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Abstract

By considering the fault propagation behaviors in process systems with control loops, a fuzzy-logic based fault diagnosis strategy has
been developed in the present work. The proposed fault diagnosis methods can be implemented in two stages. In the o3-line preparation
stage, the fault origins of a system hazard are identi4ed by determining the minimal cut sets of the corresponding fault tree. The fault
propagation patterns in a feedback loop are obtained on the basis of system digraph. The occurrence order of observable symptoms caused
by each fault origin is derived accordingly and then encoded into a set of IF–THEN diagnosis rules. In the next on-line diagnosis stage, the
occurrence indices of the top event and also the fault origins are computed in a fuzzy inference system based on real-time measurement
data. Simulation studies have been carried out to demonstrate the feasibility of the proposed approach.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

As a result of increasing complexity in the modern
chemical processes, development of the computer-aided
on-line fault diagnosis techniques has become an impor-
tant issue for plant operation. A wide variety of di3erent
approaches have already been proposed in the literature,
e.g. the expert systems (Petti, Klein, & Dhurjati, 1990), the
state observers (Chang & Chen, 1995), the neural networks
(Hoskins, Kalivur, & Himmeblau, 1991) and the signed
directed graphs (SDG) (Iri, Aoki, O’Shima, & Matsuyama,
1979), etc. Ulerich and Powers (1988) reported the 4rst at-
tempt to perform fault diagnosis on the basis of fault trees.
The most signi4cant advantage of their approach is that the
candidates of fault identi4cation can be restricted to only
the causes of one or more given top events and, conse-
quently, the diagnosis procedure can be greatly simpli4ed.
By incorporating the propagation patterns of fault origins
in a fuzzy inference system, Chang, Lin, and Chang (2002)
developed a systematic fault diagnosis procedure for pro-
cesses without control loops. This method was implemented
in two stages: the o3-line preparation stage and the on-line
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implementation stage. In the former case, a SDG system
model was 4rst constructed and the fault trees correspond-
ing to the given top events were then synthesized according
to the Lapp-and-Powers algorithm (Lapp & Powers, 1977).
The symptom occurrence order caused by the basic events
in each cut set can be easily determined with the qualita-
tive simulation techniques on the basis of the SDG model
(Chang & Hwang, 1992). In addition, two theorems were
developed to facilitate enumeration of all possible symptom
patterns that may be observed during operation. These can-
didate patterns were then translated into a set of IF–THEN
inference rules for assessing the occurrence possibilities of
the basic events in every cut set and also the top events.
In the next stage, the on-line measurement data were 4rst
compared with the normal steady-state values of the process
variables. The process deviations were determined accord-
ingly and then used as the inputs to a fuzzy inference system
for computing the occurrence indices of top events and cut
sets in real time.
Since the dynamic responses of feedback control loops

were not considered in the original fault diagnosis system
mentioned above (Chang et al., 2002), a more general fault
diagnosis strategy is developed in the present study to en-
hance its capability. Speci4cally, in addition to the initial and
4nal states used in the previous studies, the transient state
of each loop variable is introduced to describe the symptom
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occurrence order more accurately. Three more theorems can
then be developed to enumerate all possible symptom pat-
terns by considering the loop dynamics. The e3ectiveness of
this new feature has been veri4ed with extensive simulation
studies.
The rest of this paper is organized as follows. In Section

2, the procedure for enumerating all possible fault propaga-
tion mechanisms in a loop-free system is reviewed to facil-
itate later discussions. A recursive formula is also provided
here to determine the total number of symptom patterns that
may be observed on-line. Section 3 is concerned with the
candidate patterns in systems with control loops. Three for-
mal theorems are presented for counting these patterns. The
architecture of fuzzy inference system is given in Section 4.
The practices used in this study to classify measurement data
and also diagnosis results are described in detail. In addition,
a systematic encoding method is developed for translating
the candidate patterns and other insights into four types of
IF–THEN rules. Finally, The e3ectiveness of the proposed
strategy is demonstrated with extensive simulation studies
in Section 5.

2. The candidate patterns in loop-free systems

The e3ects of base event(s) identi4ed in a fault tree usu-
ally propagate throughout the entire system sequentially. In
general, a series of intermediate events may occur before the
inception of a designated top event. Since the performance
of a diagnosis scheme should be evaluated not only in terms
of its correctness but also its timeliness, it is the intention of
this research to develop a fault identi4cation procedure tak-
ing both the eventual symptoms and also their occurrence
order into consideration. To identify this symptom occur-
rence order (SOO) associated with a given fault origin, the
following operations can be performed on the system di-
graph (Chang et al., 2002): (1) apply the techniques of qual-
itative simulation to identify the fault propagation paths
(FPPs), (2) merge every pair of measured variable and its
measurement signal in the FPPs, and then (3) eliminate the
nodes representing the unmeasured variables.
To illustrate the above procedure, let us consider the

level control system in Fig. 1 as an example. In this pro-
cess, there are two input streams, i.e. streams 1 and 3, and
one output stream, i.e. stream 2, connected to the liquid
storage tank T-01. The level control loop consists of the
proportional-integral (PI) controller LIC-01 and the con-
trol valve CV-01 on stream 1. The Jow rates of streams 1
and 2 are monitored with Jow meters FI-01 and FI-02, re-
spectively. It is assumed that the gate valve on the stream
2 (V-02) is open and the globe valve on stream 3 (V-03)
closed during normal operation.
A SDG model can be constructed according to Fig. 1 (see

Fig. 2). The nodes in this digraph are mainly associated
with the process variables, the measurement signals and the
control signals. Generally speaking, the process variables
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Fig. 1. Level control system.

considered in this case are mass Jow rate and liquid level.
They are represented respectively by combining an initial
letter, i.e. m and h, with a numerical label or a subscript.
The numerical labels are basically the stream numbers in the
process Jow diagram, while the subscripts are always as-
sociated with process units. Thus, hT−01 denotes the liquid
level of the tank T-01 and m1 represent the mass Jow rate
of stream 1. Notice also that a measurement signal is repre-
sented by the tag of the corresponding sensor or controller
with a superscript “m”. The same approach is adopted to
denote the controller outputs to drive the control valves, i.e.
they are represented by the controller tags in process Jow
diagram with a superscript “c”.
A set of 4ve values, i.e. {−10;−1; 0;+1;+10}, may be

assigned to each node in a SDG to qualitatively represent de-
viation from the normal value of corresponding variable. “0”
means that it is under the normal steady state. The negative
values are used to denote the lower-than-normal states and
the positive values signify the opposite. The absolute values
of non-zero deviations, i.e. 1 or 10, can be interpreted qual-
itatively as “small” and “large”, respectively. Notice also
that the causal relation between two variables under normal
condition can be characterized with a directed arc and the
corresponding gain. Again each gain may assume one of
the 4ve qualitative values, i.e. 0, ±1 and ±10. The output
value of an arc can be computed with the gain and its input
value according to the following equation:

vout =




g× vin if − 106 g× vin6+ 10;

+10 if g× vin ¿+ 10;

−10 if g× vin ¡− 10;
(1)

where g, vin and vout denote, respectively, the gain, input
and output values. Finally, it should be noted that, other
than the normal arc, one or more conditional arc may be
added between two nodes. These arcs are valid only under
the speci4ed conditions.
Let us select the event “high liquid level in the tank,”

i.e. hT−01(+1), as one of the top events for diagnosis
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Fig. 2. Digraph model of level control system.
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Fig. 3. Fault tree with top event “liquid level in tank T-01 is too high,” i.e. hT−01(+1).

purpose. The conventional Lapp-and-Powers algorithm
(Lapp & Powers, 1977) is adopted in this study to synthe-
size the corresponding fault tree on the basis of Fig. 2 (see
Fig. 3). The resulting minimal cut sets can be found in Ta-
ble 1. To illustrate the proposed method in determining the
SOOs, let us examine the 9th cut set, i.e. {m3(+1), CV-01
sticks}. The corresponding SOO can be found according to
the proposed procedure (see Fig. 4). It should be stressed
that the digraph con4guration is changed under the inJu-
ence of the failure “CV-01 sticks”. Since the gain between
nodes LIC-01c and m1 now becomes zero, the resulting
system should be considered as loop free.
If all symptoms in a SOO can be observed on-line, then

it is certainly reasonable to con4rm the existence of cor-
responding fault origin(s). However, it is also possible to
4nd that these symptoms are only partially developed dur-
ing the incipient period of an eventual system hazard and,
further, their pattern may vary at di3erent instances during
operation. To facilitate later discussions, let us de4ne the

Table 1
The minimal cut sets of the fault tree in Fig. 3

MCS no. Flow rate CV-01 LIC-01 LIC-01
sticks transmitter controller

m1 m2 m3 sticks sticks

1 −10
2 +10
3 +1 Y
4 +1 Y
5 +1 Y
6 −1 Y
7 −1 Y
8 −1 Y
9 +1 Y
10 +1 Y
11 +1 Y

collection of on-line symptoms at any time after the intro-
duction of basic event(s) in a cut set as a candidate pattern.
It is obvious that any candidate pattern can be considered
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FI-02m(+1)

LIC-01m(+1) LIC-01c(-1) FI-01m(0)

Fig. 4. SOO of cut set 9.

as an evidence for fault identi4cation with a degree of con-
4dence. Thus, it is important to enumerate all possible can-
didate patterns and evaluate their respective signi4cance in
the o3-line preparation stage.
Notice that a SOO in general assumes the form of a tree in

a loop-free system. The total number of candidate patterns
in this case can be computed with a theorem developed by
Chang et al. (2002):

Theorem 1. Consider a tree-shaped SOO T. If P(0)(n0)
denotes the initial path of length n0 in T, P(0; i1)(n0; i1 ) (i1 =
1; 2; : : : ; N0) denotes the i1th branch path of length n0; i1
connecting to the end of P(0)(n0), P(0; i1 ; i2)(n0; i1 ;i2 ) i2 =
1; 2; : : : ; N0; i1 ) denotes the i2th branch path of length n0; i1 ;i2
connecting to the end of P(0; i1)(n0; i1 ), etc., then the to-
tal number of candidate patterns NCP can be computed
according to the following equation:

NCP =N1{P(0)(n0)}= n0 +
N0∏
i1=1

N1{P(0; i1)(n0; i1 )}; (2)

whereN1{•} denotes the counting operator for a path in
a tree-shaped SOO. The result of this operation should be
generated recursively, i.e.

N1{P(0; i1 ; i2 ; :::; ik )(n0; i1 ;i2 ;:::;ik )}
= n0; i1 ;i2 ;:::;ik

+
N0; i1 ; i2 ;:::; ik∏
ik+1=1

N1
{
P(0; i1 ; i2 ; :::; ik+1)(n0; i1 ;i2 ;:::;ik ;ik+1)

}
(3)

and k = 1; 2; : : :.
If there are no further branches connected to the end of

the branch path P(0; i1 ; i2 ; :::; ik )(n0; i1 ;i2 ;:::;ik ), i.e. N0; i1 ;i2 ;:::;ik = 0,
then
0∏

ik+1=1

[ • ] = 1: (4)

The proof of this theorem is omitted in this paper for the
sake of brevity. Instead, a simple example is provided below
to illustrate the enumeration procedure:

Example 1. Consider the SOO of cut set 9 shown in Fig.
4. The total number of candidate patterns can be calculated
using Theorem 1, i.e.

NCP =N1{LIC-01m}
= 1 +N1{FI-02m} ·N1{LIC-01c → FI-02m}

Table 2
The candidate patterns of cut set 9

No. LIC-01m LIC-01c FI-01m FI-02m

1 0 0 0 0
2 +1 0 0 0
3 +1 0 0 +1
4 +1 −1 0 0
5 +1 −1 0 +1
6 +1 −1 0∗ 0
7 +1 −1 0∗ +1

= 1 +

(
1 +

0∏
[ • ]

)
·
(
2 +

0∏
[ • ]

)

= 1 + (1 + 1) · (2 + 1)
= 7:

The corresponding candidate patterns are listed in Table
2. Notice that there are two pairs of seemingly identical
patterns. The 4rst is associated with rows 4 and 6, and the
second can be found in rows 5 and 7. This is mainly due
to the fact that “FI − 01m(0)” is treated as a symptom in
SOO. In other words, the patterns in each pair should be
interpreted di3erently. In rows 6 and 7, asterisks are used to
denote the fully developed symptoms. On the other hand,
the corresponding unmarked “0” in row 4 or 5 indicates
that the e3ects of abnormal disturbances have not reached
FI-01.

3. The candidate patterns in process control loops

In a loop-free process, the net e3ect of fault propagation
on a process variable can be viewed qualitatively as the di-
rect transition from the normal system state to another new
state. However, if a process contains feedback loops, the in-
termediate transient states caused by the compensation ac-
tion of the controller must be considered. For illustration
purpose, let us again consider the level control system in
Fig. 1 and examine the scenario caused by the basic event
in cut set 2 (see Table 2). The transient response of the con-
trol system can be simulated with SIMULINK (Mathworks,
2000b). In the simulation studies, the height of tank wall is
taken as 100 cm and the outlet Jow rate is assumed to be
proportional to the square root of liquid-level height. The
initial values of the liquid level and the Jow rate of streams
3 are 50 cm and 0 g=s, respectively. It is also assumed that
the system is at steady state initially and the initial Jow rates
of streams 1 and 2 are the same, i.e. 707 g=s.
Typical simulation results can be found in Figs. 5(A) and

(B). Notice that these results were generated with two di3er-
ent sets of controller parameters, i.e. Kp=8 and �I =5 were
used in Case (A) and Kp = 0:02 and �I = 20 in Case (B).
It can be observed that the dynamic behavior of the system
is dependent upon the compensation speed of controller. If
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Fig. 5. Transient responses of level control system caused by cut set 2: (A) fast compensation; (B) slow compensation.

LIC-01m(+1) LIC-01c(-1) FI-01m(-1)

FI-02m(+1)

(A)

LIC-01m(+10) LIC-01c(-10) FI-01m(-10)

FI-02m(+10)
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LIC-01m(+1) LIC-01c(-10) FI-01m(-10)
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Fig. 6. Single-valued SOO of cut set 2: (A) fast compensation; (B) slow compensation.

the compensation speed is “fast,” i.e. Case (A), the control
valve is fully closed shortly after the occurrence of an un-
controllable disturbance (accidental opening of valve V-03
during operation) and the height of liquid level rises grad-
ually to an abnormally high value. The symptoms of fault
propagation can be described qualitatively with the SOO in
Fig. 6(A). On the other hand, a “slow” controller may fail
to prevent tank overJow despite the fact that the Jow of
stream 1 is blocked eventually (Case B). This scenario can
be characterized with the SOO in Fig. 6(B). To facilitate a
concise representation of the candidate patterns, these two
alternative SOOs are written in a uni4ed two-valued format
as shown in Fig. 7. The two values in each parenthesis de-
note, respectively, the transient and 4nal states of the corre-
sponding loop variable.

FI-02m(+1,+1)

LIC-01m(+1,+1) LIC-01c(-1,-10) FI-01m(-1,-10)

FI-02m(+10,+1)

LIC-01m(+10,+1) LIC-01c(-10,-10) FI-01m(-10,-10)

(B)

(A)

Fig. 7. Two-valued SOOs of cut set 2: (A) fast compensation; (B) slow
compensation.

Let us 4rst consider the simplest case of a single-path SOO
on the feedback loop, i.e. s1(�t1; �

f
1 )→ s2(�t2; �

f
2 )→ · · · →
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sn(�tn; �
f
n ). A detailed analysis of the candidate patterns in

Fig. 6 reveals that,

(1) The transient state of any measured variable should al-
ways be observed before its 4nal state. More speci4-
cally, the symptom sj(�tj) should appear before sj(�

f
j )

and j = 1; 2; : : : ; n.
(2) The transient and 4nal states of measured variables

in the single-path SOO can only be con4rmed se-
quentially. In other words, the symptom sj(�tj) should

occur earlier than sj+1(�tj+1) and sj(�
f
j ) earlier than

sj+1(�
f
j+1). Here, j = 1; 2; : : : ; n− 1.

(3) As a result of the inherent feedback mechanism, the
4nal state of the 4rst measured variable in SOO can-
not be detected until after the last measured variable
reaches its transient state, i.e. s1(�

f
1 ) follows only

sn(�tn).

Consequently, a set of rules can be developed for generating
the candidate patterns:

• The normal state of one-loop variable and the 4nal state
of another cannot coexist in the same candidate pattern.

• The states of adjacent loop variables must either
be the same or follow their precedence order in
time. More speci4cally, there are only 4ve possibili-
ties: (1) {sj(�fj ); sj+1(�fj+1)}; (2) {sj(�tj); sj+1(�tj+1)};
(3) {sj(0); sj+1(0)}; (4) {sj(�fj ); sj+1(�tj+1)}; (5)
{sj(�tj); sj+1(0)}.

On this basis of the above two pattern generation rules, the
following theorem can be derived:

Theorem 2. Let Y be the set of all measured variables
and � = {−10;−1;+10;+1}. If S̃(n) = s1(�t1; �

f
1 ) →

s2(�21; �
2
f) → · · · → sn(�tn; �

f
n ) (where ∀sj ∈Y, ∀�tj ∈�,

∀�fj ∈� and j=1; 2; : : : ; n) denotes a two-valued single-path
SOO on a feedback control loop, then the total number of
candidate patterns NCP can be computed with the following
equation:

NCP = 2n+ 1: (5)

This theorem is proved in Appendix A. On the other hand,
from the two-valued SOOs in Fig. 7, it can also be observed
that some of the branch paths may not be located on the
feedback loop. The variables on these branches may expe-
rience time-variant disturbances emanating from the loop.
Thus, it is necessary to generalize Theorem 1 to account
for the possibility of multiple disturbances propagating in a
tree. It should be noted that the 4rst candidate generation
rule mentioned above is no longer valid in this case. Fur-
thermore, the possibility of an additional pattern between
two adjacent variable, i.e. {sj(�fj ); sj+1(0)}, should also be
included in implementing the second rule. Consequently,

the following theorem can be derived to compute the total
number of candidate patterns:

Theorem 3. Consider a tree-shaped two-valued SOO T̂.
If P̂(0)(n0) denotes the initial path of length n0 in T̂,
P̂(0; i1)(n0; i1 ) (i1 = 1; 2; : : : ; N0) denotes the i1th branch
path of length n0; i1 connecting to the end of P̂

(0)(n0),
P̂(0; i1 ; i2)(n0; i1 ;i2 ) (i2 = 1; 2; : : : ; N0; i1 ) denotes the i2th branch
path of length n0; i1 ;i2 connecting to the end of P̂

(0; i1)(n0; i1 ),
etc., then the total number of candidate patterns NCP

can be determined by computing N3{P̂(0)(n0)}, i.e.
NCP =N3{P̂(0)(n0)} and

N3{P̂(0)(n0)}= n0(n0 + 1)
2

+ n0
N0∏
i1=1

N1{P̂(0; i1)(n0; i1 )}

+
N0∏
i1=1

N3{P̂(0; i1)(n0; i1 )}; (6)

where N1{•} denotes the counting operator de6ned in
Theorem 1, and N3{•} denotes a new counting operator
for a path in the tree-shaped two-valued SOO. The result
of this operation should be generated recursively, i.e.

N3{P̂(0; i1 ; i2 ; :::; ik )(n0; i1 ;i2 ;:::;ik )}

=
n0; i1 ;i2 ;:::;ik (n0; i1 ;i2 ;:::;ik + 1)

2

+ n0; i1 ;i2 ;:::;ik

N0; i1 ; i2 ;:::; ik∏
ik+1=1

N1{P̂(0; i1 ; i2 ; :::; ik+1)(n0; i1 ;i2 ;:::;ik ;ik+1)}

+
N0; i1 ; i2 ;:::; ik∏
ik+1=1

N3{P̂(0; i1 ; i2 ; :::; ik+1)(n0; i1 ;i2 ;:::;ik ;ik+1)} (7)

and k = 1; 2; : : :.
If there are no further branches connected to the end of

the branch path P̂(0; i1 ; i2 ; :::; ik )(n0; i1 ;i2 ;:::;ik ), i.e. N0; i1 ;i2 ;:::;ik = 0,
then
0∏

ik+1=1

[ • ] = 1: (8)

The proof of this theorem is provided in Appendix B.
Furthermore, it should be noted that a hybrid SOO, i.e. one
that contains a feedback loop and also branch paths not on
the loop, is often encountered in practical applications. To
facilitate enumeration of candidate patterns in this situation,
the above two theorems have been combined to produce the
following theorem:

Theorem 4. Consider a tree-shaped two-value hybrid SOO
T̃ containing branch paths both on and o7 a feedback con-
trol loop. If P̃(0)(n0) denotes the initial path of length
n0 in T̃, P̃(0; i1)(n0; i1 ) (i1 = 1; 2; : : : ; N0) denotes the i1th
branch path of length n0; i1 connecting to the end of P̃

(0)(n0),
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P̃(0; i1 ; i2)(n0; i1 ;i2 ) (i2 = 1; 2; : : : ; N0; i1 ) denotes the i2th branch
path of length n0; i1 ;i2 connecting to the end of P̃

(0; i1)(n0; i1 ),
etc., and P̃(0)(n0), P̃(0;1)(n0;1), P̃(0;1;1)(n0;1;1); : : : are branch
paths on the loop, then the total number of candidate pat-
terns NCP can be determined according to the following
equation:

NCP = n0 + [(n0 − 1)N4; (1){P̃(0;1)(n0;1)}

+N1{P̃(0;1)(n0;1)}]
N0∏
i1=2

N1{P̃(0; i1)(n0; i1 )}

+N4; (2){P̃(0;1)(n0;1)}
N0∏
i1=2

N3{P̃(0; i1)(n0; i1 )}; (9)

whereN1{•} andN3{•} denotes the counting operators
de6ned in Theorems 1 and 3, respectively, and N4; (1){•}
and N4; (2){•} denote two new counting operators for a
loop path in the tree-shaped hybrid SOO. The results of
these operations can be generated recursively, i.e.

N4; (1){P̃(0;1; :::;1)(n0;1; :::;1)}
=N4; (1){P̃(0;1; :::;1;1)(n0;1; :::;1;1)}

×
N0;1;:::;1∏
ik+1=2

N1{P̃(0;1; :::;1; ik+1)(n0;1; :::;1; ik+1)}; (10)

N4; (2){P̃(0;1; :::;1)(n0;1; :::;1)}
= n0;1; :::;1N4; (1){P̃(0;1; :::;1;1)(n0;1; :::;1;1)}

×
N0;1;:::;1∏
ik+1=2

N1{P̃(0;1; :::;1; ik+1)(n0;1; :::;1; ik+1)}

+N4; (2){P̃(0;1; :::;1;1)(n0;1; :::;1;1)}

×
N0;1;:::;1∏
ik+1=2

N3{P̃0;1; :::;1; ik+1(n0;1; :::;1; ik+1)}: (11)

If there are no further branches connected to the end of the
branch path P̃(0;1; :::;1)(n0;1; :::;1), i.e. N0;1; :::;1 = 0, then

N4; (1){P̃(0;1; :::;1)(n0;1; :::;1)}= 1; (12)

N4; (2){P̃(0;1; :::;1)(n0;1; :::;1)}= n0;1; :::;1 + 1: (13)

A proof of the above theorem can be found in
Appendix C. The following example demonstrates the use
of Theorem 4:

Example 2. Let us again consider cut set 2 in Table 1. If
the compensation speed is “fast,” the candidate patterns of
cut set can be determined according to Fig. 7(A). We can
then compute the total number of candidate patterns with
Theorem 4:

NCP = 1 + [(1− 1) + (2 + 1)](1 + 1) + (2 + 1)

×
[
1× (1 + 1)

2
+ 1× 1 + 1

]

Table 3
The candidate patterns of cut set 2

No. LIC-01m LIC-01c FI-01m FI-02m

1 0 0 0 0

2 +1 (t) 0 0 0
3 +1 (t) 0 0 +1 (t)
4 +1 (t) − 1 (t) 0 0
5 +1 (t) − 1 (t) 0 +1 (t)
6 +1 (t) − 1 (t) −1 (t) 0
7 +1 (t) − 1 (t) −1 (t) +1 (t)

8 +1 (f ) − 1 (t) −1 (t) 0
9 +1 (f ) − 1 (t) −1 (t) +1 (t)
10 +1 (f ) − 1 (t) −1 (t) +1 (f )
11 +1 (f ) −10 (f ) −1 (t) 0
12 +1 (f ) −10 (f ) −1 (t) +1 (t)
13 +1 (f ) −10 (f ) −1 (t) +1 (f )
14 +1 (f ) −10 (f ) −1 (f ) 0
15 +1 (f ) −10 (f ) −1 (f ) +1 (t)
16 +1 (f ) −10 (f ) −1 (f ) +1 (f )

= 1 + 6 + 9

= 16: (14)

The corresponding candidate patterns are presented in
Table 3. Notice that, in the parenthesis next to each devia-
tion value, a label “t” is used to denote the transient state
and “f” the 4nal state.

4. Fuzzy inference system

In this work, the 4nal product prepared o3-line is a fuzzy
inference system (FIS). A sketch of its framework is pre-
sented in Fig. 8. If this system is to be implemented on-line,
the measurement data must be 4rst converted to a set of
process deviations with respect to the given reference val-
ues and, then, used as inputs to FIS. The core of FIS is a

CLASS IV

CLASS I
CLASS II
CLASS III

.

.

.

.

.

.

Direct Measurement
of Top Event

MAX

Process
Deviations

Occurrence
IndicesIF-THEN Rules
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te

csN

cs3

cs2

dM

d3

d2

d1

dt

Fig. 8. Framework of fuzzy inference system.
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collection of IF–THEN rules, which can be further divided
into to four distinct classes. The outputs of FIS are the oc-
currence index of top event OITE and also that of every
minimal cut set csk (k=1; 2; : : :). The former can be used to
forecast a potential incident and the latter are adopted to rank
all possible fault origins. The inference mechanism used in
this system can be found in standard textbooks, e.g., George
and Yuan (1995) and Ross (1995). The main elements of
FIS are described in detail in the following subsections.

4.1. Classi6cation of process deviations

Since the deviation values associated with disturbances
and/or failures in a typical fault tree are qualitative in na-
ture, it is necessary to introduce a more consistent descrip-
tion in fault diagnosis applications. In particular, a set of
membership functions are used in this work for the purpose
of classifying the on-line measurements into several fuzzy
sets. Speci4cally, let us denote the ith process measurement
as yi and the same measurement at steady state as yss

i . The
process deviation of the ith measured variable, di, can be
determined according to the following equation:

di = yi − �ss
i ; (15)

where �ss
i denotes the mean of y

ss
i . In this study, 4ve linguis-

tic values, i.e. LN (large negative), SN (small negative), ZE
(zero) and SP (small positive) and LP (large positive), are
assigned to each process deviation to describe the qualita-
tive concepts of −10;−1; 0;+1 and +10. The correspond-
ing membership functions can be constructed according to
Fig. 9. In particular, the linguistic values SN, ZE and SP are
represented with standard triangular membership functions.
The locations of their apexes are determined on the basis of
the standard deviation of yss

i , i.e.

VSN
i =−3!ss

i ; (16)

VZE
i = 0; (17)

VSP
i =+3!ss

i ; (18)

where VSN
i , VZE

i and VSP
i represent the apex locations and

!ss
i is the standard deviation of y

ss
i . On the other hand, the

membership functions of LP and LN are trapezoids.
The locations of their upper interior corners are chosen on
the basis of process knowledge and/or operation experience.
For example, in the level control system described previ-
ously, the membership value of LP for LIC-01m can be con-
sidered as 1 if the level measurement exceeds 100 cm. As
another example, the upper and lower alarm limits (if exist)
of a measured variable can be used for the same purpose.
The bottom corners of the triangular membership func-

tions can be conveniently set to the apex and/or upper-corner
locations of the neighboring functions. Speci4cally,

BSN
i; l = VLN

i ; BSN
i; r = VZE

i ; (19)

BZE
i; l = VSN

i ; BZE
i; r = VSP

i ; (20)

BSP
i; l = VZE

i ; BSP
i; r = VLP

i : (21)

In the above equations, the symbol B on the left is used to
denote the locations of the bottom corners. The correspond-
ing linguistic values are speci4ed as its superscript. Notice
that two subscripts are used to distinguish these bottom cor-
ners. The 4rst is the label of the measurement variable and
the second denotes its position relative to the apex, i.e. left or
right. Also notice that VLN

i and VLP
i represent, respectively,

the locations of upper interior corners of the trapeziods cor-
responding to LN and LP. The locations of interior corners
at the bottom of LN and LP can be determined in the same
fashion, i.e.

BLN
i; r = VSN

i ; (22)

BLP
i; l = VSP

i : (23)

Finally, it is assumed that the smallest and largest possible
values of the ith process deviation, i.e. dmini and dmaxi , can
always be determined in advance. The locations of two re-
maining corner points of the trapezoidal functions for LN
are both set at dmini and those for LP are set at dmaxi .
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4.2. Classi6cation of occurrence indices

As mentioned previously, an occurrence index can be
viewed as the diagnosis concerning a top event or the basic
events in a cut set. In general, three types of fuzzy sets, i.e.
OCR, NOC and UCT‘ are adopted in this work for its char-
acterization. The symbol OCR is used to denote the belief
that the corresponding event(s) will occur soon or have al-
ready occurred and, on the other hand, NOC is concerned
with the opposite conclusion, i.e. the possibility of fault can
be ruled out. Finally, UCT‘ is essentially a less de4nite state-
ment between OCR and NOC. The subscript ‘ is used to
reJect the degree of con4dence toward con4rmation of the
corresponding event(s).
Membership functions used in this work for classifying

the occurrence indices are either triangular or trapezoidal
as shown in Fig. 10. Notice that all diagnostic conclusions
can be characterized with the same set of membership func-
tions. The upper left corner of NOC and the upper right
corner of OCR are placed at 0 and 1, respectively. The lo-
cations of their upper interior corners, i.e., VNOC and VOCR,
should be selected before other triangular membership func-
tions can be determined. If the number of measurements in
a two-valued SOO is n, then a total of 2n − 1 triangular
membership functions are used to characterize UCT‘s. The
locations of their apexes (VUCT

‘ ) are determined according
to the following equation:

VUCT
‘ = VNOC + ‘

VOCR − VNOC

2n
; (24)

where ‘ = 2‘f + ‘t , and ‘f and ‘t denote the numbers
of matched 4nal and transient symptoms, respectively. The
locations of bottom corners of each triangle are again chosen
to be the apex locations of the neighboring functions.

4.3. Generation of inference rules

As mentioned previously, the IF–THEN inference rules
can be divided into four di3erent classes. The classes I and
II rules are used for evaluating the existence potential of all
basic events in a cut set, i.e. csk (k = 1; 2; 3; : : :). The class

III rules are mainly used to enhance diagnostic resolution.
Finally, the class IV rules are used to compute a preliminary
index for the top event, i.e. te.
The class I rules can be derived from the candidate pat-

terns with the help of Theorem 4. To facilitate later discus-
sions, let us 4rst de4ne a linguistic interpretation function
F as follows:

F(�∗j ) =




LN if �∗j =−10;
SN if �∗j =−1;
ZE if �∗j = 0;

SP if �∗j =+1;

LP if �∗j =+10;

(25)

where �∗j =�tj or �
f
j , and j=1; 2; : : : ; n. If the on-line symp-

toms are identical to those in a SOO, then it is highly pos-
sible that they are caused by the corresponding fault origin.
Consequently, the following rule is incorporated in FIS to
assert such a belief:

IF d1 is F(�
f
1 ) AND d2 is F(�

f
2 ) AND

· · · AND dn is F(�fn )

THEN csk is OCR: (26)

On the other hand, it is quite reasonable to disregard the
possibility of a fault if none of the symptoms in the corre-
sponding SOO can be observed. Thus, the following rule is
also included:

IF d1 is ZE AND d2 is ZE AND · · · AND dn is ZE

THEN csk is NOC: (27)

The remaining NCP − 2 candidate patterns are translated
into rules with uncertain conclusions, i.e. UCT‘ and ‘ =
1; 2; : : : ; 2n−1. The premises of each rule can be determined
by substituting the qualitative deviation values in a candi-
date pattern into the linguistic interpretation function F . The
number of matched transient and 4nal symptoms in the can-
didate pattern is used to compute the degree of con4dence
‘ in conclusion UCT‘.
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Since 4ve deviation values are used to characterize each
symptom, the total number of all possible patterns should
be 5n. Obviously, there are 5n−NCP non-candidate patterns
and the conclusions of the corresponding rules should all
be NOC. If all such rules are included in FIS, the resulting
computation load may become overwhelming. On the other
hand, the inference system is bound to perform poorly with-
out them. To be more speci4c, let us consider the situation
when none of the candidate patterns can be matched. Ob-
viously, the membership value of csk obtained by 4ring the
class I rules should be very small at every point in the inter-
val [0; 1] and thus its centroid must be around 0.5. In other
words, the diagnosis is uncertain. This is unacceptable since
the correct occurrence index should be 0, i.e. the possibil-
ity of cut set k should be ruled out if none of the candidate
patterns are matched. To solve this dilemma, a single class
II rule is used in the FIS instead. This rule can be written as

IF d1 is NOT ZE AND d2 is NOT ZE AND · · ·
AND dn is NOT ZE

THEN csk is NOC; (!k); (28)

where 0¡!k � 1. Notice that !k here denotes a weighting
factor introduced in 4ring the rule. If it is the only triggered
rule, then the resulting occurrence index should be 0 (not
0.5). If one or more additional rule is also triggered, then
the impact of class II rule should be negligible due to this
very small weighting factor. Implementation of the class II
rule is realized with the Fuzzy Logic Toolbox in MATLAB
(Mathworks, 2000a) in this work.
Usually not all measured variables in a system are af-

fected by the basic events in a cut set. In this study, the set
of all measurements included in the SOO of the kth cut set
is referred to as its range of in:uence ROIk . Thus, if a mea-
surement variable is not a member of ROIk , then it should
remain una3ected by the corresponding basic event(s) in cut
set k. In this work, the class III rules are used mainly to re-
duce the chance of misdiagnosis due to a di3erent fault ori-
gin, say the basic events in cut set k ′, causing the same can-
didate patterns within ROIk . A set of corresponding class
III rules can be written as

IF du is SP THEN csk is NOC

IF du is SN THEN csk is NOC

IF du is LP THEN csk is NOC

IF du is LN THEN csk is NOC (29)

or simply

IF du is NOT ZE THEN csk is NOC; (30)

where csk is the occurrence index of the kth cut set and
u �∈ ROIk . If cut set k is indeed the correct root cause, then
the rule in Eq. (30) is not supposed to be triggered. On the

other hand, in the case of cut set k ′ occurring, these rules
should de4nitely lower the value of csk . Thus, by assuming
that the possibility of more than one fault origin occurring
is negligible, the class III rules can enhance the diagnostic
resolution. However, the drawback of including them in FIS
is that the possibility of a non-minimal cut set or multiple cut
sets may also be ignored. In other words, if the basic events
in cut set k form a subset of all existing events, these rules
may cause a decrease in the occurrence index csk . Therefore,
this trade-o3 between resolution and comprehensiveness in
diagnosis must be evaluated carefully before introducing the
class III rules in practical applications. In this study, they
are included on the ground that the probability of additional
events occurring is extremely low.
Finally, if the top event is monitored directly with a sen-

sor, then this information should be encoded with class IV
rules. Since there is only one measurement involved, 4ve
inference rules can be constructed to cover all possibilities.
As an example, by assuming that “dt is SP” is the event
causing undesirable consequences, one can express the cor-
responding rules as

IF dt is LP THEN te is OCR

IF dt is SP THEN te is OCR

IF dt is ZE THEN te is NOC

IF dt is SN THEN te is NOC

IF dt is LN THEN te is NOC (31)

Example 3. Let us consider the 2nd cut set in Table 1 and
assume that the corresponding SOO can be described with
Fig. 7(A). The class I rules in this case can be found in
Table 4. The class II and class IV rules can be written as

• Class II:

IF LIC-01m is NOT ZE AND LIC-01c is NOT ZE AND

FI-01m is NOT ZE AND FI-02m is NOT ZE

THEN cs2 is NOC (0:001) (32)

• Class IV:

IF LIC-01m is LP THEN te is OCR

IF LIC-01m is SP THEN te is OCR

IF LIC-01m is ZE THEN te is NOC

IF LIC-01m is SN THEN te is NOC

IF LIC-01m is LN THEN te is NOC (33)

Finally, notice that the class III rules do not exist since all
measurements are within ROI2.
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Table 4
The IF–THEN inference rules of cut set 2

IF

No. LIC-01m LIC-01c FI-01m FI-02m THEN

1 ZE ZE ZE ZE NOC

2 SP ZE ZE ZE UCT1
3 SP ZE ZE SP UCT2
4 SP SN ZE ZE UCT2
5 SP SN ZE SP UCT3
6 SP SN SN ZE UCT3
7 SP SN SN SP UCT4

8 SP SN SN ZE UCT4
9 SP SN SN SP UCT5
10 SP SN SN SP UCT6
11 SP LN SN ZE UCT5
12 SP LN SN SP UCT6
13 SP LN SN SP UCT7
14 SP LN LN ZE UCT6
15 SP LN LN SP UCT7
16 SP LN LN SP OCR

4.4. Forecast of top event

If the existence of the basic event(s) in any cut set is
con4rmed, then one can deduce logically that the top event is
bound to occur. Thus, the combined outputs of 4ring classes
I, II and III rules, i.e. csk (k=1; 2; : : :), can also be treated as
indications of system hazard. On the other hand, the class IV
rules exist only when the directmeasurement of the variable
associated with top event dt is available. If this is the case,
the 4nal occurrence index of top event (OITE) should be
obtained by taking the maximum of csks and te, i.e.

OITE = max(cs1; cs2; : : : ; te): (34)

5. Case studies

To demonstrate the e3ectiveness of the proposed ap-
proach, extensive simulation studies on the level control
system in Fig. 1 have been carried out in this work. From
the results of fault tree analysis given in Table 1, it can be
observed that there are basically two types of failure mech-
anisms. The 4rst two cut sets represent scenarios caused by
the uncontrollable disturbances. Typical dynamic responses
in these situations can be found in Figs. 5(A) and (B). The
fault origins listed in remaining cut sets can be generalized
as the combination of two basic events, i.e. (1) a control-
lable disturbance and (2) an equipment failure causing the
control loop inactive.
Let us 4rst consider the scenario caused by cut set 2, i.e.

{m3(+10)}, which is an uncontrollable disturbance. For
simulation purpose, it is assumed that the system is origi-
nally at steady state and valve V-03 is mistakenly opened at
time 1000 s. Consequently, a Jux of 900 g=s is introduced

into the storage tank via stream 3. Since this Jow is larger
than that of stream 1 at the normal steady state, it is apparent
that its e3ects cannot be compensated with the level control
system. The corresponding simulation data in this case were
generated with SIMULINK (Mathworks, 2000b). In all sim-
ulation runs, the controller parameters associated with the
“fast” control actions in Fig. 5(A) were adopted, i.e. Kp=8
and �I=5. It is assumed that the inferior control performance
presented in Fig. 5(B) can always be avoided with proper
tuning procedure. The diagnosis results of FIS in this case
are shown in Fig. 11. It can be seen that the performance of
the proposed fuzzy-logic based method is quite satisfactory.
Notice from Fig. 11(A) that the early symptoms of the basic
event m3(+10) can be clearly detected. This observation
indicates that the current compensation action of the con-
troller is indeed fast enough for preventing the controlled
variable, i.e. hT−01, to exceed the height of tank wall even
under the inJuence of large external disturbances. The oc-
currence index of top event is shown in Fig. 11(B). Notice
that the occurrence of top event is con4rmed long before
a positive identi4cation of the fault origin cs2. This is
due to the facts that (1) the level measurement LIC-01m is
the 4rst symptom in the SOO given in Fig. 7(A), (2) the
class IV rules speci4ed in Eq. (31) should be triggered early
in the fault propagation process, and (3) the occurrence
index OITE is the maximum value of csks and te.
Next let us consider a similar case in which a control-

lable disturbance is introduced, i.e. the globe valve V-03 is
partially opened at 1000 s. Since the Jow rate in stream 3
in this case is only 200 g=s, the liquid level can be even-
tually controlled at its original set point, i.e. 50 cm, by re-
ducing the Jow rate in stream 1. Thus, this Jow increase in
stream 3 should be expressed qualitatively as m3(+1). The
simulated dynamic response of level height is shown in Fig.
12(A) and the corresponding inference results of FIS using
only the IF–THEN rules for cs2 can be found in Fig. 12(B).
It can be observed that the initial 4nding of the diagnosis
system is that the uncontrollable disturbance m3(+10) may
be a candidate fault origin (with a 20% certainty). However,
as the e3ects of disturbance m3(+1) are gradually compen-
sated, the level height is brought back to the normal steady
state. Consequently, the occurrence index cs2 also returns
to a very low value near zero around 1200 s and the oc-
currence possibility of m3(+10) can therefore be correctly
eliminated.
The third case discussed in this paper is concerned with

the second type of failure mechanisms listed in Table 1.
Speci4cally, let us consider the scenario caused by the basic
events in cut set 11, i.e. (1) a controllable disturbance is in-
troduced in the Jow rate of stream 3 and (2) the controller
LIC-01 fails. Samples of simulation results for four di3erent
cut sets, i.e. cs2, cs9, cs10 and cs11, are shown in Figs. 13(A)
–(D), respectively. Notice 4rst from Figs. 13(A) and (B)
that the diagnostic conclusions concerning the 2nd and 9th
cut sets are both uncertain. This is due to the fact the 4nal
symptoms of cut set 11 only partially match those caused
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Fig. 11. Simulation results of case 1: (A) occurrence index of the 2nd cut set; (B) occurrence index of top event.
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Fig. 12. Simulation results of case 2: (A) level response to a controllable disturbance; (B) occurrence index of the 2nd cut set.

by cut sets 2 and 9. More speci4cally, the fully developed
candidate pattern of the 11th cut set is essentially the same
as the 3rd candidate pattern listed in Table 3 and also the 3rd
row in Table 2. In addition, notice that the eventual degree
of con4dence achieved in Fig. 13(A) is lower than that in
Fig. 13(B). This di3erence can be easily explained by com-
paring the membership functions of the occurrence indices
UCT‘s used in the corresponding IF–THEN rules. From Ta-
ble 1, one can also see that the cause of control-loop failure
in the 10th cut set is the malfunction of sensor/transmitter
and that in the 11th cut set is controller failure. The simula-
tion results in Fig. 13(C) show that the on-line symptoms of
the basic events in cut set 10 are completely matched during
the early stage of diagnosis process. However, the fuzzy in-
ference system rapidly lowers its con4dence in con4rming
the 10th cut set after the symptoms of cut set 11 are fully
developed at about 2600 s. Finally, the diagnosis results in

Fig. 13(D) indicate that the actual fault origin, i.e. the basic
events in cut set 11, can be correctly identi4ed in a timely
manner.

6. Conclusion

By capturing the dynamic characteristics of abnormal
system behaviors with four di3erent classes of fuzzy in-
ference rules, an e3ective fault diagnosis system has been
developed in this work. Four theorems have been derived
to facilitate enumeration of all possible candidate patterns
for diagnosis in systems with and without feedback control
loops. The simulation results show that the proposed strat-
egy can be used to identify not only the correct fault origins
but also the corresponding fault propagation mechanisms
as well.
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Notation

BSN
i; l =B

SN
i; r the location of left/right bottom corner of

triangular membership function SN
BZE
i; l =B

ZE
i; r the location of left/right bottom corner of

triangular membership function NE
BSP
i; l =B

SP
i; r the location of left/right bottom corner of

triangular membership function SP
BLN
i; r the location of right bottom corner of trape-

zoidal membership function LN
BLP
i; l the location of left bottom corner of trape-

zoidal membership function LP
csk the occurrence index of kth cut set
di the process deviation of yi

dmaxi the maximum value of di

dmini the minimum value of di

F the linguistic interpretation function
hT-01 the liquid level of the tank T-01
‘t=‘f the number of matched transient/4nal symp-

toms
LN large negative—a linguistic value of the

process deviation
LP large positive—a linguistic value of the pro-

cess deviation
mi the mass Jow rate of ith stream
NCP the number of candidate patterns
NOC not occurred—a linguistic value of the di-

agnostic conclusion

OCR occurred—a linguistic value of the diagnos-
tic conclusion

OITE occurred index of top event
P(0)(n0) the initial path (of length n0) in a

single-valued tree-shaped SOO
P(0; i)(n0; i) the ith branch path (of length n0; i) from P(0)

P(0; i; j)(n0; i; j) the jth branch path (of length n0; i; j) from
P(0; i)

P̂(0)(n0) the initial path (of length n0) in a
two-valued tree-shaped SOO

P̂(0; i)(n0; i) the ith branch path (of length n0; i) from P̂(0)

P̂(0; i; j)(n0; i; j) the jth branch path (of length n0; i; j) from
P̂(0; i)

P̃(0)(n0) the initial path (of length n0) in a
two-valued tree-shaped hybrid SOO

P̃(0; i)(n0; i) the ith branch path (of length n0; i) from P̃(0)

P̃(0; i; j)(n0; i; j) the jth branch path (of length n0; i; j) from
P̃(0; i)

ROIk the range of inJuence of the kth cut set
si the ith variable in a single-path two-valued

SOO
S̃ a two-valued single-path SOO on a feed-

back control loop
SN small negative—a linguistic value of the

process deviation
SP small positive—a linguistic value of the

process deviation
T a single-valued tree-shaped SOO
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T̂ a two-valued tree-shaped SOO
T̃ a two-valued tree-shaped hybrid SOO
te preliminary occurrence index of top event
UCT‘ uncertain with con4dence of degree ‘— a

linguistic value of the diagnostic conclusion
VNOC the location of upper interior corner of the

trapezoidal membership function NOC
VOCR the location of upper interior corner of

trapezoidal membership function OCR
VUCT
‘ the apex location of triangular membership

function UCT‘
V LP
i the location of upper interior corner of the

trapezoidal membership function LP for di

V LN
i the location of upper interior corner of the

trapezoidal membership function LN for di

V SP
i the apex location of triangular membership

function SP for di

V SN
i the apex location of triangular membership

function SN for di

V ZE
i the apex location of triangular membership

function ZE for di

yi the ith process measurement
yss
i the steady-state value of yi

Y the set of all measured variables
ZE zero—a linguistic value of process devia-

tion

Greek letters

�ti the qualitative value representing the tran-
sient state of si

�fi the qualitative value representing the 4nal
state of si

� the set of all deviation states, i.e., � =
{−10;−1; 0;+1;+10}

�ss
i the mean of yss

i
!ss
i the standard deviation of yss

i

Abbreviations

FIS fuzzy inference system
FPP fault propagation path
ROI range of inJuence
SDG signed directed graph
SOO symptom occurrence order

Appendix A. Proof of Theorem 2

Consider 4rst the case when n=1, i.e. S̃(1) = s1(�t1; �
f
1 ).

Since all three possible states of s1, i.e. 0, �t1 and �f1 , may
be observed on-line, these three candidate patterns can be
described collectively with a logic statement, i.e.

s1(0) ∨ s1(�t1) ∨ s1(�
f
1 );

where the symbol ∨ denotes the logic operator “OR” and
the number of terms connected by ∨ is the total number of
candidate patterns. Since NCP = 2× 1 + 1 = 3, we 4nd Eq.
(5) is satis4ed in this case.
If n=2, then S̃(2)= s1(�t1; �

f
1 )→ s2(�t2; �

f
2 ). All possible

candidate patterns in this case can be identi4ed with the
pattern generation rules. They can be expressed with the
following statement:

[s1(0) ∧ s2(0)] ∨ [s1(�t1) ∧ s2(0)] ∨ [s1(�t1) ∧ s2(�t2)];

∨[s1(�f1 ) ∧ s2(�t2)] ∨ [s1(�f1 ) ∧ s2(�
f
2 )];

where the symbol ∧ denotes the logic operator “AND”.
Again, the number of terms connected by ∨ in this logic
statement is the total number of candidate patterns. Notice
that NCP = 2× 2 + 1 = 5 and thus Eq. (5) is still valid.
Let us further assume that the theorem is valid for a par-

ticular case when n = k (k = 1; 2; 3; : : :) and then consider
if is also true when n = k + 1. If n = k, the corresponding
2k + 1 candidate patterns can be divided into three types
according to the state of 4nal measured variable sk . A more
detailed description is provided below:

• Type I: If its state is �fk , then there is only one possibility,
i.e.

s1(�
f
1 ) ∧ s2(�

f
2 ) ∧ · · · ∧ sk(�

f
k ):

• Type II: If its state is �tk , then there are k possible patterns,
i.e.

s1(�t1) ∧ s2(�t2) ∧ s3(�t3) ∧ · · · ∧ sk−1(�tk−1) ∧ sk(�tk);

s1(�
f
1 ) ∧ s2(�t2) ∧ s3(�t3) ∧ · · · ∧ sk−1(�tk−1) ∧ sk(�tk);

s1(�
f
1 ) ∧ s2(�

f
2 ) ∧ s3(�t3) ∧ · · · ∧ sk−1(�tk−1) ∧ sk(�tk);

...

s1(�
f
1 ) ∧ s2(�

f
2 ) ∧ s3(�

f
3 ) ∧ · · · ∧ sk−1(�

f
k−1) ∧ sk(�tk):

• Type III: If its state is 0, then another k possible patterns
can be identi4ed, i.e.

s1(0) ∧ s2(0) ∧ s3(0) ∧ · · · ∧ sk−1(0) ∧ sk(0);

s1(�t1) ∧ s2(0) ∧ s3(0) ∧ · · · ∧ sk−1(0) ∧ sk(0);

s1(�t1) ∧ s2(�t2) ∧ s3(0) ∧ · · · ∧ sk−1(0) ∧ sk(0);

...

s1(�t1) ∧ s2(�t2) ∧ s3(�t3) ∧ · · · ∧ sk−1(�tk−1) ∧ sk(0):

Next let us consider the case when n = k + 1. The cor-
responding SOO can be written as S̃(k + 1) = S̃(k) →
sk+1(�tk+1; �

f
k+1). Thus all possible candidate patterns can

be generated with the proposed pattern generation rules ac-
cording to the patterns identi4ed in the previous case when
n= k. If the pattern associated with S̃(k) is type I, the state
of sk+1 may be either �tk+1 or �

f
k+1. Here, the possibility of
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sk+1(0) is excluded on the basis of the second pattern gener-
ation rule. If, on the other hand, one of the last k−1 type-II
patterns of S̃(k) is used for building the candidate patterns
of S̃(k + 1), then sk+1(�tk+1) is the only allowed symptom.
When every variable in S̃(k) is at the transient state, an ad-
ditional possibility sk+1(0) should also be included. Finally,
if the k type-III patterns of S̃(k) are considered for the same
purpose, then sk+1(0) is the only choice for all of them.
The total number of candidate patterns can be determined

by summing all possibilities mentioned above, i.e.

NCP = 1× 2 + (k × 1 + 1× 1) + k × 1
= 2(k + 1) + 1:

Appendix B. Proof of Theorem 3

If N0 = 0 then the symptom occurrence order is a single
path, i.e. T̂= P̂(0)(n0), and Eq. (6) can be written as

NCP =N3{P̂(0)(n0)}= n0(n0 + 1)
2

+ n0 + 1

=
(n0 + 1)(n0 + 2)

2
: (B.1)

A formal proof of this equation is given below:
Let us 4rst consider the case when n0 =1. Since only one

measured variable s1 is included in the path P̂(0)(n0), all
candidate patterns can be expressed as s1(0)∨s1(�t1)∨s1(�f1 ).
Thus the number of candidate patterns is NCP = 3 = (1 +
1)(1+2)=2. If n0=2, then P̂(0)(2)=s1(�t1; �

f
1 )→ s2(�t2; �

f
2 ).

Since s1 and s2 are not on a negative feedback loop, the
candidate patterns can be described with the following logic
statement:

[s1(0) ∧ s2(0)] ∨ [s1(�t1) ∧ s2(0)] ∨ [s1(�t1) ∧ s2(�t2)]

× ∨ [s1(�f1 ) ∧ s2(0)] ∨ [s1(�f1 ) ∧ s2(�t2)];

× ∨ [s1(�f1 ) ∧ s2(�
f
2 )]:

Thus, the total number of candidate patterns in the above
statement is the same as that computed with Eq. (B.1), i.e.
NCP = 6 = (2 + 1)(2 + 2)=2. Notice that the fourth pattern
is not allowed if s1 and s2 are loop variables.
Let us further assume that Eq. (B.1) is valid for a partic-

ular case when n0 = k (k = 1; 2; 3; : : :) and then consider if
is also true when n0 = k + 1. If n0 = k, the corresponding
(k + 1)(k + 2)=2 candidate patterns can be classi4ed into
three types according to the state of 4nal measurement sk .
By following the pattern generation rules, it can be easily
deduced that:

• the symptom sk(0) is embedded in k(k + 1)=2 patterns;
• the symptom sk(�tk) can be identi4ed in another k patterns;
• only one pattern contains the symptom sk(�

f
k ).

Next let us consider the case when n0 = k + 1. All possi-
ble candidate patterns can be generated on the basis of the

patterns identi4ed in the previous case when n= k. In par-
ticular, it can be determined by applying the pattern genera-
tion rules that the numbers of possible states of sk+1 for the
three types of candidate patterns listed above should be 1, 2
and 3, respectively. The total number of candidate patterns
in the present case can be determined accordingly, i.e.

NCP =
k(k + 1)

2
× 1 + k × 2 + 1× 3 = (k + 2)(k + 3)

2
:

The validity of Eq. (B.1) is therefore established.
The second part of this proof is concerned with the gen-

eral case when N0¿ 1, N0; i1 ¿ 1∃i1, N0; i1 ;i2 ¿ 1∃i2; : : :, etc.
Notice that the classi4cation of candidate patterns on each
path in the tree-shaped SOO should be exactly the same as
that given to a single path. Let us consider the last symptom
in initial path P̂(0)(n0). Speci4cally,

(1) If the symptom is sn0 (0), then none of the later symp-
toms in the tree-shaped SOO can be developed, i.e.
their states should all be 0. The corresponding number
of candidate patterns in this case should be n0(n0 +
1)=2× 1 = n0(n0 + 1)=2.

(2) If the symptom is sn0 (�
t
n0 ), then the later symptoms

can only developed partially. In other words, the vari-
ables on the tree branches of SOO can only reach their
respective transient, but not the 4nal, states. Thus, by
excluding the initial path, the remaining tree can be
viewed as a single-valued SOO and Theorem 1 is ap-
plicable in this situation. Since the number of patterns
associated with the initial path is n0, the number of cor-
responding candidate patterns of the entire SOO should
be

n0
N0∏
i1=1

N1{P̂(0; i1)(n0; i1 )}:

(3) If the symptom is sn0 (�
f
n0 ), then all later symptoms

may be fully developed. In particular, any variable on
a tree branch of SOO may reach either its transient
or 4nal state in a corresponding pattern. A two-valued
counting operatorN3{•} is thus required to compute
the number of candidate patterns associated with the
branch paths connecting to the initial path, i.e. P̂(n0; i1 )
and i1 = 1; 2; : : : ; N0. Since there is only one pattern
associated with the initial path in this case, the number
of corresponding patterns of the entire SOO can be
determined according to

1×
N0∏
i1=1

N3{P̂(n0; i1 )}:

It obvious that Eq. (6) can be obtained by adding the
above three numbers together. Finally, notice that each path
P̂0; i1 (n0; i1 ) (i1=1; 2; : : : ; N0) can be viewed as the initial path
of the branch paths connecting to its end. Thus, the counting
operator N3{P̂(n0; i1 )} can be evaluated recursively with
Eq. (7).
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Appendix C. Proof of Theorem 4

Since P̃(0)(n0) is a loop path, Theorem 2 should be appli-
cable in this case. Thus, the number of corresponding pat-
terns is 2n0 +1 and these patterns can also be classi4ed into
three types according to the last symptom on this path. In
particular, there are n0 type I patterns (i.e. the last measure-
ment value is 0), n0 type II patterns (i.e. the last measure-
ment is at the transient state), and only one type III pattern
(i.e. the last measurement is at the 4nal state). Let us con-
sider the symptoms on the branch paths connecting to the
end of this initial path P̃(0)(n0):

(1) If the pattern associated with initial path is of type I,
then none of the later symptoms in the hybrid SOO can
be developed, i.e. their states should all be 0. Therefore,
the number of corresponding candidate patterns for the
entire SOO should be n0 × 1 = n0.

(2) If the pattern associated with initial path is of type II,
then two di3erent situations should be considered:
• If all measurements on the initial path are at the
transient states, then the measurements on all
branch paths of SOO can only reach their re-
spective transient, but not the 4nal, states. Thus,
Theorem 1 can be applied to count the candidate
patterns associated with all branch paths. Since
there is only one possible pattern on the initial
path, the number of corresponding candidate pat-
terns of the entire SOO should be

1×
N0∏
i1=1

N1{P̂(0; i1)(n0; i1 )}:

• If the 4rst measurement on initial path is at the 4-
nal state, then the patterns on the loop path P̃(0;1)

and the other branch paths P̃(0; i1) (i1=2; 3; : : : ; N0)
should not be the same. In the former case, let us
temporarily assume that the number of the corre-
sponding patterns can be computed with an oper-
ator N4; (1){•}. On the other hand, it should be
noted that Theorem 1 is still applicable in the lat-
ter case for counting the patterns associated with
the branch paths not on the loop., i.e. P̃(0; i1) (i1 =
2; 3; : : : ; N0). Since the number of patterns on ini-
tial path is n0 − 1 in this case, the number of cor-
responding patterns of the entire SOO should be
computed according to the following formula:

(n0 − 1)×
[
N4; (1){P̃(0;1)}·

×
N0∏
i1=2

N1{P̃(0; i1)(n0; i1 )}
]
:

(3) If the pattern associated with initial path is of type III,
the patterns on the loop path P̃(0;1) and the other branch
paths P̃(0; i1) (i1 = 2; 3; : : : ; N0) should be obtained with

di3erent pattern generation rules. Let us assume that
the former patterns can be counted with an operator
N4; (2){•}. On the other hand, since the measurements
may reach their 4nal states on P̃(0; i1) (i1 =2; 3; : : : ; N0),
Theorem 3 should be applicable in those cases. Thus,
the number of corresponding patterns of the entire SOO
should be

1×
[
N4; (2){P̃(0;1)(n0;1)} ·

N0∏
i1=2

N3{P̃(0; i1)(n0; i1 )}
]
:

Notice that Eq. (9) can be obtained by summing the
above numbers. In order to use this formula, the operators
N4; (1){P̃(0;1)(n0;1)} andN4; (2){P̃(0;1)(n0;1)} must be eval-
uated in advance.
The 4rst operator should be evaluated under the conditions

that the patterns on the initial path is of type II and the 4rst
measurement is at its 4nal state. Consequently, only one
pattern is possible on P̃(0;1), i.e. all measurements on this
path should be at their transient states. This is the result of
applying the pattern generation rules used in Theorem 2.
However, there is still a need to account for the possible
patterns on the branch paths connecting to the end of P̃(0;1).
Although there is still only one possibility associated with
P̃(0;1;1), the patterns on the other paths, i.e. P̃(0;1; i2) and i2 =
2; 3; : : : ; N0;1, should be determined with Theorem 1. If there
are further branch paths connecting to the end of P̃(0;1;1), then
essentially the same computation steps can be adopted to
determine the number of corresponding candidate patterns.
This recursive procedure is described concisely in Eq. (10).
The computation procedure is terminated when the further
connecting branch paths cannot be found at the end of a
loop path, i.e. N0;1; :::;1 = 0. Then the operator value in this
situation should be determined with Eq. (12) since there is
only one possible patterns on this loop path.
In order to evaluated the second operator, it is necessary

to examine the candidate patterns on P̃(0;1)(n0;1) under the
constraint that the patterns on the initial path is of type III.
It should be noted that only types II and III patterns are
possible on this branch path. This is due to the proposed
pattern generation rules used for loop paths. Let us consider
these two cases separately:

• If the pattern on P̃(0;1)(n0;1) is of type II, then all mea-
surements on the further loop path P̃(0;1;1)(n0;1;1) must be
at their transient states. This is due to the pattern genera-
tion rules used in Theorem 2. Consequently, the operator
N4; (1){•} should be applicable for determining the cor-
responding patterns, i.e

n0;1N4; (1){P̃(0;1;1)(n0;1;1)}
N0;1∏
i2=2

N1{P̃(0;1; i2)(n0;1; i2 )}:

• If the pattern on P̃(0;1)(n0;1) is of type III, then the ra-
tionale for generating the candidate patterns should be
identical to that for the corresponding case when the pat-
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tern on P̃(0)(n0) is of type III. Thus, operator N4; (2){•}
should be applied again in a formula of the same format
to compute the pattern number, i.e.

N4; (2){P̃(0;1;1)(n0;1;1)}
N0;1∏
i2=2

N3{P̃(0;1; i2)(n0;1; i2 )}:

Notice that Eq. (11) can be obtained by adding the above
two numbers together and obviously this equation can be ap-
plied repeatedly if there are further branch paths connecting
to the end of P̃(0;1;1)(n0;1;1). This recursive process is termi-
nated when N0;1; :::;1 = 0. The operator value in this situation
should be computed with Eq. (13) since, according to the
pattern generation rules for loop paths, the measurements
on P̃(0;1; :::;1)(n0;1; :::;1) should have already reached their tran-
sient or 4nal states. In other words, the possibilities of nor-
mal measurements appearing in the corresponding patterns
can be ruled out completely.
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