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Abstract

Based upon the proposition that the roles of inputs and outputs in a physical system and those in the corresponding output-
injection observer do not really have to be consistent, a systematic procedure is developed in this work to properly divide a set of
sparse system models and measurement models into a number of independent subsets with the help of a visual aid. Several smaller
sub-observers can then be constructed accordingly to replace the original one. The size of each sub-observer may be further reduced
by strategically selecting one or more appended states. These techniques are shown to be quite effective in relieving on-line com-
putation load of the output-injection observers and also in identifying detectable sub-systems. © 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

In system identification and fault monitoring applica-
tions, one is often confronted with the problem that
some key states and non-stationary parameters (or dis-
turbances) cannot be measured on-line. On the other
hand, the system and measurement models of many
chemical processes are actually well known. In this
situation, an observer or state estimator is usually
adopted for the purpose of estimating these unmeasured
process variables [1-6]. In general, an observer consists
of two parts: (1) a mathematical model of the physical,
chemical and measurement processes under study and
(2) a correction mechanism that makes use of the output
errors. Since the outputs are ‘injected’ back to produce
estimates, these observers are also referred to as the
output-injection observers [7].

The observer model certainly should be an accurate
and complete description of the real system. However,
for the large-scale chemical processes, there are genuine
incentives to replace the full-size observer with several
smaller ones. First of all, one may not be interested in
the estimation of every process state and parameter.
Thus, it is computationally more efficient to implement
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only a subset of the decomposed sub-observers. Fur-
thermore, this practice may even create opportunities
for identifying detectable subsystems from an overall
undetectable system. Finally, it should be noted that a
realistic system model is often nonlinear and/or sto-
chastic in nature. A matrix Riccati differential equation
must be solved if the popular extended Kalman filter is
used for such applications. In this case, the on-line
computation load for numerical integration can be
reduced significantly by using the smaller observer
models.

A simple graphic procedure is proposed in this paper
to decompose any output-injection observer on the
basis of model structure. Notice first that the estimates
of an observer are produced with on-line measurement
data of the inputs and outputs which are defined impli-
citly by the observer model. In this study, it is claimed
that the classification of these measurement signals does
not have to be consistent with their roles in the real
system. Consequently, it is possible to construct simpler
sub-observers by strategically selecting various different
combinations of measurements as inputs and outputs
according to the model structure of the open-loop
observer. Secondly, it should be noted that, by properly
choosing appended states in an observer, the on-line
computation demand can also be reduced. In the past,
the appended states were used mainly for estimating the
unknown disturbances [2,5]. However, if a real state is
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Nomenclature
A; the cross-sectional area of the tank i (Example 9.1).
cl; the parameter that characterizes tank 7 leaks (Example 9.1).
d; the diameter of pipeline i/ (Example 9.1).
fi the friction factor for the flow in pipeline i (Example 9.1).
Fy flow rate of phase I (Application Example).
Fy, F>, F5 flow rates of phase II (Application Example).
h; the height of liquid level in tank i (Example 9.1).
[; the length of pipeline i (Example 9.1).
ki, k> reaction-rate constants in reactor 1 and 2 (Application Example).
K, K, adjustable constants in the level controller of evaporator (Application Example).
qi the volumetric flow rate in pipeline i (Example 9.1).
S cross-sectional area of the evaporator (Application Example).
t time.
X concentration of B entering reactor Ry (X = F“%f‘”) (Application Example).
X reference value of X (Application Example).
Xo entering concentration of B in phase II (Application Example).
Y concentration of A entering reactor 1 (Application Example).
Yo entering concentration of A in phase I (Application Example).
w flow rate of vapor from the evaporator (Application Example).
V total volume of reactors 1 and 2 (Application Example).
Vo total volume of liquid in the evaporator and in the heat exchanger E3 (Application Example).
Vs volume of heat exchanger E, (Application Example).
vV’ total volume of decanters 1 and 2 (Application Example).
V', V'5  volume of the individual decanter (V';=1V",=1V"/2) (Application Example).
o the density of liquid (Example 9.1).
o volume fraction occupied by phase II in each reactor (Application Example).
a, B constants in the model of evaporator (xs=a; x5+ 8) (Application Example).
A variation from the reference level in the evaporator (Application Example).
& concentration of B leaving exchanger E, (Application Example).
T time constant of the multifunctional controller (Application Example).

artificially treated as an appended state, the governing
equations of this state and those affecting it can essen-
tially be removed from the observer model. Thus, a
smaller observer can be identified with this approach.

It should also be noted that the above sub-observers
are not the same as the reduced-order observers [8—11].
In fact, each sub-observer may be further converted to a
reduced-order observer to improve computation effi-
ciency. The outputs of the decomposed sub-observers
are essentially the estimates of a complete set of states of
the overall system. On the other hand, the system states
must be reconstructed from the outputs of a reduced-
order observer. The number of these outputs is the dif-
ference between the number of states and that of the
measurements [8,9]. Since the reduced-order observer is
well known, a detailed discussion concerning its appli-
cations after observer decomposition is not provided in
this paper.

In order to relieve the on-line computation effort as
much as possible, the main emphasis of this study is
placed upon the development a simple approach to
decompose any output-injection observer into the max-
imum number of sub-observers. The proposed tech-
niques are first developed on the basis of a thorough
analysis of the roles of inputs, outputs and appended
states in linear deterministic observers. These techniques
can be implemented with the help of a visual aid, i.e. the
modified state diagram. Since the suggested graphic
manipulations involve only role-switching operations of
inputs and outputs in the observer models, the same
approach can be readily extended to the nonlinear sto-
chastic systems without modifications. Although the
issue of detectability is not addressed in the present
paper, the feasibility and effectiveness of the decom-
position procedure are demonstrated with a series of
simple examples and a realistic case study.
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2. The interchangeable roles of inputs and outputs in
an observer

Let us consider a system model and the corresponding
measurement model in the following general form:

X = Ax +Bu+Dd 2.1)

y = Cx (22)

where x € R” denotes the vector of state variables; y €
R™ denotes the vector of system outputs; u € R” repre-
sents the system inputs; d € R? is the vector of unmea-
sured deterministic disturbances; A, B, C and D are
constant matrices and they are assumed to be available.
Further, we assume that ¢ <m<n and, for convenience,
let p=m.

The most common approach to construct an output-
injection observer to estimate both states and dis-
turbances is to treat the disturbances as appended states
and augment the results with system Eq. (2.1), i.e.

X = AX + Bu (2.3)

where X = [deT]T and

- [A D
A:[O o} (2.4)

- B
8- [*] e

The measurement model (2.2) can also be trans-
formed into the following form:

y = HX (2.6)
where
H= [C 0] 2.7)

The output-injection observer for this augmented
open-loop system can then be formulated accordingly,
ie.

>

i=Ai+L(sy—Hi)+Bs, (2.8)

where Z=[z1z]]" is a vector of state and disturbance
estimates; L is the output-injection matrix of dimension
(n+q)xm; sy and s, denote the vectors of measurement
signals used in the observer as systems outputs and
inputs respectively. In the present case, s,=y and s, =u.

Notice that the observer design problem is essentially
concerned with the task of selecting the proper L so that
the estimation errors vanish quickly. The transient

behavior of the estimation errors can be described with
an equation obtained by subtracting Eq. (2.3) from Eq.
(2.8), i.e.

§=7—-%X=|A—LH|¢ (2.9)
|4 - L]

From Eq. (2.9), it is clear that, as long as we select L
so that the system is stable, i.e. all eigenvalues of the
observer system matrix

A,=A-LH (2.10)

are on the left-hand plane, the estimation errors will
vanish with time for any initial guess of X.

As claimed before, the classification of measurement
signals in an observer does not really have to be con-
sistent with the roles of inputs and outputs in the real
system. The implications of this practice are analyzed in
detail next. For convenience, let us consider a physical
system with no measured inputs u, i.e. u=0 in Eq. (2.1).
This assumption will simplify the equations, but does
not represent any fundamental limitation. We can then
classify the outputs into two groups, i.e.

y = (?) @.11)

in which s, € R”™" is treated as the output vector and s,
€ R’ as the input in the observer. The measurement
model (2.2) can be written as

Sy Ciu Cin|fxi

= 2.12
where the state vector x is broken down to two compo-
nents, X; and X,, so that C,, is a nonsingular rxr

matrix. The open-loop system model (2.1) can then be
formulated accordingly:

d (x A Ap |(xi D,

— = d 2.13

dt(Xz) |:A21 An{x) T D, (13)
One can solve the lower half of Eq. (2.12) for x, and

substitute it into its upper half and also into Eq. (2.13)

to yield

sy = (Ci1 — C12C5 Cap)x1 + C1aCyy's, (2.14)

X1 = (A1l — ApCy Co1)x; + A1pCsy's, + Did (2.15)

X2 = (A21 — AnC3) Cop)x| + AnCsy's, + Dad  (2.16)

Since s, will be considered as an input vector and x,
can be estimated with the lower half of Eq. (2.12), Eq.
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(2.16) can be discarded as the dynamics of x, are not
needed to determine the dynamics of x;. A smaller
observer can therefore be formulated according to Egs.
(2.14) and (2.15). Since this observer can be used only to
produce the estimates of x;, it is referred to as a partial
observer. Let us now consider the observer system
matrix for the partial observer:

A'-L'H =

Ay —L,Cy — (A —L',Cp)C3'Cyp Dy 2.17)

—L/4(C1y — C12C5' Cay) 0 '
where
A — | An — ApC3;'Cy Dy (2.18)
0 0

H =[C;; - CxCx;Cy 0] (2.19)
and the output-injection matrix is written as

o | Lx
L' = [L’J (2.20)

If we had not performed the elimination of x, stated
above, the observer system matrix for the original sys-
tem, i.e. Egs. (2.12) and (2.13) with the disturbances
appended, can be written as

A-TH =

A =L Ci—L'12Cy Dy Ap—L/1Cp—L'1pCx

—L'5C11 —L'»Cy 0 —L'5Cp—L'nCy

Ao —L'31C1—L'3Cy; Dy Ap—L/3C1p—L'3Cx

2.21)

where

_ [An DI Ap

X=lo o o (2.22)
| A1 Dy Anp

- [C;1 0 Cpp

H = 2.23
| C 0 sz} 223

o [Un Ly

/=Ly Ly (2.24)
| L's1 L'y

If we assign

L';,=L, (2.25)

L' =(Ap + L Cpn)Cs (2.26)

L'y =L (2.27)
L'» = -L',C»Cy) (2.28)
then the following results can be obtained:

Fovw= | MG E e e
Ap —L'11Cp —L'1pCp =0 (2.30)
—L'5Cip —L'»Cyn =0 (2.31)

Based on the above results, it can be concluded that
the error dynamics associated with x; and d in the ori-
ginal full-size observer based on Eqgs. (2.12) and (2.13)
can always be made to be identical to that in the partial
observer based on Egs. (2.14) and (2.15) and, at the
same time, independent of the estimation errors of X».
Also, it is clear that various different partial observers
can be constructed according to different selections of's,,
and s,,.

3. Decomposition of sparse systems

In many large-scale engineering applications matrices
A, B and D are sparse and the rows and columns of C
can be rearranged to yield the following form:

c=[0 %] (3.1)

where ¥ is a diagonal matrix. As a result, it is often
possible to identify a set of sub-observers to replace the
original one by strategically classifying the measurement
signals. Let us use a simple example to demonstrate
such a possibility.

Example 3.1. Consider an open-loop system defined
by the following matrices

r0 -1 0 0
oL | 0004 03652 —0.004 0
0 1 0 -1
) 0 0004 —0.3652
m1.174 0
Do 0 0
0 —0.8301
i 0 0

and also assume that there is no measured inputs u. The
measurement matrix used here is
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01 00
C= [0 0 1 O]
In this example, the symbols

x=[x x x3 x4]T
v=[n »n]

and

d=[d ]

represent states, measurements and disturbances
respectively.

First, let us adopt the following classification
Sy =)YV1 Su=)2

The submatrices of the measurement matrix C can be
partitioned by selecting

x1=[x x x4]T Xy = [x3]”

That is
Chi=[0 1 0 Cp=][0]
Cy=[0 0 0] Cn=[1]

On the basis of above classification, we can find

0 -1 0
A —ApCyH'Cy = | 0.004 —0.3652 0
0 0 —0.3652
0
ApCy) = | —0.004
0.004 |
~1.174 0
D = 0 0
0 0

Ci; —CpCyCy=[0 1 0]
C,C5; =[0]

From the above results, it is clear that the trans-
formed system is decoupled into two smaller ones, i.e.
{x1, x»} and {x4}. Notice that only the first subsystem is
detectable. Its system model can be written as

g X1\ _ 0 -1 X1 + 0
dar\xo ) = 10004 —0.3652 |\ x, —0.004 |

—1.174
[T Ja

and the measurement model is:
L X1
s, =0 1]<x2>

Thus, this sub-observer can be used to estimate xi, x,
and d; only. On the other hand, if we adopt the alter-
native classification, i.e.

Sy =Y2 Su=)J)1

then the following models can be used as the basis for
estimating x3, x4 and ds:

d <x3>_[0 -1 ](x3>+[1] +[—0.8301]d

dr\xs) T L0004 —03652 ]\ x, o™ 0 2
X3

s,=[1 0]

e

From the above example, one can see that each sub-
observer can be used to estimate only a subset of the
original states and disturbances. However, if all the sub-
observers are implemented on-line, every variable can
still be traced satisfactorily, There are several incentives
to decompose the system. For example, if one is only
interested in estimating part of the states and dis-
turbances, it may be possible to ignore some of the sub-
observers. Also, the proposed technique can be utilized
to identify detectable subsystems in an undetectable
overall system. Let us again use an example to illustrate
this point.

Example 3.2. Consider the same system described in
the previous example except that there are three possible
disturbances d;, d> and d5. The corresponding coefficient
matrix is

1174 0 0
0 0 0
D= 0 —0.8301 0
0 0 —1.0926

Although the entire system is undetectable, a detect-
able subsystem can be identified by making the selection
that s,=y; and s5,=y,. This subsystem is the same as
that described in the previous example for estimating xi,
X, and d;.
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4. Decomposition strategy

Having demonstrated that it is indeed possible to
replace an output-injection observer with a set of sub-
observers, the obvious challenge next is to develop a
systematic strategy to classify the measurement signals
and then construct these observers accordingly. From
the standpoint of creating opportunities for reducing
computation load and/or identifying detectable sub-
systems, it is desirable to identify the /argest number of
subsystems. It can be observed from Eq. (2.15) that a
smallest possible partial observer can be obtained by
choosing all measurement signals as inputs. Further,
notice that this practice also nullifies the interaction
among states in the resulting sub-system as much as
possible. Despite these advantages, the corresponding
estimation scheme becomes an open-loop observer since
there are no outputs to correct the estimates. Although
this observer is not always reliable due to the presence
of unknown disturbances, useful insights can be gained
from its model structure. Following is an example:

Example 4.1. Consider again the system in Example
3.1. An open-loop observer can be constructed accord-
ing to Eq. (2.15), i.e.

() =0 a5 +[ 70 0at]G0)
L )

The discarded equations, i.e. those corresponding to
Eq. (2.16), can be written as

52\ _[0004  0](xi), [-03652 ~0.004
fC3 - 0 -1 X4 1 0
» 0 0(d
X<y2>+|:0 —0.8301]<d2>

From these results, one can see that there are actually
two independent open-loop observers, i.e. one asso-
ciated with the state x; and another with x4. However, it
should also be noted that these open-loop observers are
useless unless the values of all disturbances can be
obtained in advance. Thus, a mechanism for output
injection should be established and, specifically, at least
one measurement must be treated as s, in each of these
observers.

Let us redefine the measurement signals in the open-
loop observers, i.e. s, =y, and s, = y,. The system equa-
tion in the first open-loop observer becomes:

dx1

ds = —X2 — 1174d1

Since the observer model now contains the state x,, it
is necessary to recover the corresponding equation
which is originally discarded, i.e.
d)CQ

Fri 0.004x; — 0.3652x, — 0.004y,

One can see that the above two equations are exactly
the same as those of the first sub-observer in Example
3.1.

It should also be noted that, with the present choice of
s, and s,, it is not possible to construct an output-injec-
tion observer on the basis of the second open-loop
observer. If, however, the roles of y; and y, are swit-
ched, i.e. s,=y, and s, =y, then the other sub-observer
in Example 3.1 can be identified accordingly.

The decomposition procedure described in the above
example can be summarized with two specific steps.

e Treat all measurement signals as inputs in the
observer model. Identify an open-loop observer
corresponding to a distinct component in the
resulting system.

Let us consider the general formulation of an open-
loop observer, i.e. Eq. (2.15), together with the rest of
the system model, i.e. Eq. (2.16), obtained by treating all
measurement signals as inputs in s,. In a sparse system,
it is often possible to reorganize these equations in the
following form:

d )21 All 0 )21 131 0
—( )= A A ~' |d+ Bs, 4.1
dz (X2 ) |:A21 An J\ X2 * D, B “-1)

where X, contains the states in the observer under con-
sideration and A;; and A,, are square matrices.

e Treat the measurements of the states in the above
open-loop observer, i.e. Xy, as outputs to recover
the output-injection mechanism.

Now let’s re-classify the signals in s, in such a way
that

sL,=<§}’)= Cin 0 (’“) 4.2)
Su 0 Cx» X2

where én and 622 are two non-zero matrices. Conse-
quently, the B matrix can be partitioned accordingly:

D _ ﬁll ﬁ12:|
B=|2X P 4.3
[le Bx (4-3)

Thus, the output-injection observer for the states in X,
can be built with
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X1 = (z&n + ﬁllén)ﬁl +Did+Bs, 4.4)

as the system model and the upper half of Eq. (4.2) as
the measurement model.

Finally, note that the above two steps should be
repeated until all components and the corresponding
sub-observers are identified.

5. A visual aid

Although only simple role-switching operations of
inputs and outputs in the observer model are needed in
the above procedure, the required mathematical
manipulations are still rather cumbersome. A visual aid,
i.e. the modified state diagram, has been developed in
this study to facilitate implementation. A state diagram
is essentially a special form of digraph representing the
cause-and-effect relation of inputs, outputs, states and
their derivatives. A well-established method can be used
for converting a set of mathematical models to the state
diagram, e.g. see Kuo [12]. In this study, the standard
state diagram has been modified to simplify analysis.
Specifically,

e the nodes representing inputs and initial states
are removed, and

e the nodes representing each state and its deriva-
tives are combined.

The usefulness of such a graphic tool is demonstrated
in the following example:

Example 5.1. Once again let us consider the system in
Example 3.1. The system model and measurement
model can be converted to the state diagram presented
in Fig. 1.

In step 1 of the observer decomposition procedure,
the measurement signals y; and y, should be treated as
inputs. The corresponding state diagram can be
obtained by replacing the outward arcs of x, and x3
with ones that connect y; and y, respectively (see Fig. 2).
Furthermore, since the inputs are not included in the
modified version of state diagram, y; and y, should also

Fig. 1. State diagram of the system considered in example 5.1.

be removed (see Fig. 3). Notice that two independent
components can be identified from the above result and
two open-loop observers can be constructed accord-
ingly.

In step 2, the output-injection mechanism should be
established individually for each of the two open-loop
observers. Specifically, the measurement signals of the
state variables within each component should be used as
outputs of the corresponding observer. The resulting
state diagrams are presented in Figs. 4 and 5.

Notice that it is always possible to establish output
injection mechanism for each identified component in
the open-loop observer. This is due to our assumption
concerning the measurement model of sparse systems.
In other words, the partition of measurement matrix
described in Eq. (4.2) is always feasible if C is defined by
Eq. (3.1). Consequently, it is sufficient to construct only
the state diagram of open-loop observer, i.e. Fig. 3, and
there is no need to carry out additional steps to obtain
the diagrams for sub-observers, i.e. Figs. 4 and 5. Fur-
ther, since the nodes representing inputs are not inclu-
ded in analysis, a short-cut procedure can be utilized to
build the state diagram associated with the open-loop
observer. In particular, one can start with the state dia-
gram representing only system model and then remove
the outward arcs of the measured states.

Finally it should be noted that the minimum require-
ment for observer decomposition is the availability of
model structure only. The exact mathematical system

Fig. 3. Modified state diagram of Fig. 2.
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and measurement models are not really needed for
building a state diagram.

6. Selection of appended states

There are in general several ways that one can make
use of the appended states in an observer. As mentioned
before, a popular method to construct an output-injec-
tion observer for estimating both states and dis-
turbances is to treat the latter as appended states. Also,
one may wish to consider the measurements of the true
inputs of a physical system as outputs in the observer
due to the fact that they are noisy. This goal can be
achieved by treating the variables in u as appended
states and augmenting the resulting equation, i.e.

da

=0 (6.1)

with the Eq. (2.1) to form the governing equations of
the observers. Thus, the corresponding measurement
matrix H becomes

- H 0
a1 0] )
(4) )

Fig. 4. State diagram of a sub-observer identified in Fig. 3.

/——ww‘
{50
\ yl J

S S

—

Fig. 5. State diagram of another sub-observer identified in Fig. 3.

A similar procedure can be followed to derive the
observer system matrix. It can be shown that the esti-
mates of u can be made to converge independently and
the error dynamics of the states and disturbances can
be forced to follow that of Eq. (2.9). The detailed
derivation is omitted in this paper for the sake of
brevity.

Finally, from the discussions in the previous sections,
one can observe that the identification of decoupled
open-loop observers is a critical step in decomposing
any output-injection observer. Since the success of this
manipulation depends mainly on the inherent model
structure, the resulting sub-observers may still be too
large to be implemented on-line. This problem can
sometimes be circumvented by deliberately treating
some of the real states as appended states. More speci-
fically, the following procedure can be performed on
Eq. (2.1):

(1) remove the corresponding rows and then col-
umns of matrix A.

(2) remove the corresponding rows in matrices B
and D.

(3) insert the columns removed from A into D and
add additional elements to the vector d.

As a result, additional opportunities for system decom-
position can be identified. Let us use another simple
example to illustrate this point:

Example 6.1. Let us consider the same system descri-
bed in Example 3.1 except there is only one measure-
ment signal y and one disturbance d. In particular,

c=[1 0 0 0]

D=[0 0 —0.8301 0]

The corresponding state diagram is presented in
Fig. 6.

Since there is only one measurement signal and it is
not possible to construct an output-injection observer
without at least one output, the given system really can

Fig. 6. State diagram of the system considered in Example 6.1.
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not be decomposed by treating y as an input. However,
if x, is used as an appended state, one can obtain

% 0 0 07 /xi
fC} =10 0 —1 X3
%4 0 0.004 —0.3652 |\ x4
—1 0
+| 1 —0s8301 (;2)
0 0

The corresponding state diagram can be obtained by
removing the incoming arcs of x, (Fig. 7). Notice that
x; and x, are now unaffected by d, x3 and x4. Thus, a
smaller observer can be constructed to estimate x; and
X»o, 1.€.

X1=—Xx2 X»=0 y=x

7. Extension to stochastic systems

The extension of the proposed methods to stochastic
systems is straightforward. Let us consider the linear
case first, i.e.

% = A% + Bu+ Go (7.1)
y=HX+v (7.2)

where w ~(0, Q) and v~(0, R) are white noises uncor-
related with each other. It has been well established that
the optimal observer for this process is the Kalman fil-
ter. This observer can also be written in the general
form of Eq. (2.8) in which L is replaced by a time-var-
iant Kalman gain K(#). The corresponding error
dynamics can be described with

é = [A—KH]éJrGw—Kv (1.3)
From this equation, it is important to realize that the

estimation errors are not affected by the inputs u. It has
also been shown that, as long as the observer system

Fig. 7. State diagram obtained by treating x, as appended state in
Fig. 6.

matrix A, tends to an asymptotically stable matrix at
t— o0 and the noises are bounded, then in the limit the
estimates converges to the expected true states [7]. Con-
sequently, the decomposition techniques used in the
deterministic case can be adopted here without modifi-
cations.

Furthermore, since the state diagram can also be used
to describe the information flows in nonlinear systems
and the proposed graphic manipulations for observer
decomposition involve only role-switching operations of
inputs and outputs, the techniques developed in the
previous sections can be extended to nonlinear stochas-
tic systems. Although convergence is not always guar-
anteed, performance of of the resulting extended
Kalman filters (EKFs) is in general satisfactory in our
extensive simulation studies.

Example 7.1. Let us consider the system of two iden-
tical storage tanks connected in series (see Fig. 8). An
accurate system model is assumed to be available, i.e.

dh
A1d—l1=61i—611 — Achy/hy

dgi  nd} 8filipq}

S _ TGN pothy — hy) —

dar ~ o, pg(hi — h2) P&
dh

AzT; =q1 — g2 — Achyhy

dgy  nd; 82043

= | egh =5

dr  4pbh m*d;

where, p (=1000.0 kg/m?) is the density of liquid, /
and A; (=1.0 m?) denote respectively the height of
liquid level in and the cross-sectional area of tank k
(k=1, 2), g, di (=0.0508 m), [, (=5.0 m) and f;
(=2.509%107%) represent respectively the volumetric
flow rate in and the diameter, length and friction factor
of the outlet pipeline from tank &k (k=1, 2). Also notice
that the unknown parameters Aclis (k=1, 2) are asso-
ciated with the assumed faults, i.e. leakage in tanks 1
and 2, respectively. Obviously, only positive parameter
values are allowed for Aclis and each can be considered
as a measure of the corresponding leak size.

Numerical simulation studies were carried out to
produce the on-line measurement data. It was assumed
that the system was operated at its normal steady state
initially. The initial heights of liquid levels /; and /A, were
chosen to be 1.378 and 0.689 m respectively and the cor-
responding flow rates are ¢;=¢; = ¢>=0.015 m?3/s. Let us

qi—l

n h
‘l 7 f > >
T, T,

Fig. 8. The simplified process flow diagram of a two-tank system.
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assume that the above mentioned faults occurred at
t=50s. For the sake of convenience, the change in Acl,
was introduced in simulation according to:

Acly = Cifl — aft — 50)}u(t — 50)  k=1,2

and

1 1350
”(’_50):{0 [ < 50

where C; (=0.00175), C, (=0.0015) and « (=0.05 s71)
are constants.

The above six equations were integrated together to
simulate the transient behavior of the state variables. In
this example, it was further assumed that the state vari-
ables ¢; and &, can be measured on-line. The measure-
ment noises were produced with a random number
generator and then added to the simulated values of
these two variables to obtain the simulated on-line
measurements.

By implementing the proposed graphic approach, two
smaller EKFs can be constructed to estimate Ac/; and
Acl, on-line on the basis of the measurement data of ¢,
and h,. Their respective observer models should be:

e EKFI
AI%Z%_QI — Ach/hy
% = ZSZ [pg(hl —hy) — Scltl;df}q%]
dAcl
o

where the measurement of 4, should be treated as input
and the measurement of ¢, is the output.

e EKF2

dh
/42d—t2 =q1 — ¢ — Ach/hy

dgp _md3 [ . 8bpg3
At~ 4ph |°7 T 22d3
dAClz o

d¢

0

where the measurement of ¢; should be treated as input
and the measurement of /, is the output.

The feasibility of these two EKFs has been confirmed
with numerically simulated data. The results can be
found in Figs. 9-14.

8. An application example

Let us consider the process shown in Fig. 15 in which
reactants A and B are converted to product C by the
reaction The reactants are fed to the process in two dif-
ferent immiscible phases (A in phase I and B in phase
IT), and the reaction takes place in the mixer of the
mixer—settler pairs. The mathematical model of this
system can be found in Himmelblau and Bischoff [13]:

d
(=@t = F(Y =) —kaVxy, (8.1)
dx1
QVW = F()X() + F3X5 — F2X1 — 2k1anly1 (82)
,d
1%=Fl@1 —)2) (8.3)
t
dx
/zd—tz = F(x1 — x2) (8.4)
d
V3d—§= Fy(xy — &) (8.5)
dy;
(1 =)V~ = Fi(o = y3) — kaaVxays (8.6)
d)C3
O[VW = Fz(%‘ — X3) — 2k20[V)C3y3 (87)
,dY
1E=F1()/3—Y) (8.8)
, dx
v = Pl =) (8.9)
dX5
(vo + S4) T Fy(x4 — x5) = W(en — Dxs + B (8.10)
di
—=Fh-W-F 11
Sd[ 2 3 (8.11)
d—W—ﬁ(F—W—F)JrKJ (8.12)
TR 3 24 .
dFy F—-FX—-X
At xo—-X 1 ®.13)
dF;, B —-FyX-X
S S — (8.14)

?_X()—X T

Most of the notation used in this model is presented
in the block diagram shown in Fig. 16. Additional
explanations can be found in the Nomenclature section.
It is assumed that there are two possible disturbances in
the process, i.e. a change in the inlet concentration of
reactant A and/or reactant B. The parameters used to
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Fig. 9. EKF1 estimates of s; in Example 7.1.
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Fig. 10. EKF1 estimates of ¢; in Example 7.1.
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Fig. 11. EKF1 estimates of Ac/; in Example 7.1.
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Fig. 12. EKF?2 estimates of &, in Example 7.1.
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Fig. 13. EKF2 estimates of ¢, in Example 7.1.
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Fig. 14. EKF?2 estimates of Ac/, in Example 7.1.
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described their effects are Ay, and Ax, respectively. In
EKF, they are treated as appended states and their
respective model equations are

dAy
= 8.15
=0 (8.15)
dAX()
=0 8.16
T (8.16)

The above mathematical model, i.e. Egs. (8.1)—(8.16),
can be converted to a state diagram (Fig. 17) to facil-
itate implementation of the proposed decomposition
strategy.

Case A. The measurement variables selected for this
case are x;, x4 and Y. First, let us construct an open-

loop observer by treating all measurements as inputs.
To obtain the corresponding state diagram, one can
simply remove all outward edges of the nodes repre-
senting the measured variables in Fig. 17. This is due to
the fact that, in the open-loop observer, these informa-
tion flows should be replaced by the on-line measure-
ment data. The results are presented in Figs. 18 and 19.
Notice that the dotted lines represent the removed edges
and the squares denote the measured variables. One can
clearly see that there are two separate components in
this open-loop observer.

To establish an output-based correction mechanism,
it is only necessary to consider the measured variables
remained in each component. Their measurement data
should be used as outputs of the corresponding sub-
observer. Specifically, the EKF model associated with

Fig. 15. Flow diagram of a two-phase reaction system.
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Fig. 16. Block diagram of the two-phase reaction process.
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Fig. 18 should consist of Egs. (8.4)—(8.9) and (8.15). The
outputs of this sub-observer are the measurement sig-
nals of x4 and Y, and the input is the measurement data
of x;. On the other hand, the EKF model corresponding
to the second component in Fig. 19 can be built with

Fig. 17. The state diagram of system model.

Fig. 18. A component in the open-loop observer of case A.

Eqgs. (8.1)—(8.3), (8.10)—(8.14) and (8.16). The output
used in this EKF is the measurement of x; and the
inputs should be the measurements of x4 and Y. The
feasibility and correctness of these two EKFs have been
confirmed with extensive simulation studies [14]. A
sample of the results can be found in Figs. 20 and 21.

The benefit of observer decomposition for nonlinear
stochastic systems is demonstrated in this study by
counting the number of differential equations that are
required to be integrated numerically. This number N
can be computed according to

(n+ @) +q+1)
Neg = 5

+n

where n is the number of system states and ¢ is the
number of appended states. Notice that the first term on
the right is the number of error covariance propagation
equations or Riccati equations. This number can be
significantly reduced by replacing the full-size observer
with several smaller ones. Notice that, if the entire set of
model equations are used in a single EKF, it is neces-
sary to integrate 14 state estimate propagation equa-
tions and 136 error covariance propagation equations.
On the other hand, one only needs to integrate 28 and
45 error covariance equations respectively in the two
smaller EKFs suggested above. Thus, approximately
42% of the original computation load can be reduced.

Case B. Let us next try to decompose the state dia-
gram into more components by selecting a different set
of measurement variables. In this case, x;, X3, x5, y3 and
F are chosen. By following the proposed decomposition
procedure, four components can be identified (Figs. 22—
25). Notice that the computation load now can be
decreased to roughly 40% of the original level. Specifi-
cally, the total number of error covariance propagation
equations used in the four corresponding EKFs is only
47. Again, based upon the results of our simulation
studies, it can be observed that the performance of these
EKFs is quite satisfactory [14].

Fig. 19. Another component in the open-loop observer of Case A.
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Fig. 20. Estimates of the inlet concentration disturbance of reactant A.
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Fig. 21. Estimates of the inlet concentration disturbance of reactant B.
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Fig. 23. Component 2 in Case B.

Fig. 24. Component 3 in Case B.

o ()

Fig. 25. Component 4 in Case B.

9. Conclusions

From the above discussions, it is clear that the classi-
fication of measurement signals in an output-injection
observer does not really have to be consistent with the
roles of inputs and outputs in the given physical system.
On the basis of this proposition, a systematic procedure
is proposed in this study to properly decompose any
observer into several smaller ones according to the
model structure. The potential benefits of using appen-
ded states to reduce observer size are also analyzed in
this paper. The proposed decomposition and size-
reduction techniques can be adopted to identify sub-
systems of interest and to relieve the on-line computa-
tion load of output-injection observers. In particular,
they should be especially useful to those associated with
nonlinear stochastic systems.
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