probability, these
two parameters can be written as

Because the denominators in eqs 40 and 41 are simply
1 - PF and PF, respectively, it is thus only necessary to
develop formulas for evaluating the numerators of these
two parameters. Again, they are evaluated in this study

according to the reconciled value of the alarm variable,
i.e.

where εA
(s) represents the error of the sth evaluation

method in determining the alarm variable. It is esti-
mated in this study according to

where all partial derivatives are evaluated with mea-
surement values. Consequently, the expected value of
every εA

(s) is assumed to be very close to zero in this
work. The parameters of the joint probability density
function associated with the two random variables, dA

- εA
(s) and dA, can be obtained from the means and

variances of the measurement errors ei using eqs 20,
24, and 44. Thus, it is always possible to evaluate these
joint probabilities online by performing the numerical
integration implied in eqs 42 and 43.

Identification of Independent Evaluation
Methods

For illustration clarity, it is now necessary to divide
the measured process variables into three different
categories, i.e., the flow rates, temperatures, and con-
centrations. Specifically, let

where

In the above definitions, ml and Tl denote respectively
the measurement values of the mass flow rate and
temperature of the process stream associated with arc
l, and xli is that of the ith component’s mass fraction in
the same stream.

Let us first consider the flow alarm installed on one
particular arc, say a, in a process network. It has been
well established that all of the different ways of indi-
rectly evaluating the same mass flow are given by the

PF ) Pr{vA
t > vA

U} ) Pr{∆A > vA
U - vA

d} (34)

PF ) Pr{dA < v̂A - vA
U} (35)

Pr{y|G t g 0} ) ∏
s)1

NA

as
ys(1 - as)

1-ys (36)

Pr{y|G t < 0} ) ∏
s)1

NA

(1 - bs)
ysbs

1-ys (37)

as ) Pr{ys ) 1|G t g 0} ) Pr{vA
(s) > vA

U|vA
t e va

U} (38)

bs ) Pr{ys ) 0|G t < 0} ) Pr{vA
(s) e vA

U|vA
t > vA

U} (36)

as )
Pr{vA

(s) > vA
U, vA

t e vA
U}

Pr{vA
t e vA

U}
(40)

bs )
Pr{vA

(s) e vA
U, vA

t > vA
U}

Pr{vA
t > vA

U}
(41)

Pr{vA
(s) > vA

U, vA
t e vA

U} )

Pr{dA - εA
(s) < v̂A - vA

U, dA g v̂A - vA
U} (42)

Pr{vA
(s) e vA

U, vA
t > vA

U} )

Pr{dA - εA
(s) g v̂A - vA

U, dA < v̂A - vA
U} (43)

εA
(s) ) ∑

i)1

NV-U ∂ΨA
(s)

∂vi

ei (44)

s ) 1, 2, ..., NA

V ) {M, T, X1, ..., XC} (45)

V ) {vj|j ) 1, 2, ..., NV - U} (46)

M ) {ml|l is the label of an arc on which
a flow sensor is installed} (47)

T ) {Tl|l is the label of an arc which
a temperature sensor is installed} (48)

Xi ) {xli|l is the label of an arc on which
a sensor is installed to measure the

concentration of component i} (49)
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cut sets that contain arc a in which the mass flow of
every other arc is measured.10,11 However, because some
of the elements may appear in more than two of these
cut sets, the corresponding evaluation methods are
statistically dependent. Consequently, it is necessary to
select out cut sets that do not contain common arcs other
than a. Tsai and Chang5 proposed a simple digraph-
based procedure to perform this task. For the sake of
completeness, this procedure (algorithm I) is outlined
below:

1. Consider the original process network. Merge the
input and output nodes of every arc on which the flow
sensor is not installed. Let the resulting process graph
be the current digraph and also i ) 1.

2. Find a cut set K(i) of the current digraph which
contains arc a.

3. Merge the input and output nodes of every arc in
K(i) except those of arc a. Let the resulting graph be
the current digraph and i ) i + 1.

4. Repeat steps 2 and 3 until arc a itself forms a loop.
It should be noted that the sets K(i) (i ) 1, 2, ...)

obtained with algorithm I may not be unique. This is
due to the fact that more than one cut set can usually
be found in any given graph. Conceivably, other candi-
date measurement methods may be identified if differ-
ent cut sets are adopted in step 2.

Let us next consider a similar problem concerning the
temperature alarm on arc a. Notice that the connection
between the cut sets and the evaluation methods in a
mass-flow network is still valid in an energy-flow
network. On the basis of this insight, a systematic
procedure (algorithm II) has been developed to identify
a set of independent temperature evaluation methods.
This procedure and a simple illustration example are
presented in the appendix. Finally, it should be noted
that, without reactors and splitters, the equation form
of component-flow constraint in a process network is
also identical to that of mass-flow or energy-flow
constraint. Consequently, a second modified version of
algorithm I can be developed to identify indirect inde-
pendent concentration (or component flow) evaluation
methods.12 For the sake of brevity, the description of
this last procedure is not repeated in this paper.

Application Example

Let us consider the process network in Figure 1
representing a simplified ammonia process.13 This
network consists of six nodes and eight arcs, with node

E denoting the environment and nodes 1-5 the major
units. Under normal operating conditions, it is assumed
that the system is at its original steady state and can
be described with the parameters presented in Tables
1 and 2. The statistical parameters associated with the
true temperature of every stream can be found in the
second and third columns of Table 1, and those of the
true flow rate are presented in Table 2. As mentioned
previously, the difference between the true value of a
process variable and its design value is treated in this
work as a random variable with zero mean during
normal operation. Thus, the mean values listed in
Tables 1 and 2 are also used as the design values in
the present example. In this process network, the
temperature and flow rate of every arc are measured
except T8, m3, and m5. Each of them is measured with
one sensor only. The variance of each measurement
error can also be found in Tables 1 and 2.

The reconciled values of temperatures and flow rates
can be obtained with eq 16. Because the unknown
parameters in η do not exist in this case, the vector and
matrices used to compute B and δ1 in this equation were
chosen to be

and

Figure 1. Example to illustrate the procedure for identifying
independent evaluation methods: the process network.

Table 1. Statistical Parameters of Temperatures under
Normal Operating Conditions

stream no. (j) E[Tj
t] Var[Tj

t] Var[eTj]

1 268.0 18.6 4.65
2 268.0 18.6 4.65
3 268.0 18.6 4.65
4 238.1 15.1 3.77
5 312.9 116.2 29.0
6 229.8 23.6 5.91
7 119.0 7.41 1.85
8 357.1 55.3 NA

Table 2. Statistical Parameters of Flow Rates under
Normal Operating Conditions

stream no. (j) E[mj
t] Var[mj

t] Var[emj]

1 34.3 0.17 0.042
2 34.3 0.17 0.042
3 34.3 0.17 NA
4 20.6 0.051 0.013
5 13.7 0.16 NA
6 24.0 0.14 0.034
7 10.3 0.025 0.006
8 10.3 0.024 0.006

δ ) [m8 + m6 - m1
m1 - m2
m2 - m3
m3 - m4 - m5
m4 - m7 - m8
m8Cp8T8 + m6Cp6T6 - m1Cp1T1
m1Cp1T1 - m2Cp2T2
m2Cp2T2 - m3Cp3T3
m3Cp3T3 - m4Cp4T4 - m5Cp5T5
m4Cp4T4 - m7Cp7T7 - m8Cp8T8

] (50)

A(11) ) [A11
(11) 0

A21
(11) A22

(11) ] (51)

T ) [T11 0 T13
T21 T22 T23 ] (52)
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where 0 denotes a zero matrix of appropriate dimension
and

In the present example, it is assumed that an alarm
system must be installed on arc 1 to protect against the
detrimental outcomes caused by high temperature. The
threshold limit T1

U selected in the simulation studies
is 277.9 K. The first independent evaluation method is
naturally associated with the temperature sensor for
directly measuring arc 1; i.e., when s ) 1,

The other independent evaluation methods were
identified with the proposed search procedure. Specif-
ically,

To synthesize the optimal alarm logic online, one
must be able to evaluate the conditional probabilities,
as and bs, with eqs 40 and 41. Consequently, the
parameters in the probability density function (pdf) of
estimation error dT1 and the joint pdf’s of dT1 and dT1 -
εT1

(s) (s ) 1-3) should be determined in advance. Notice
that the means and variances of dT1 and εT1

(s) can be
estimated according to eqs 20 and 44, respectively. As
a result, the parameters of the above pdf’s can be
determined with the data given in Tables 1 and 2.

The effectiveness and resilience of the proposed
alarm-generating strategy can be demonstrated with
simulation studies. The variation in temperature T1

t

due to an unknown fault was first simulated. Initially,
E[T1

t ] was kept at its design value, i.e., 268.0 K. The
fault occurs at time 800∆t, and ∆t is the sampling
interval. As a result, the mean temperature of arc 1
increases gradually and reaches a new steady level of
278.0 K after time 1200∆t. The random number genera-
tor RONNA in IMSL was used for producing the values
of (T1

t - E[T1
t ]). The mean of this random variable is

zero, and its variance is the same as Var[T1
t ] (see Table

1). Finally, the values of true temperatures of arc 1 were
computed by adding the E[T1

t ]’s and (T1
t - E[T1

t ])’s. The
simulation data of all other temperatures and flow rates
were generated in such a way that the constraint of
material and energy balances is always maintained at
each node in the process network. A total of 2000 sets
of data have been generated in this case. Only half of
them, i.e., from sample no. 500 to no. 1500, are shown
in Figure 2.

Next, the measurement values were simulated. This
was done by adding the measurement errors to the
corresponding true temperatures and flow rates. The
values of measurement errors were again created with
a random number generator. Using the measurement

A11
(11) ) [0 +1 +1

0 0 0
0 0 0
-1 0 0
+1 0 -1

] (53)

A21
(11) ) [0 Cp6T6 Cp8T8

0 0 0
0 0 0
-Cp4T4 0 0
Cp4T4 0 -Cp8T8

] (54)

A22
(11) ) [0 0 Cp6m6

0 0 0
-Cp3m3 0 0
Cp3m3 -Cp5m5 0
0 0 0

] (55)

T11 ) [-1 0 0
+1 -1 0
0 +1 0
0 0 0
0 0 -1

] (56)

T13 ) [0 0 0
0 0 0
-1 0 0
+1 -1 0
+1 0 0

] (57)

T21 ) [-Cp1T1 0 0
Cp1T1 -Cp2T2 0
0 Cp2T2 0
0 0 0
0 0 -Cp7T7

] (58)

T22 ) [-Cp1m1 0 0 0
Cp1m1 -Cp2m2 0 0
0 Cp2m2 0 0
0 0 -Cp4m4 0
0 0 Cp4m4 -Cp7m7

] (59)

T23 ) [0 0 Cp8m8

0 0 0
-Cp3T3 0 0
Cp3T3 -Cp5T5 0
0 0 -Cp8m8

] (60)

T1
(1) ) ΨT1

(1)(T1) ) T1 (61)

Figure 2. Simulation results of the true temperature T1
t in the

application example.

T1
(2) ) ΨT1

(2)(T4,T6,T7;m1,m4,m6,m7) )
m4Cp4T4 + m6Cp6T6 - m7Cp7T7

m1Cp1
(62)

T1
(3) ) ΨT1

(3)(T2) ) Cp2T2/Cp1 (63)
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data, one can then compute the reconciled temperatures
and flow rates with eq 16. A sample of the simulation
results of T̂1 is presented in Figure 3.

In this study, the traditional approach, i.e., using the
raw temperature measurement data on arc 1, was taken
first to set off the alarm. The proportions of type I and
II mistakes in this case were determined to be 0.068 97
and 0.081 82, respectively. On the other hand, by
adoption of the reconciled data as the basis for alarm
generation, it was found that the chances of making
these mistakes can be lowered significantly to 4.138%
(type I) and 3.636% (type II).

Each time a new set of measurement data and the
corresponding reconciled temperatures and flow rates
are obtained, an optimal alarm logic can be constructed
online with the proposed synthesis procedure. The time
needed to construct one of these logics was found to be
less than 1 s on a Pentium PC. A sample of the alarm
function f(y) for the present example is presented in
Table 3. To implement the implied alarm-generation
strategy, values of T1

(s) (s ) 1-3) must also be deter-
mined with the three independent methods given in eqs
61-63. These values are plotted in Figures 4-6, re-
spectively. The results of adopting the proposed alarm
policy (approach B) with different Cb/Ca ratios are
summarized in Table 4. In particular, the proportions
of type I and II mistakes are presented in this table.
For comparison purpose, the results of using only the
direct measurement data (the traditional approach) and
the reconciled data (approach A) are also included. From

these results, it is clear that the proposed alarm system
is superior in the sense that the corresponding loss due
to misjudgment reaches a minimum. Notice also that
type II mistakes can be reduced to a negligible level by
increasing the Cb/Ca ratio. This is usually the first
priority in most cases because the purpose for installing
an alarm is almost always to protect against certain
catastrophic consequences.

On the other hand, it should be noted that the impact
of sensor malfunctions has not yet been assessed in the
above simulation studies. Because of the fact that more
independent evaluation methods are adopted for alarm-
generation purposes, we believe the proposed strategy
should still outperform the traditional practice even

Figure 3. Simulation results of the reconciled temperature T̂1 in
the application example.

Figure 4. Simulation results of the temperature T1
(1) obtained

with the first evaluation method.

Figure 5. Simulation results of the temperature T1
(2) obtained

with the second evaluation method.

Table 3. Optimal Alarm Functions at Different Time
Intervals

sample
no. f(0,0,0) f(0,0,1) f(0,1,0) f(1,0,0) f(0,1,1) f(1,0,1) f(1,1,0) f(1,1,1)

810 0 0 0 0 0 0 0 1
820 0 0 0 0 1 0 0 1
830 0 0 0 0 0 0 0 1
840 0 0 0 0 0 0 0 1
850 0 0 0 0 0 0 0 1
860 0 0 0 0 0 0 0 1
870 0 0 1 0 1 0 1 1
880 0 0 1 0 1 0 1 1
890 0 0 0 0 0 0 0 1
900 0 0 1 0 1 0 1 1
910 1 1 1 1 1 1 1 1
920 0 0 0 0 0 0 0 1
930 0 0 0 0 0 0 0 1
940 0 0 0 0 0 0 0 1
950 0 0 1 0 1 0 1 1
960 0 0 0 0 0 0 0 1
970 1 1 1 1 1 1 1 1
980 0 0 0 0 1 0 0 1
990 1 1 1 1 1 1 1 1

1000 1 1 1 1 1 1 1 1
1010 0 0 0 0 0 0 0 1
1020 0 0 0 0 0 0 0 1
1030 0 0 0 0 0 0 0 1
1040 0 0 0 0 0 0 0 1
1050 0 0 0 0 1 0 0 1
1060 1 1 1 1 1 1 1 1
1070 1 1 1 1 1 1 1 1
1080 0 0 0 0 1 0 0 1
1090 1 1 1 1 1 1 1 1
1100 1 1 1 1 1 1 1 1
1110 1 1 1 1 1 1 1 1
1120 0 0 0 0 0 0 0 1
1130 0 0 0 0 0 0 0 1
1140 0 0 1 0 1 0 1 1
1150 1 1 1 1 1 1 1 1
1160 0 0 0 0 1 0 0 1
1170 1 1 1 1 1 1 1 1
1180 0 0 0 0 0 0 0 1
1190 0 0 0 0 0 0 0 1
1200 1 1 1 1 1 1 1 1
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under the influence of gross errors. Additional simula-
tion studies were thus carried out to verify this asser-
tion. The results of several typical scenarios concerning
the temperature alarm on stream 1 are summarized in
Table 5. A brief description of these case studies is
presented in the sequel:

Case 1: The measurement value T3 remained “nor-
mal” when the true value of alarm variable T1

t ex-
ceeded the threshold limit.

The simulated true values of the process variables
associated with Figure 2 have been adopted in this case.
Here we assumed that the temperature sensor installed
on arc 3 was out of order. More specifically, the mean
of the measurement value T3 stayed at 268.0 K when
disturbance occurred. Naturally, the traditional ap-
proach was unaffected because the temperature sensor
on stream 1 still functioned properly. On the other hand,
the estimated temperature T̂1 should be inaccurate
because of the fact that all measurements were used in
the reconciliation calculation. Thus, the proportion of
type II mistakes became unacceptably high in the
results obtained by implementing approach A. Finally,
notice that the measurement value T3 was not used in
the three independent evaluation methods, i.e., eqs 61-
63. Consequently, the chance of type II mistakes was
reduced to a very low level.

Case 2: The measurement value T1 remained “nor-
mal” when the true value of alarm variable T1

t ex-
ceeded the threshold limit.

The simulated true values of the process variables
adopted in the present case were the same as before.
The temperature sensor on a different arc, i.e., arc 1,
was assumed to be malfunctioning. Because the direct
measurement value T1 was incorrect, the estimated
temperature of stream 1, T̂1, became inaccurate. As a
result, the alarm systems built by the first two methods,
i.e., the traditional approach and approach A, performed
poorly. On the other hand, notice that T1 was used in
only one of the three independent evaluation functions,
i.e., ΨT1

(1). Consequently, type II mistakes were still
significantly lowered by implementing approach B.

Case 3: The measurement value T1 was biased when
the true value of alarm variable T1

t was still within the
acceptable range.

In this case, all process variables were assumed to
be within acceptable ranges. During operation, a failure
in the temperature sensor on stream 1 developed and
the corresponding measurement values increased sig-
nificantly as shown in Figure 7. Consequently, the
proportion of type I mistakes was exceedingly high in
the simulation results obtained by applying the tradi-
tional approach. Notice that a large number of type I
mistakes can be removed by implementing either ap-
proach A or approach B. The results associated with
approach A were somewhat better. This is due to the
fact that a high Cb/Ca ratio (25) was adopted in the
alarm system synthesized by approach B. In other
words, the main emphasis of the corresponding logic was
placed upon avoiding type II errors.

Finally, case studies designed to test the flow alarm
on stream 1 were also performed. The design value of
the alarm variable, m1

d, and its lower limit, m1
L, were

chosen to be 34.3 and 33.5 kg/h, respectively. Three
independent evaluation methods were adopted, i.e.

A similar procedure was followed to generate the
simulation data. For the sake of brevity, a detailed

Figure 6. Simulation results of the temperature T1
(3) obtained

with the third evaluation method.

Table 4. Performance of the Optimal Temperature
Alarm Strategy When All Sensors Function Properly

proportion of mistake

alarm strategies Cb/Ca type I type II

traditional 0.068 97 0.081 82
approach A 0.041 38 0.036 36

10.0 0.093 10 0.018 18
25.0 0.127 59 0.009 09

approach B 40.0 0.141 38 0.009 09
60.0 0.141 38 0.009 09

100.0 0.155 17 0.000 00

Table 5. Performance of the Optimal Alarm Strategy
under the Influence of Sensor Malfunctions

case no. alarm strategy mistake type proportion

traditional II 0.081 82
1 approach A II 0.327 27

approach B (Cb/Ca ) 25) II 0.081 82
traditional II 0.945 45

2 approach A II 0.327 27
approach B (Cb/Ca ) 25) II 0.081 82
traditional I 0.711 39

3 approach A I 0.101 27
approach B (Cb/Ca ) 25) I 0.154 43

Figure 7. Simulation results of the temperature measurement
T1 due to sensor malfunction.

m1
(1) ) m1 (64)

m1
(2) ) m6 + m8 (65)

m1
(3) ) m4 + m5 (66)
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description of this procedure is not provided in this
paper. Two scenarios were considered:

Case 1: The measurement values of m1 and m3
remain “normal” when the true value of alarm variable
m1

t exceeds the threshold limit.
Case 2: The measurement values of m3 remain

“normal” when the true value of alarm variable m1
t

exceeds the threshold limit.
The results of these case studies are presented in

Table 6. One can see clearly that approach B performs
better than the other two methods in all scenarios.

Conclusions

From the above discussions, it is clear that the
proposed alarm-logic design strategy is indeed superior
to any of the existing techniques. The resulting alarm
system is not only optimal but also resilient. These
desirable features are brought about mainly by inte-
grating the intrinsic characteristics of process network,
i.e., the hardware and spatial redundancy, into system
design. Furthermore, from experiences obtained in
solving the example problem, one can also conclude that
the demand for online computation is reasonable espe-
cially when the sampling interval is in the range of
seconds or longer.

Acknowledgment

This work is supported by the National Science
Council of the ROC government under Grant NSC88-
2214-E006-013.

Appendix: Algorithm II

The detailed steps in algorithm II are described in
the sequel:

1. Let temperature be the current variable and arc a
be the current arc.

2. Consider the original process network. Merge the
input and output nodes of every arc on which the
current variable is unmeasured. Let the resulting graph
be the current digraph and also i ) 1.

3. Find a cut set KT
(i) of the current digraph which

contains the current arc.
4. Merge the input and output nodes of every arc in

KT
(i) except those of the current arc. Let the result be

the current digraph and i ) i + 1.
5. Repeat steps 3 and 4 until the current arc itself

forms a loop. Let NT ) i - 1.

6. Let i ) 1 and j ) 1. Let flow rate be the current
variable.

7. Consider the original process network again. Merge
the input and output nodes of every arc in KT

(k) (k ) 1,
2, ..., i - 1, i + 1, ..., NT) and in KM

(p,q) (p ) 1, 2, ..., i -
1 and q ) 1, 2, ...). Then merge the input and output
nodes of the arcs without flow sensors. Let the result
be the current digraph.

8. If i > 2 and j ) 1, let arc a be the current arc and
go to step 10.

9. Select an arc in KT
(i) on which the flow sensor is not

installed. Let it be the current arc.
10. Recover the current arc from the current digraph;

i.e., expand the corresponding merged nodes to their
original configuration. Let the result be the new current
graph.

11. Identify from the current digraph a cut set KM
(i,j)

that contains the current arc.
12. Merge the input and output nodes of every arc in

KM
(i,j). Let the result be the current digraph and j ) j +

1.
13. Repeat steps 9-12 until all arcs with unmeasured

flow rate in KT
(i) are exhausted.

14. Let i ) i +1 and j ) 1. Repeat steps 7-13 until i
) NT.

The following example is prepared to facilitate un-
derstanding of the above procedure:

Example. The ammonia process is presented in
Figure 1. It is assumed in this example that all process
variables are measured except the temperature of arc
5 and the flow rates of arcs 4 and 6. Let us also assume
that the temperature of arc 1 is the alarm variable in
this problem.

First of all, one can obviously determine this temper-
ature with the temperature sensor installed on arc 1,
i.e.

where T1 is the measurement value of T1
t and ΨT1

(1)

denotes an evaluation function which represents the
first method to evaluate the temperature of arc 1. On
the other hand, several independent indirect methods
can be identified with the following steps:

Step 1: Let the temperature be the current variable
and arc 1 be the current arc.

Step 2: Merge the input and output nodes of arc 5 to
form the current digraph in Figure 8. Let i ) 1.

Table 6. Performance of the Optimal Flow Alarm
Strategy under the Influence of Sensor Malfunctions

case no. alarm strategy
proportion of

type II mistakes

traditional 0.936 17
1 approach A 0.851 06

approach B (Cb/Ca ) 25) 0.329 79
traditional 0.255 32

2 approach A 0.553 19
approach B (Cb/Ca ) 25) 0.117 02

Figure 8. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the current di-
graph obtained in step 2.

T1
(1) ) ΨT1

(1)(T1) ) T1 (A1)
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Step 3: Identify a cut set from Figure 8 which
contains arc 1, i.e., KT

(1) ) {1, 6, 8}.
Step 4: Merge the input and output nodes of every

arc in KT
(1) except those of arc 1. Let the result be the

current digraph (see Figure 9) and i ) 2.
Step 5:
(a) Repeat step 3 and find the cut set KT

(2) ) {1, 2}.
(b) Repeat step 4 to form a new current digraph

(Figure 10). Let i ) 3.
Step 5:
(a) Repeat step 3 and find the cut set KT

(3).
(b) Repeat step 4 to form a new current digraph

(Figure 11). Let i ) 4.
Because arc 1 itself forms a loop in Figure 11, step 6

should be executed next. The value of NT should be 3.
Step 6: Let i ) 1, j ) 1, and the flow rate be the

current variable.
Step 7: Merge the input and output nodes of arcs 1-4

and 6 to form the current digraph presented in Figure
12.

Step 8: Because i ) 1 and j ) 1, the present step
should be skipped.

Step 9: Because the flow rate of arc 6 in KT
(1) is not

measured, assign it to be the current arc.

Step 10: Recover arc 6 to form the current digraph
in Figure 13.

Step 11: Identify a cut set from Figure 13, i.e., KM
(1,1).

Step 12: Merge the input and output nodes of every
arc in KM

(1,1). Let the result be the current digraph
(Figure 14) and j ) 2.

Step 13: Because there are no other unmeasured arcs
in KT

(1), step 14 should be carried out next.
Step 14: i ) 2 and j ) 1.
(a) Repeat step 7. Merge arcs 1 and 3-8 to form

Figure 15.
(b) Repeat step 8. Arc 1 should be the current arc.
(c) Repeat step 10. Recover arc 1 to form the current

digraph in Figure 16.
(d) Repeat steps 11 and 12. A cut set can be identi-

fied: KM
(2,1) ) {1, 2}.

Step 12: i ) 3 and j ) 1.
(a) Repeat step 7. Merge arcs 1, 2, and 4-8 to form

Figure 17.

Figure 9. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the first current
digraph obtained in step 4.

Figure 10. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the second current
digraph obtained in step 4.

Figure 11. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the third current
digraph obtained in step 4.

Figure 12. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the first current
digraph obtained in step 7.

Figure 13. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the first current
digraph obtained in step 10.

Figure 14. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the current di-
graph obtained in step 12.

Figure 15. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the second current
digraph obtained in step 7.
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(b) Repeat step 8. Arc 1 should be the current arc.
(c) Repeat step 10. Recover arc 1 to form the current

digraph in Figure 18.
(d) Repeat steps 11 and 12. A cut set can be identi-

fied: KM
(2,1) ) {1, 3}.

Because i ) NT ) 3, the procedure can be terminated.
From cut sets KT

(1) and KM
(1,1), one can obtain the

second method for computing T1
t , i.e.

where T0 is a reference temperature. In addition, from
the sets KT

(2), KM
(2,1), KT

(3), and KM
(3,1), the third and fourth

formulas can be identified:
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Figure 16. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the second current
digraph obtained in step 10.

Figure 17. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the third current
digraph obtained in step 7.

Figure 18. Example to illustrate the procedure for identifying
independent temperature evaluation methods: the third current
digraph obtained in step 10.

T1
(2) ) ΨT1

(2)(T6,T8;m1,m5,m7,m8) ) T0 +
1

m1Cp1
[(m5 + m7)Cp6(T6 - T0) + m8Cp8(T8 - T0)]

(A2)

T1
(3) ) ΨT1

(3)(T2;m2)

) T0 +
m2Cp2

m2Cp1
(T2 - T0)

) T0 +
Cp2

Cp1
(T2 - T0) (A3)

T1
(4) ) ΨT1

(4)(T3;m3)

) T0 +
m3Cp3

m3Cp1
(T3 - T0)

) T0 +
Cp3

Cp1
(T3 - T0) (A4)
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